Reinforcement Learning

Spring 2019
Defining MDPs, Planning
Markov Process

- Where you will go depends only on where you are
The information state of a Markov process may be different from its physical state.
Markov Reward Process

- Random wandering through states will occasionally win you a reward
The Fly Markov Reward Process

• There are, in fact, only four states, not eight
 – Manhattan distance between fly and spider = 0 (s_0)
 – Distance between fly and spider = 1 (s_1)
 – Distance between fly and spider = 2 (s_2)
 – Distance between fly and spider = 3 (s_3)
• Can, in fact, redefine the MRP entirely in terms of these 4 states
The discounted return

\[G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]

• Total future reward all the way to the end
Markov Decision Process

- Markov Reward Process with following change:
 - Agent has real agency
 - Agent’s actions modify environment’s behavior
The Fly Markov Decision Process

S_0 Process ends

s_2 a_+ s_1

s_2 a_- s_1

s_3 a_- s_2

s_3 a_- s_1

s_1 a_+ s_1

s_1 a_- s_1

s_0 a_- s_2

$1/3$ $2/3$

$1/3$ $2/3$
• **The policy** is the agent’s choice of action in each state
 – May be stochastic
The Bellman Expectation Equations

- The Bellman expectation equation for state value function

\[\nu_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu_\pi(s') \right) \]

- The Bellman expectation equation for action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} \sum_{a \in \mathcal{A}} \pi(a|s') q_\pi(s', a) \]
Optimal Policies

• The optimal policy is the policy that will maximize the expected total discounted reward at every state: \(E[G_t | S_t = s] \)

\[
= E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | S_t = s \right]
\]

• **Optimal Policy Theorem**: For any MDP there exist optimal policies \(\pi_* \) that is better than or equal to every other policy:

\[
\pi_* \geq \pi \quad \forall \pi
\]

\[
v_* (s) \geq v_\pi (s) \quad \forall s
\]

\[
q_* (s, a) \geq q_\pi (s, a) \quad \forall s, a
\]
The optimal value function

\[\pi_*(a|s) = \begin{cases}
1 & \text{for } \argmax_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases} \]

\[v_*(s) = \max_a q_*(s, a) \]
Bellman Optimality Equations

- Optimal value function equation

\[v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s',s}^a v_*(s') \]

- Optimal action value equation

\[q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s',s}^a \max_{a'} q_*(s', a') \]
Planning with an MDP

• Problem:
 – **Given:** an MDP \((S, P, A, R, \gamma) \)
 – **Find:** Optimal policy \(\pi_\star \)

• Can either
 – **Value-based Solution:** Find optimal value (or action value) function, and derive policy from it OR
 – **Policy-based Solution:** Find optimal policy directly
Value-based Planning

• “Value”-based solution

• Breakdown:
 – **Prediction:** Given *any* policy π find value function $v_\pi(s)$
 – **Control:** Find the optimal policy
Prediction DP

• Iterate

\[\nu^{(k+1)}_{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s'} P_{s',s}^a \nu^{(k)}_{\pi}(s') \right) \]
Policy Iteration

• Start with any policy \(\pi^{(0)} \)
• Iterate \((k = 0 \ldots \) convergence\):
 – Use prediction DP to find the value function \(\nu_{\pi^{(k)}}(s) \)
 – Find the greedy policy
 \[
 \pi^{(k+1)}(s) = \text{greedy} \left(\nu_{\pi^{(k)}}(s) \right)
 \]
Value iteration

\[\nu^{(k)}_*(s) = \max_a R_a^s + \gamma \sum_{s'} P_{s,s'}^a \nu^{(k-1)}_*(s') \]

- Each state simply inherits the cost of its best neighbour state
 - Cost of neighbour is the value of the neighbour plus cost of getting there
Problem so far

• *Given all details of the MDP*
 – Compute optimal value function
 – Compute optimal action value function
 – *Compute optimal policy*

• This is the problem of *planning*

• **Problem:** In real life, nobody gives you the MDP
 – How do we plan???
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control

• Assumption: We can identify the states, know the actions, and measure rewards, but have no knowledge of the system dynamics
 – The key knowledge required to “solve” for the best policy
 – A reasonable assumption in many discrete-state scenarios
 – Can be generalized to other scenarios with infinite or unknowable state
Model-Free Assumption

• Can see the fly
• Know the distance to the fly
• Know possible actions (get closer/farther)
• But have no idea of how the fly will respond
 – Will it move, and if so, to what corner
Model-Free Methods

• AKA model-free reinforcement learning

 • How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free *prediction*

 • How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free *control*
Model-Free Assumption

- Can see the fly and distance to the fly
- But have no idea of how the fly will respond to actions
 - Will it move, and if so, to what corner
- But will always try to reduce distance to fly (have a known, fixed, policy)
- What is the value of being a distance D from the fly?
Methods

• *Monte-Carlo* Learning

• *Temporal-Difference* Learning
 – $TD(1)$
 – $TD(K)$
 – $TD(\lambda)$
Monte-Carlo learning to learn the value of a policy π

• Just “let the system run” while following the policy π and learn the value of different states

• Procedure: Record several episodes of the following
 – Take actions according to policy π
 – Note states visited and rewards obtained as a result
 – Record entire sequence:
 – $S_1, A_1, R_2, S_2, A_2, R_3, \ldots, S_T$
 – Assumption: Each “episode” ends at some time

• Estimate value functions based on observations by counting
Monte-Carlo Value Estimation

• Objective: Estimate value function $v_\pi(s)$ for every state s, given recordings of the kind:
 $$S_1, A_1, R_2, S_2, A_2, R_3, \ldots, S_T$$

• Recall, the value function is the expected return:
 $$v_\pi(s) = E[G_t|S_t = s]$$
 $$= E[R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-1}R_T|S_t = s]$$

• To estimate this, we replace the statistical expectation $E[G_t|S_t = s]$ by the empirical average $avg[G_t|S_t = s]$
A bit of notation

• We actually record many episodes
 – \(\text{episode}(1) = S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, \ldots, S_{1T_1}\)
 – \(\text{episode}(2) = S_{21}, A_{21}, R_{22}, S_{22}, A_{22}, R_{23}, \ldots, S_{2T_2}\)
 – ...
 – Different episodes may be different lengths
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
Counting Returns

- For each episode, we count the returns at all times:
 - $S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1}$

- Return at time t
 - $G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1}$
 - $G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1}$
Counting Returns

- For each episode, we count the returns at all times:
 - $S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, ..., S_{1T_1}$

- Return at time t
 - $G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1}$
 - $G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1}$
 - $...$
 - $G_{1,t} = R_{1,t+1} + \gamma R_{1,t+2} + \cdots + \gamma^{T_1-t-1} R_{1T_1}$
Estimating the Value of a State

- To estimate the value of any state, identify the instances of that state in the episodes:

 $\{S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1}\}

 s_a s_b s_a ...

- Compute the average return from those instances

 $\nu_\pi(s_a) = \text{avg}(G_{1,1}, G_{1,3}, \ldots)$
Estimating the Value of a State

• For every state s
 – Initialize: Count $N(s) = 0$, Total return $v_\pi(s) = 0$
 – For every episode e
 • For every time $t = 1 \ldots T_e$
 – Compute G_t
 – If ($S_t == s$)
 » $N(s) = N(s) + 1$
 » $v_\pi(s) = v_\pi(s) + G_t$
 – $v_\pi(s) = v_\pi(s) / N(s)$

• Can be done more efficiently..
Online Version

- For all s Initialize: Count $N(s) = 0$, Total return $\text{tot}v_\pi(s) = 0$

- For every episode e
 - For every time $t = 1 \ldots T_e$
 - Compute G_t
 - $N(S_t) = N(S_t) + 1$
 - $\text{tot}v_\pi(S_t) = \text{tot}v_\pi(S_t) + G_t$
 - For every state s : $v_\pi(s) = \text{tot}v_\pi(s)/N(s)$

- Updating values at the end of each episode
- Can be done more efficiently.
Monte Carlo estimation

- Learning from experience explicitly

- After a sufficiently large number of episodes, in which all states have been visited a sufficiently large number of times, we will obtain good estimates of the value functions of all states

- Easily extended to evaluating action value functions
Estimating the Action Value function

• To estimate the value of any state-action pair, identify the instances of that state-action pair in the episodes:

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

\[s_a \ a_x \quad s_b \ a_y \quad s_a \ a_y \ \ldots \]

• Compute the average return from those instances

\[q_\pi(s_a, a_x) = \text{avg}(G_{1,1}, \ldots) \]
Online Version

- For all s, a Initialize: Count $N(s, a) = 0$, Total value $totq_{\pi}(s, a) = 0$

- For every episode e
 - For every time $t = 1 \ldots T_e$
 - Compute G_t
 - $N(S_t, A_t) = N(S_t, A_t) + 1$
 - $totq_{\pi}(S_t, A_t) = totq_{\pi}(S_t, A_t) + G_t$
 - For every $s, a : q(s, a) = totq_{\pi}(s, a)/N(s, a)$

- Updating values at the end of each episode
Monte Carlo: Good and Bad

• Good:
 – Will eventually get to the right answer
 – *Unbiased* estimate

• Bad:
 – Cannot update anything until the end of an episode
 • Which may last for ever
 – High variance! Each return adds many random values
 – Slow to converge
Online methods for estimating the value of a policy: Temporal Difference Leaning (TD)

- Idea: Update your value estimates after every observation

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

- Update for \(S_1 \)
- Update for \(S_2 \)
- Update for \(S_3 \)

- Do not actually wait until the end of the episode
Incremental Update of Averages

• Given a sequence x_1, x_2, x_3, \ldots a running estimate of their average can be computed as

$$\mu_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• This can be rewritten as:

$$\mu_k = \frac{(k - 1)\mu_{k-1} + x_k}{k}$$

• And further refined to

$$\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$
Incremental Update of Averages

• Given a sequence \(x_1, x_2, x_3, \ldots\) a running estimate of their average can be computed as

\[
\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})
\]

• Or more generally as

\[
\mu_k = \mu_{k-1} + \alpha (x_k - \mu_{k-1})
\]

• The latter is particularly useful for non-stationary environments

• For stationary environments \(\alpha\) must shrink with iterations, but not too fast

\[
- \sum_k \alpha_k^2 < C, \quad \sum_k \alpha_k = \infty, \quad \alpha_k \geq 0
\]
Incremental Updates

\[\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1}) \]

• Example of running average of a uniform random variable
Incremental Updates

\[\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1}) \]

- Correct equation is unbiased and converges to true value
- Equation with \(\alpha \) is biased (early estimates can be expected to be wrong) but converges to true value
Updating Value Function Incrementally

- Actual update

\[v_\pi(s) = \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_{t(i)} \]

- \(N(s) \) is the total number of visits to state \(s \) across all episodes

- \(G_{t(i)} \) is the discounted return at the time instant of the \(i \)-th visit to state \(s \)
Online update

• Given any episode
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \]

• Update the value of each state visited
 \[N(S_t) = N(S_t) + 1 \]
 \[v_\pi(S_t) = v_\pi(S_t) + \frac{1}{N(S_t)} (G_t - v_\pi(S_t)) \]

• Incremental version
 \[v_\pi(S_t) = v_\pi(S_t) + \alpha (G_t - v_\pi(S_t)) \]

• Still an unrealistic rule
 • Requires the entire track until the end of the episode to compute G_t
Online update

• Given any episode

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \]

• Update the value of each state visited

\[N(S_t) = N(S_t) + 1 \]

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)}(G_t - \nu_\pi(S_t)) \]

• Incremental version

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]

• Still an unrealistic rule
 • Requires the entire track until the end of the episode to compute Gt
TD solution

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t)) \]

- But

\[G_t = R_{t+1} + \gamma G_{t+1} \]

- We can approximate \(G_{t+1} \) by the *expected* return at the next state \(S_{t+1} \)
Counting Returns

• For each episode, we count the returns at all times:
 – $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T$

• Return at time t
 – $G_1 = R_2 + \gamma R_3 + \cdots + \gamma^{T-2} R_T$
 – $G_2 = R_3 + \gamma R_4 + \cdots + \gamma^{T-3} R_T$
 – \ldots
 – $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-2} R_T$

• Can rewrite as
 – $G_1 = R_2 + \gamma G_2$

• Or
 – $G_1 = R_2 + \gamma R_3 + \gamma^2 G_3$
 – \ldots
 – $G_t = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} G_{t+1+N}$
TD solution

\[v_\pi(S_t) = v_\pi(S_t) + \alpha(G_t - v_\pi(S_t)) \]

• But

\[G_t = R_{t+1} + \gamma G_{t+1} \]

• We can approximate \(G_{t+1} \) by the expected return at the next state \(S_{t+1} \approx v_\pi(S_{t+1}) \)

\[G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1}) \]

• We don’t know the real value of \(v_\pi(S_{t+1}) \) but we can “bootstrap” it by its current estimate
TD(1) true online update

$$v_\pi(S_t) = v_\pi(S_t) + \alpha(G_t - v_\pi(S_t))$$

• Where

$$G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1})$$

• Giving us

$$-v_\pi(S_t) = v_\pi(S_t) + \alpha(R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t))$$
TD(1) true online update

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha \delta_t \]

• Where

\[\delta_t = R_{t+1} + \gamma \nu_\pi(S_{t+1}) - \nu_\pi(S_t) \]

• \(\delta_t \) is the TD error
 – The error between an (estimated) observation of \(G_t \) and the current estimate \(\nu_\pi(S_t) \)
TD(1) true online update

- For all s Initialize: $v_\pi(s) = 0$
- For every episode e
 - For every time $t = 1 \ldots T_e$
 - $v_\pi(S_t) = v_\pi(S_t) + \alpha(R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t))$

- There’s a “lookahead” of one state, to know which state the process arrives at at the next time
- But is otherwise online, with continuous updates
TD(1)

• Updates continuously – improve estimates as soon as you observe a state (and its successor)

• Can work even with *infinitely long* processes that never terminate

• Guaranteed to converge to the true values eventually
 – Although initial values will be biased as seen before
 – Is actually lower variance than MC!!
 • Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
 – Particularly when TD is allowed to *loop* over all learning episodes
• What are \(v(A) \) and \(v(B) \)

 – Using MC

 – Using TD(1), where you are allowed to repeatedly go over the data
TD – look ahead further?

• TD(1) has a look ahead of 1 time step
 \[G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1}) \]

• But we can look ahead further out
 \[G_t(2) = R_{t+1} + \gamma R_{t+2} + \gamma^2 v_\pi(S_{t+2}) \]
 \[\ldots \]
 \[G_t(N) = R_{t+1} \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} v_\pi(S_{t+N}) \]
TD(N) with lookahead

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha \delta_t(N) \]

- Where

\[\delta_t(N) = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} \nu_\pi(S_{t+N}) - \nu_\pi(S_t) \]

- \(\delta_t(N) \) is the TD error with \(N \) step lookahead
Lookahead is good

• Good: The further you look ahead, the better your estimates get

• Problems:
 – But you also get more variance
 – At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates
 – A lag between observation and estimate

• So how much lookahead must you use
Looking Into The Future

- Let TD target look n steps into the future

- How much various TDs look into the future
- Which do we use?
Solution: Why choose?

- Each lookahead provides an estimate of G_t
- Why not just combine the lot with discounting?

\[G_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n) \]

• Combine the predictions from all lookaheads with an exponentially falling weight
 – Weights sum to 1.0

\[V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^\lambda - V(S_t) \right) \]
Something magical just happened

• TD(\(\lambda\)) looks into the infinite future
 – I.e. we must have all the rewards of the future to compute our updates
 – How does that help?
The contribution of future rewards to the present update

- All future rewards contribute to the update of the value of the current state
The contribution of current reward to \textit{past} states

- All current reward contributes to the update of the value of all past states!
• The *Eligibility* trace:
 — Keeps track of *total* weight for any state
 • Which may have occurred at multiple times in the past
TD(λ)

- Maintain an eligibility trace for *every* state

\[
E_0(s) = 0
\]

\[
E_t(s) = \lambda \gamma E_{t-1}(s) + 1(S_t = s)
\]

- Computes total weight for the state until the present time
TD(λ)

- At every time, update the value of *every state* according to its eligibility trace

\[
\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)
\]

\[
V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)
\]

- Any state that was visited will be updated
 - Those that were not will not be, though
The magic of TD(λ)

• Managed to get the effect of infinite lookahead, by performing infinite lookbehind
 – Or at least look behind to the beginning

• Every reward updates the value of all states leading to the reward!
 – E.g., in a chess game, if we win, we want to increase the value of all game states we visited, not just the final move
 – But early states/moves must gain much less than later moves

• When $\lambda = 1$ this is exactly equivalent to MC
Story so far

• Want to compute the values of all states, given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal difference solutions
 – TD is quicker to update, and in many situations the better solution
 – TD(\(\lambda\)) actually emulates an infinite lookahead
 • But we must choose good values of \(\alpha\) and \(\lambda\)
Optimal Policy: Control

• We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown for a given policy

• How do we find the optimal policy?
Value vs. Action Value

• The solution we saw so far only computes the value functions of states.

• Not sufficient – to compute the optimal policy from value functions alone, we will need extra information, namely transition probabilities.
 - Which we do not have.

• Instead, we can use the same method to compute action value functions.
 - Optimal policy in any state: Choose the action that has the largest optimal action value.
Value vs. Action value

• Given only value functions, the optimal policy must be estimated as:

$$\pi'(s) = \arg \max_{a \in A} R_s^a + P_{ss'}^a V(s')$$

 – Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

$$\pi'(s) = \arg \max_{a \in A} Q(s, a)$$

• This is model free (no need for knowledge of model parameters)
Problem of optimal control

- From a series of episodes of the kind:
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

- Find the optimal action value function \(q_*(s, a) \)
 - The optimal policy can be found from it

- Ideally do this *online*
 - So that we can continuously improve our policy from *ongoing experience*
Exploration vs. Exploitation

• Optimal policy search happens while gathering experience *while following a policy*

• For fastest learning, we will follow an estimate of the optimal policy

• Risk: We run the risk of positive feedback
 – Only learn to evaluate our current policy
 – Will never learn about alternate policies that may turn out to be better

• Solution: We will follow our current optimal policy $1 - \epsilon$ of the time
 – But choose a random action ϵ of the time
 – The “epsilon-greedy” policy
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T$
- Process the episode using the following online update rules:

 \[N(S_t, A_t) \leftarrow N(S_t, A_t) + 1 \]

 \[Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t)) \]

- Compute the ϵ-greedy policy for each state

 \[\pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases} \]

- Repeat
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$
- Process the episode using the following online update rules:

\[
N(S_t, A_t) \leftarrow N(S_t, A_t) + 1
\]

\[
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
\]

- Compute the ϵ-greedy policy for each state

\[
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
\epsilon & \text{ otherwise} \\
\frac{1}{N_a - 1} & \text{ otherwise}
\end{cases}
\]

- Repeat
On-line version of GLIE: SARSA

• Replace G_t with an estimate
• TD(1) or TD(λ)
 – Just as in the prediction problem

• TD(1) \rightarrow SARSA

$$Q(S, A) \leftarrow Q(S, A) + \alpha (R + \gamma Q(S', A') - Q(S, A))$$
SARSA

- Initialize $Q(s, a)$ for all s, a
- Start at initial state S_1
- Select an initial action A_1
- For $t = 1..$ Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ-greedy policy

$$
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
\frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases}
$$

- Update
$$
Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right)
$$
SARSA(\(\lambda\))

- Again, the TD(1) estimate can be replaced by a TD(\(\lambda\)) estimate.
- Maintain an eligibility trace for every state-action pair:
 \[E_0(s, a) = 0 \]
 \[E_t(s, a) = \lambda \gamma E_{t-1}(s, a) + 1(S_t = s, A_t = a) \]

- Update every state-action pair visited so far
 \[\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \]
 \[Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a) \]
SARSA(\(\lambda\))

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots\) Termination
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) using policy obtained from \(Q\)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + \alpha \delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s, a)\)
On-policy vs. Off-policy

- SARSA assumes you’re following the same policy that you’re learning.
- It’s possible to follow one policy, while learning from others.
 - E.g. learning by observation.
- The policy for learning is the whatif policy.

\[
S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T
\]

\[
\hat{A}_2 \quad \hat{A}_3 \quad \text{hypothetical}
\]

- Modifies learning rule

\[
Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))
\]

- to

\[
Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t) \right)
\]

- Q will actually represent the action value function of the hypothetical policy.
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Use TD rules to update:
 \[
 \delta = R + \gamma Q(S', A') - Q(S, A)
 \]

• Problem: which policy do we use to choose \(A'\)
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Problem: which policy do we use to choose \(A'\)

• If we choose the *current judgment of the best action* at \(S'\) we will become too greedy
 – Never explore

• If we choose a *sub-optimal* policy to follow, we will never find the best policy
Solution: Off-policy learning

• The policy for learning is the whatif policy

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

\[\hat{A}_2 \quad \hat{A}_3 \] hypothetical

• Use the best action for \(S_{t+1} \) as your hypothetical off-policy action

• But actually follow an epsilon-greedy action
 – The hypothetical action is guaranteed to be better than the one you actually took
 – But you still explore (non-greedy)
Q-Learning

- From any state-action pair S, A
 - Accept reward R
 - Transition to S'
 - Find the best action A' for S'
 - Use it to update $Q(S, A)$
 - But then actually perform an epsilon-greedy action A'' from S'
Q-Learning (TD(1) version)

- For all \(s, a \) initialize \(Q(s, a) \)
- For each episode \(e \)
 - Initialize \(S_1, A_1 \)
 - For \(t = 1 \) ... *Termination*
 - Observe \(R_{t+1}, S_{t+1} \)
 - Choose action \(A_{t+1} \) at \(S_{t+1} \) using epsilon-greedy policy obtained from \(Q \)
 - Choose action \(\hat{A}_{t+1} \) at \(S_{t+1} \) as \(\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a) \)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t) \)
 - \(Q(S_t, A_t) = Q(S_t, A_t) + \alpha \delta \)
Q-Learning (TD(\(\lambda\)) version)

• For all \(s, a\) initialize \(Q(s, a)\)
• For each episode \(e\)
 – For all \(s, a\) initialize \(E(s, a) = 0\)
 – Initialize \(S_1, A_1\)
 – For \(t = 1 \ldots\) Termination
 • Observe \(R_{t+1}, S_{t+1}\)
 • Choose action \(A_{t+1}\) at \(S_{t+1}\) using epsilon-greedy policy obtained from \(Q\)
 • Choose action \(\hat{A}_{t+1}\) at \(S_{t+1}\) as \(\hat{A}_{t+1} = \underset{a}{\arg\max} Q(S_{t+1}, a)\)
 • \(\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)\)
 • \(E(S_t, A_t) := 1\)
 • For all \(s, a\)
 – \(Q(s, a) = Q(s, a) + \alpha \delta E(s, a)\)
 – \(E(s, a) = \gamma \lambda E(s, a)\)
What about the actual policy?

• Optimal greedy policy:

\[
\pi(a|s) = \begin{cases}
1 & \text{for } a = \arg\max_{a'} Q(s, a') \\
0 & \text{otherwise}
\end{cases}
\]

• Exploration policy

\[
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
\frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases}
\]

• Ideally ϵ should decrease with time
Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:
 – Value function approximation
 – Continuous state spaces
 – Deep-Q learning
 – Action replay
 – Application to real problem..