The Organization of Behavior
-Donald O. Hebb

Presented By:
Srivaths Ranganathan
Donald Hebb

• Born in 1904
• Initially studied to become a novelist, then became a teacher, later became a farmer and then travelled as a laborer
• Finally became a psychologist inspired by Sigmund Freud
• One of the first psychologists to work on neural basis for describing behavior
Problem of thought

• Psychologists worked with a basic “Stimulus -> Response” model.
• But this does not explain animal thought process not fully controlled by the environment
• More like,

 ![Diagram of thought process](image)

 S -> “Thought” -> R

• How can we explain autonomous activities in the brain like: expectancy, attention or interest?
• Theories prior to this book:
 – Switchboard theory – The nervous system is similar to a telephone exchange. Routes signals from sensory nerves to create responses
 – Field theory – Derived from Physics. Brain is considered as a homogeneous medium of neurons. Motor response is controlled by the distribution of excitation in this medium.
• But both these do not account for lag or delay between the sensory input and the motor response
• Hebb worked on how to model the mind and the complex process of thought
• Two components that he tries to explain: learning and memory
• Previously, Hilgard and Marquis, 1940:
 – Every event causes instantaneous reverberatory activity in the brain.
 – These are a transient memory of the stimulus
 – So, memory may be completely based on neural activity rather than on structural
 changes in the brain.
• But some memories are instantaneous established as well as permanently stored
Dual Trace mechanism [Memory]

• How to account for these?
• Hebb’s builds on their ideas - proposes “cell assemblies” to model ‘thought’ in the brain.
• Dual Trace mechanism:
 – Transient reverberations carry the memory until the growth [structural] change occurs
Hebb’s Rule

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency as one of the cells firing B is increased.”

Cells that fire together, wire together!
Synaptic knobs

- This growth process is attributed to synaptic knobs.
- When one cell repeatedly fires another, axon on first cell develops synaptic knobs or enlarges existing ones and increases contact area with soma of the second cell.
Example of Synaptic knobs

- Fiber 6 connects strongly to nodes C and B but bypasses D
- D and neuron connected with fiber 6 are not strongly associated
- Fiber 2 is from some distant cell that repeatedly fired along with C

Figure 7, Chapter 4, The organization of Behaviour
Hebbian Learning rule

- Hebb’s rule has been mathematically described [by others] as:
 \[\Delta w_{ij} = \eta \times x_i \times x_j \]

where,
- \(w_{ij} \) → the weight of the connection from neuron i to neuron j
- \(x_i, x_j \) → the binary excitation levels of neuron i and j
- \(\eta \) → learning rate
The cell assembly

- Two or more cells that are active together repeatedly become ‘associated’
- Sensory-Sensory associations formed along with S-R associations
- Example:
 - A, B -> visual-area afferent neurons
 - C leads back to area 17
 - A fires strongly → Cells in Area 18 are excited
 - C fires back into Area 17 → B is excited enough to fire
 - A’s firing causes B’s firing
 - Synapses grow at AC and CB
 - With such repeated excitation in 17, A-B [S-S] association is established
The cell assembly (cont.)

• Another example.
• A, B, C → fire together
• A contributes to firing E
• Excitation of B fires D and C
• Synaptic knobs at AE, BC, BD grow and coordinated activity increases
• Gradually B gets higher control over D and at some point D gets excited enough by B to activate X
• An with repeated firing of X the junction BX is reinforced and a closed loop BDXB is formed - reverberatory excitation

Figure 9, Chapter 4, The organization of Behaviour
The cell assembly (cont.)

Example of cell assembly with long reverberations:

- Arrows here are pathways rather than just single neurons
- Numbers refer to time of excitation
- Simple closed loop: 1-2-3-4

- If the conditions of excitations of others areas remain same, elongated periods of reverberations possible- upto half a second

Figure 10, Chapter 4, The organization of Behaviour
Growth of the Assembly

- Increase in synaptic knobs and increased control → change in the transmission and the frequency of excitation of the constituent elements of the assembly

- Fractionation and recruitment can occur:
 - Cells/units unable to take part in the firing in the changed assembly may gradually drop out
 - Other cells, previously incompatible, may now enter the assembly

- Therefore, with perceptual development, there will be slow growth in the assembly
Psychological Implications

- Change in the assembly is gradual, so prolonged time to integrate each individual perception
- Associations between two perceptions can occur only after both have been formed separately
- Even integrated perceptions may have difficulty in association [even if they are similar conceptually]
- The growth of the assembly not just accounts for but implies changes in behavior over time
Merits:

• Could explain Long Term Potentiation [increase in synaptic strength] very well.
 – Eg: Pavlov’s experiments on classical conditioning and learning
• Could also explain more complex, delayed behavior such as expectation or attention or interest
• Offered a new model to explain how memory and learning happened to create the mind
• One of the first to recognize and propose ‘connectionism’ in the architecture of a brain model
Limitations:

• Deals only with increase in strength of connections [Long term potentiation], did not consider cases of decrease in synaptic strength [Long term depression]
• Hebbian learning considers only local excitations and correlations. Does not consider the network as a whole while learning
• Learning rule is unstable – Any dominant signal can cause the weights to increase rapidly and is unbounded.
Questions?
References