Deep Learning

Sequence to Sequence models: Connectionist Temporal Classification
Sequence-to-sequence modelling

- Problem:
 - A sequence $X_1 \ldots X_N$ goes in
 - A different sequence $Y_1 \ldots Y_M$ comes out
- E.g.
 - Speech recognition: Speech goes in, a word sequence comes out
 - Alternately output may be phoneme or character sequence
 - Machine translation: Word sequence goes in, word sequence comes out
 - Dialog: User statement goes in, system response comes out
 - Question answering: Question comes in, answer goes out

- In general $N \neq M$
 - No synchrony between X and Y.
Sequence to sequence

- Sequence goes in, sequence comes out
- No notion of “synchrony” between input and output
 - May even not have a notion of “alignment”
 - E.g. “I ate an apple” → “Ich habe einen apfel gegessen”
Case 1: With alignment

- The input and output sequences happen in the same order
 - Although they may be asynchronous
 - E.g. Speech recognition
 - The input speech corresponds to the phoneme sequence output
Variants on recurrent nets

- Sequence classification: Classifying a full input sequence
 - E.g. phoneme recognition
- Order synchronous, time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori
Basic model

- Sequence of inputs produces a single output
Training

- The Divergence is only defined at the final input
 - $DIV(Y_{target}, Y) = Xent(Y(T), Phoneme)$
- This divergence must propagate through the net to update all parameters
- Ignores outputs at intermediate steps
Training

- Exploiting the untagged inputs: assume the same output for the entire input
- Define the divergence everywhere

\[
DIV(Y_{target}, Y) = \sum_t w_t \text{Xent}(Y(t), \text{Phoneme})
\]
Fix: Use these outputs too.

These too must ideally point to the correct phoneme

- Define the divergence everywhere

\[
DIV(Y_{target}, Y) = \sum_t w_t Xent(Y(t), Phoneme)
\]

- Typical weighting scheme for speech: all are equally important
- Problem like question answering: answer only expected after the question ends
 - Only \(w_T \) is high, other weights are 0 or low
• Define the divergence everywhere

\[DIV(Y_{target}, Y) = \sum_t w_t X_{ent}(Y(t), \text{Phoneme}) \]

• Typical weighting scheme for speech: all are equally important
• Problem like question answering: answer only expected after the question ends
 – Only \(w_T \) is high, other weights are 0 or low

We will initially focus on the class of problem where uniform weights are reasonable (e.g. speech recognition)
The more complex problem

- Objective: Given a sequence of inputs, asynchronously output a sequence of symbols
 - This is just a simple concatenation of many copies of the simple “output at the end of the input sequence” model we just saw

- But this simple extension complicates matters..
The sequence-to-sequence problem

- How do we know *when* to output symbols
 - In fact, the network produces outputs at every time
 - *Which* of these are the *real* outputs?
The actual output of the network

- At each time the network outputs a probability for each output symbol given all inputs until that time
 - E.g. $y_4^D = \text{prob}(s_4 = D | X_0 \ldots X_4)$
Overall objective

- Find most likely symbol sequence given inputs
 \[S_0 \ldots S_{K-1} = \arg\max_{S'_0 \ldots S'_{K-1}} \text{prob}(S'_0 \ldots S'_{K-1}|X_0 \ldots X_{N-1}) \]
Finding the best output

- Option 1: Simply select the most probable symbol at each time
Finding the best output

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- **Option 1:** Simply select the most probable symbol at each time
 - *Merge* adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Simple pseudocode

- Assuming $y(t, i), t = 1 \ldots T, i = 1 \ldots N$ is already computed using the underlying RNN

\[
\begin{align*}
n &= 1 \\
\text{best}(1) &= \max_i (y(1, i)) \\
\text{for } t &= 1:T \\
&\quad \text{best}(t) = \max_i (y(t, i)) \\
&\quad \text{if } (\text{best}(t) \neq \text{best}(t-1)) \\
&\quad \quad \text{out}(n) = \text{best}(t-1) \\
&\quad \quad \text{time}(n) = t-1 \\
&\quad \quad n = n+1
\end{align*}
\]
The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>/G/</td>
<td>/IY/</td>
<td>/F/</td>
<td>/F/</td>
<td>/F/</td>
<td>/F/</td>
<td>/F/</td>
<td>/F/</td>
<td>/F/</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>/G/</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- Option 1: Simply select the most probable symbol at each time
 - *Merge* adjacent repeated symbols, and place the actual emission of the symbol in the final instant
The actual output of the network

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant
The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^{B}</td>
<td>y_1^{B}</td>
<td>y_2^{B}</td>
<td>y_3^{B}</td>
<td>y_4^{B}</td>
<td>y_5^{B}</td>
<td>y_6^{B}</td>
<td>y_7^{B}</td>
<td>y_8^{B}</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^{D}</td>
<td>y_1^{D}</td>
<td>y_2^{D}</td>
<td>y_3^{D}</td>
<td>y_4^{D}</td>
<td>y_5^{D}</td>
<td>y_6^{D}</td>
<td>y_7^{D}</td>
<td>y_8^{D}</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^{F}</td>
<td>y_1^{F}</td>
<td>y_2^{F}</td>
<td>y_3^{F}</td>
<td>y_4^{F}</td>
<td>y_5^{F}</td>
<td>y_6^{F}</td>
<td>y_7^{F}</td>
<td>y_8^{F}</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^{G}</td>
<td>y_1^{G}</td>
<td>y_2^{G}</td>
<td>y_3^{G}</td>
<td>y_4^{G}</td>
<td>y_5^{G}</td>
<td>y_6^{G}</td>
<td>y_7^{G}</td>
<td>y_8^{G}</td>
</tr>
</tbody>
</table>

Option 2: Impose external constraints on what sequences are allowed
- *E.g.* only allow sequences corresponding to dictionary words
- *E.g.* *Sub-symbol* units (like in HW1 – what were they?)
The actual output of the network

<table>
<thead>
<tr>
<th>Symbol</th>
<th>y_0^A</th>
<th>y_1^A</th>
<th>y_2^A</th>
<th>y_3^A</th>
<th>y_4^A</th>
<th>y_5^A</th>
<th>y_6^A</th>
<th>y_7^A</th>
<th>y_8^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>/AH/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/B/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
<tr>
<td>/G/</td>
<td>X_0</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
</tr>
</tbody>
</table>

We will refer to the process of obtaining an output from the network as **decoding**.

- **Option 2:** Impose external constraints on what sequences are allowed
 - *E.g.* only allow sequences corresponding to dictionary words
 - *E.g.* Sub-symbol units (like in HW1 – what were they?)
Decoding

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^{B}</td>
<td>y_1^{B}</td>
<td>y_2^{B}</td>
<td>y_3^{B}</td>
<td>y_4^{B}</td>
<td>y_5^{B}</td>
<td>y_6^{B}</td>
<td>y_7^{B}</td>
<td>y_8^{B}</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^{D}</td>
<td>y_1^{D}</td>
<td>y_2^{D}</td>
<td>y_3^{D}</td>
<td>y_4^{D}</td>
<td>y_5^{D}</td>
<td>y_6^{D}</td>
<td>y_7^{D}</td>
<td>y_8^{D}</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^{F}</td>
<td>y_1^{F}</td>
<td>y_2^{F}</td>
<td>y_3^{F}</td>
<td>y_4^{F}</td>
<td>y_5^{F}</td>
<td>y_6^{F}</td>
<td>y_7^{F}</td>
<td>y_8^{F}</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^{G}</td>
<td>y_1^{G}</td>
<td>y_2^{G}</td>
<td>y_3^{G}</td>
<td>y_4^{G}</td>
<td>y_5^{G}</td>
<td>y_6^{G}</td>
<td>y_7^{G}</td>
<td>y_8^{G}</td>
</tr>
</tbody>
</table>

- This is in fact a *suboptimal* decode that actually finds the most likely *synchronous* output sequence
 - Which is not necessarily the most likely *asynchronous* sequence
 - The “merging” heuristics do not guarantee optimal asynchronous sequences
 - We will return to this topic later
The sequence-to-sequence problem

- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs

- How do we train these models?
• Given output symbols *at the right locations*
 – The phoneme /B/ ends at X_2, /IY/ at X_4, /F/ at X_6, /IY/ at X_9
• Either just define Divergence as:

$$DIV = \text{Xent}(Y_2, B) + \text{Xent}(Y_4, IY) + \text{Xent}(Y_6, F) + \text{Xent}(Y_9, IY)$$

• Or..
• Either just define Divergence as:
 \[DIV = Xent(Y_2, B) + Xent(Y_4, IY) + Xent(Y_6, F) + Xent(Y_9, IY) \]

• Or repeat the symbols over their duration
 \[DIV = \sum_t Xent(Y_t, \text{symbol}_t) = -\sum_t \log Y(t, \text{symbol}_t) \]
\[DIV = \sum_{t} Xent(Y_t, symbol_t) = -\sum_{t} \log Y(t, symbol_t) \]

- The gradient w.r.t the \(t \)-th output vector \(Y_t \)

\[\nabla_{Y_t} DIV = \begin{bmatrix} 0 & 0 & \ldots & \frac{-1}{Y(t, symbol_t)} & 0 & \ldots & 0 \end{bmatrix} \]

- Zeros except at the component corresponding to the target
Problem: No timing information provided

- Only the sequence of output symbols is provided for the training data
 - But no indication of which one occurs where

- How do we compute the divergence?
 - And how do we compute its gradient w.r.t. Y_t
Solution 1: Guess the alignment

• Initialize: Assign an initial alignment
 – Either randomly, based on some heuristic, or any other rationale

• Iterate:
 – Train the network using the current alignment
 – *Reestimate* the alignment for each training instance
 • Using the decoding methods already discussed
Solution 1: **Guess the alignment**

- **Initialize**: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- **Iterate**:
 - Train the network using the current alignment
 - **Reestimate** the alignment for each training instance
 - Using the decoding methods already discussed
Estimating an alignment

• Given:
 – The unaligned K-length symbol sequence $S = S_0 \ldots S_{K-1}$ (e.g. /B/ /IY/ /F/ /IY/)
 – An N-length input ($N \geq K$)
 – And a (trained) recurrent network

• Find:
 – An N-length expansion $s_0 \ldots s_{N-1}$ comprising the symbols in S in strict order
 • e.g. $S_0 S_1 S_2 S_3 S_3 \ldots S_{K-1}$
 – i.e. $s_0 = S_0, s_2 = S_1, s_3 = S_1, s_4 = S_2, s_5 = S_3, \ldots, s_{N-1} = S_{K-1}$
 • E.g. /B/ /B/ /IY/ /IY/ /IY/ /F/ /F/ /F/ /F/ /IY/ ..

• Outcome: an alignment of the target symbol sequence $S_0 \ldots S_{K-1}$ to the input $X_0 \ldots X_{N-1}$
Recall: The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- At each time the network outputs a probability for each output symbol
Recall: unconstrained decoding

We find the most likely sequence of symbols
- (Conditioned on input $X_0 \ldots X_{N-1}$)

This may not correspond to an expansion of the desired symbol sequence
- E.g. the unconstrained decode may be
 - Contracts to /AH/ /D/ /AH/ /F/ /IY/

Whereas we want an expansion of /B//IY//F//IY/
Constraining the alignment: Try 1

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
</tbody>
</table>

- Block out all rows that do not include symbols from the target sequence
 - E.g. Block out rows that are not /B/ /IY/ or /F/
Blocking out unnecessary outputs

Compute the entire output (for all symbols)
Copy the output values for the target symbols into the secondary reduced structure
Constraining the alignment: Try 1

<table>
<thead>
<tr>
<th>/B/</th>
<th>y^B_0</th>
<th>y^B_1</th>
<th>y^B_2</th>
<th>y^B_3</th>
<th>y^B_4</th>
<th>y^B_5</th>
<th>y^B_6</th>
<th>y^B_7</th>
<th>y^B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y^IY_0</td>
<td>y^IY_1</td>
<td>y^IY_2</td>
<td>y^IY_3</td>
<td>y^IY_4</td>
<td>y^IY_5</td>
<td>y^IY_6</td>
<td>y^IY_7</td>
<td>y^IY_8</td>
</tr>
<tr>
<td>/F/</td>
<td>y^F_0</td>
<td>y^F_1</td>
<td>y^F_2</td>
<td>y^F_3</td>
<td>y^F_4</td>
<td>y^F_5</td>
<td>y^F_6</td>
<td>y^F_7</td>
<td>y^F_8</td>
</tr>
</tbody>
</table>

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized
Constraining the alignment: Try 1

<table>
<thead>
<tr>
<th>/B/</th>
<th>/IY/</th>
<th>/F/</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0^B</td>
<td>y_0^IY</td>
<td>y_0^F</td>
</tr>
<tr>
<td>y_1^B</td>
<td>y_1^IY</td>
<td>y_1^F</td>
</tr>
<tr>
<td>y_2^B</td>
<td>y_2^IY</td>
<td>y_2^F</td>
</tr>
<tr>
<td>y_3^B</td>
<td>y_3^IY</td>
<td>y_3^F</td>
</tr>
<tr>
<td>y_4^B</td>
<td>y_4^IY</td>
<td>y_4^F</td>
</tr>
<tr>
<td>y_5^B</td>
<td>y_5^IY</td>
<td>y_5^F</td>
</tr>
<tr>
<td>y_6^B</td>
<td>y_6^IY</td>
<td>y_6^F</td>
</tr>
<tr>
<td>y_7^B</td>
<td>y_7^IY</td>
<td>y_7^F</td>
</tr>
<tr>
<td>y_8^B</td>
<td>y_8^IY</td>
<td>y_8^F</td>
</tr>
</tbody>
</table>

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized

- Problem: This still doesn’t assure that the decode sequence correctly expands the target symbol sequence
 - E.g. the above decode is not an expansion of /B//IY//F//IY/

- Still needs additional constraints
Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required.

Try 2: Explicitly arrange the constructed table.
Try 2: Explicitly arrange the constructed table

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

Note: If a symbol occurs multiple times, we repeat the row in the appropriate location. E.g. the row for /IY/ occurs twice, in the 2nd and 4th positions.

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required.
Explicitly constrain alignment

- Constrain that the first symbol in the decode must be the top left block.
- The last symbol must be the bottom right.
- The rest of the symbols must follow a sequence that monotonically travels down from top left to bottom right:
 - I.e. symbol chosen at any time is at the same level or at the next level to the symbol at the previous time.
- This guarantees that the sequence is an expansion of the target sequence:
 - /B/ /IY/ /F/ /IY/ in this case
Explicitly constrain alignment

- Constrain that the first symbol in the decode must be the top left block
- The last symbol must be the bottom right
- The rest of the symbols must follow a sequence that monotonically travels down from top left to bottom right
 - I.e. symbol chosen at any time is at the same level or at the next level to the symbol at the previous time
- This guarantees that the sequence is an expansion of the target sequence
 - /B/ /IY/ /F/ /IY/ in this case
• Compose a graph such that every path in the graph from source to sink represents a valid alignment
 – Which maps on to the target symbol sequence (/B//AH//T/)

• Edge scores are 1
• Node scores are the probabilities assigned to the symbols by the neural network

• The “score” of a path is the product of the probabilities of all nodes along the path

• E.g. the probability of the marked path is

\[
Scr(Path) = y_0^B y_1^B y_2^{IY} y_3^{IY} y_4^F
\]
Compose a graph such that every path in the graph from source to sink represents a valid alignment

- Which maps on to the target symbol sequence (/B//AH//T/)

- Edge scores are 1

- Node scores are the probabilities assigned to the symbols by the neural network

- The “score” of a path is the product of the probabilities of all nodes along the path

Figure shows a typical end-to-end path. There are an exponential number of such paths. Challenge: Find the path with the highest score (probability)
Explicitly constrain alignment

- Find the most probable path from source to sink using any dynamic programming algorithm
 - E.g. The Viterbi algorithm
Viterbi algorithm Basic idea

- The best path to any node *must* be an extension of the best path to one of its parent nodes
 - Any other path would necessarily have a lower probability
- The best parent is simply the parent with the best-scoring best path
Viterbi algorithm Basic idea

$\text{BestPath}(y_0^B \rightarrow y_3^F) = \text{BestPath}(y_0^B \rightarrow y_2^I) y_3^F$

or

$\text{BestPath}(y_0^B \rightarrow y_2^F) y_3^F$

$\text{BestPath}(y_0^B \rightarrow y_3^F) = \text{Best}_{\text{parent}} \in (y_2^I, y_2^F) \left(\text{BestPath}(y_0^B \rightarrow \text{Parent}) \right) y_3^F$

$\text{BestPath}(y_0^B \rightarrow y_3^F) = \text{BestPath}(y_0^B \rightarrow \text{BestParent}) y_3^F$

- The best parent is simply the parent with the best-scoring best path

$\text{BestParent} = \arg \max_{\text{parent} \in (y_2^I, y_2^F)} (\text{Score}(\text{BestPath}(y_0^B \rightarrow \text{Parent})))$
Viterbi algorithm

- Dynamically track the best path (and the score of the best path) from the source node to every node in the graph
 - At each node, keep track of
 - The best incoming parent edge
 - The score of the best path from the source to the node through this best parent edge
- Eventually compute the best path from source to sink
Viterbi algorithm

- First, some notation:
- \(y_t^{S(r)} \) is the probability of the target symbol assigned to the \(r \)-th row in the \(t \)-th time (given inputs \(X_0 \ldots X_t \))
 - E.g., \(S(0) = /B/ \)
 - The scores in the 0\(^{th}\) row have the form \(y_t^B \)
 - E.g. \(S(1) = S(3) = /IY/ \)
 - The scores in the 1\(^{st}\) and 3\(^{rd}\) rows have the form \(y_t^{IY} \)
 - E.g. \(S(2) = /F/ \)
 - The scores in the 2\(^{nd}\) row have the form \(y_t^F \)
Viterbi algorithm

• Initialization:

\[BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1 \]
\[Bscr(0, 0) = y_0^{S(0)}, \quad Bscr(0, i) = -\infty, \quad i = 1 \ldots K - 1 \]
Viterbi algorithm

- Initialization:

 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]

 \[Bscr(0,0) = y_0^{S(0)}, Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)

 \[BP(t, 0) = 0; Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
Viterbi algorithm

- **Initialization:**
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[B\text{scr}(0,0) = y_0^{S(0)}, \ B\text{scr}(0, i) = -\infty, \ i = 1 \ldots K - 1 \]
- **for** \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ B\text{scr}(t, 0) = B\text{scr}(t - 1,0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \[BP(t, l) = \begin{cases} l - 1: & \text{if} \ (B\text{scr}(t - 1, l - 1) > B\text{scr}(t - 1, l)) \ l - 1; \\ l: & \text{else} \end{cases} \]
 - \[B\text{scr}(t, l) = B\text{scr}(BP(t, l)) \times y_t^{S(l)} \]
• Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y^{S(0)}_0, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]

• for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1, 0) \times y^{S(0)}_t \]
 for \(l = 1 \ldots K - 1 \)

 • \(BP(t, l) = \left(\begin{array}{l}
 l - 1: \ \text{if} \ (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\
 l: \ \text{else}
 \end{array} \right) \)

 • \(Bscr(t, l) = Bscr(BP(t, l)) \times y^{S(l)}_t \)
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; Bscr(t, 0) = Bscr(t - 1,0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 \[BP(t, l) = \begin{cases} l - 1 : & \text{if} \ (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\ l : & \text{else} \end{cases} \]
 \[Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \]
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y_0^S(0), \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1,0) \times y_t^S(0) \]
 for \(l = 1 \ldots K - 1 \)
 - \[BP(t,l) = (\text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) l - 1; \ \text{else } l) \]
 - \[Bscr(t,l) = Bscr(BP(t,l)) \times y_t^S(l) \]
Viterbi algorithm

- **Initialization:**

 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]

 \[B\text{scr}(0, 0) = y_0^{S(0)}, \ B\text{scr}(0, i) = -\infty, \ i = 1 \ldots K - 1 \]

- **for** \(t = 1 \ldots T - 1 \)

 \[BP(t, 0) = 0; \ B\text{scr}(t, 0) = B\text{scr}(t - 1, 0) \times y_t^{S(0)} \]

 for \(l = 1 \ldots K - 1 \)

 - \[BP(t, l) = (\text{if} \ (B\text{scr}(t - 1, l - 1) > B\text{scr}(t - 1, l)) \ l - 1; \ \text{else} \ l) \]

 - \[B\text{scr}(t, l) = B\text{scr}(BP(t, l)) \times y_t^{S(l)} \]
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1 \]
 \[Bscr(0, 0) = y_0^{S(0)}, \quad Bscr(0, i) = -\infty, \quad i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \quad Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(BP(t, l) = (\text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \text{ else } l) \)
 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Viterbi algorithm

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/F/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IY/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Initialization:

$$BP(0, i) = \text{null}, \ i = 0 \ldots K - 1$$

$$Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1$$

- for $t = 1 \ldots T - 1$

$$BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)}$$

for $l = 1 \ldots K - 1$

- $BP(t, l) = (\text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) l - 1; \ else \ l)$

- $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$
Viterbi algorithm

• Initialization:

 \(BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \)

 \(Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \)

• for \(t = 1 \ldots T - 1 \)

 \(BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1,0) \times y_t^{S(0)} \)

 for \(l = 1 \ldots K - 1 \)

 • \(BP(t, l) = \left\{ \begin{array}{lr}
 l - 1 : & \text{if} \ (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\
 l : & \text{else}
 \end{array} \right. \)

 • \(Bscr(t, l) = Bscr(BP(t,l)) \times y_t^{S(l)} \)
Viterbi algorithm

- **Initialization:**
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[B_{scr}(0,0) = y_0^{S(0)}, \ B_{scr}(0,i) = -\infty, \ i = 1 \ldots K - 1 \]
- **for** \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ B_{scr}(t, 0) = B_{scr}(t - 1,0) \times y_t^{S(0)} \]
 \(\text{for} \ l = 1 \ldots K - 1 \)
 \[BP(t, l) = \begin{cases} l - 1 : & \text{if} \ (B_{scr}(t - 1, l - 1) > B_{scr}(t - 1, l)) \ l - 1; \\ l : & \text{else} \end{cases} \]
 \[B_{scr}(t, l) = B_{scr}(BP(t, l)) \times y_t^{S(l)} \]
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1,0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(BP(t, l) = \begin{cases}
 l - 1 : & \text{if} \ (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \\
 l : & \text{else}
 \end{cases} \)
 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Viterbi algorithm

- $s(T - 1) = S(K - 1)$
Viterbi algorithm

- \(s(T - 1) = S(K - 1) \)
- for \(t = T - 1 \) down to 1
 \[s(t - 1) = BP(s(t)) \]
Viterbi algorithm

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

- $s(T - 1) = S(K - 1)$
- for $t = T - 1$ downto 1

 $s(t - 1) = BP(s(t))$

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For \(i = 1: N \)
\[
s(1:T,i) = y(1:T, S(i))
\]

#Now run the Viterbi algorithm
First, at \(t = 1 \)
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = -infty
for \(t = 2: T \)
\[
BP(t,1) = BP(t-1,1);
Bscr(t,1) = Bscr(t-1,1)s(t,1)
\]
for \(i = 1:\text{min}(t,N) \)
\[
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))s(t,i)
\]

Backtrace
AlignedSymbol(T) = N
for \(t = T \) downto 1
\[
\text{AlignedSymbol}(t-1) = BP(t,\text{AlignedSymbol}(T))
\]
Assumed targets for training with the Viterbi algorithm
Gradients from the alignment

\[
DIV = \sum_t Xent(Y_t, symbol_t^{\text{bestpath}}) = -\sum_t \log Y(t, symbol_t^{\text{bestpath}})
\]

- The gradient w.r.t the \(t \)-th output vector \(Y_t \)

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
0 & 0 & \cdots & \frac{-1}{Y(t, symbol_t^{\text{bestpath}})} & 0 & \cdots & 0
\end{bmatrix}
\]
- Zeros except at the component corresponding to the target \textit{in the estimated alignment}
Iterative Estimate and Training

The “decode” and “train” steps may be combine into a single “decode, find alignment, compute derivatives” step for SGD and mini-batch updates.
Iterative update

• Option 1:
 – Determine alignments for every training instance
 – Train model (using SGD or your favorite approach) on the entire training set
 – Iterate

• Option 2:
 – During SGD, for each training instance, find the alignment during the forward pass
 – Use in backward pass
Iterative update: Problem

- Approach heavily dependent on initial alignment
- Prone to poor local optima
- Alternate solution: Do not commit to an alignment during any pass..
We commit to the single “best” estimated alignment

- The most likely alignment

$$DIV = - \sum_t \log Y(t, symbol_t^{bestpath})$$

- This can be way off, particularly in early iterations, or if the model is poorly initialized
The reason for suboptimality

- We commit to the single “best” estimated alignment
 - The most likely alignment

\[
DIV = - \sum_t \log Y(t, \text{symbol}_t^{\text{bestpath}})
\]
 - This can be way off, particularly in early iterations, or if the model is poorly initialized

- Alternate view: there is a probability distribution over alignments of the target Symbol sequence (to the input)
 - Selecting a single alignment is the same as drawing a single sample from it
 - Selecting the most likely alignment is the same as deterministically always drawing the most probable
 value from the distribution
Averaging over all alignments

• Instead of only selecting the most likely alignment, use the statistical expectation over all possible alignments

\[
DIV = E \left[- \sum_t \log Y(t, s_t) \right]
\]

– Use the entire distribution of alignments
– This will mitigate the issue of suboptimal selection of alignment
The expectation over *all* alignments

<table>
<thead>
<tr>
<th>/B/</th>
<th>(y_0^B)</th>
<th>(y_1^B)</th>
<th>(y_2^B)</th>
<th>(y_3^B)</th>
<th>(y_4^B)</th>
<th>(y_5^B)</th>
<th>(y_6^B)</th>
<th>(y_7^B)</th>
<th>(y_8^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
</tbody>
</table>

\[
DIV = E \left[- \sum_t \log Y(t, s_t) \right]
\]

- Using the linearity of expectation

\[
DIV = - \sum_t E[\log Y(t, s_t)]
\]

- This reduces to finding the expected divergence *at each input*

\[
DIV = - \sum_t \sum_{S \in S_1 \ldots S_K} P(s_t = S | \mathbf{S}, \mathbf{X}) \log Y(t, s_t = S)
\]
The expectation over all alignments

The probability of seeing the specific symbol s at time t, given that the symbol sequence is an expansion of $S = S_0 \ldots S_{K-1}$ and given the input sequence $X = X_0 \ldots X_{N-1}$.

We need to be able to compute this

$$DIV = - \sum_t E[\log Y(t, s_t)]$$

- This reduces to finding the expected divergence at each input

$$DIV = - \sum_t \sum_{S \in S_0 \ldots S_K} P(S_t = s | S, X) \log Y(t, s_t = s)$$
A posteriori probabilities of symbols

\[P(s_t = S_r | S, X) \propto P(s_t = S_r, S|X) \]

- \(P(s_t = S_r, S|X) \) is the total probability of all valid paths in the graph for target sequence \(S \) that go through the symbol \(S_r \) (the \(r^{th} \) symbol in the sequence \(S_1 \ldots S_K \)) at time \(t \)

- We will compute this using the “forward-backward” algorithm
A posteriori probabilities of symbols

<table>
<thead>
<tr>
<th>/B/</th>
<th>(y_0^B)</th>
<th>(y_1^B)</th>
<th>(y_2^B)</th>
<th>(y_3^B)</th>
<th>(y_4^B)</th>
<th>(y_5^B)</th>
<th>(y_6^B)</th>
<th>(y_7^B)</th>
<th>(y_8^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
<tr>
<td>/</td>
<td>IY</td>
<td>/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
</tr>
</tbody>
</table>

\[\begin{align*}
P(s_t = S_r, S|X) \text{ can be decomposed as} \\
P(s_t = S_r, S|X) &= P(S_1, \ldots, S_K, s_t = S_r|X)
\end{align*} \]
A posteriori probabilities of symbols

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

- $P(s_t = S_r, S|X)$ can be decomposed as
 \[
P(s_t = S_r, S|X) = P(S_1, ..., S_r, ..., S_K, s_t = S_r |X) = P(S_1 \ldots S_r, s_t = S_r, s_{t+1} \in succ(S_r), succ(S_r), ..., S_K, |X)
 \]
- Where $succ(S_r)$ is a symbol that can follow S_r in a sequence
 - Here it is either S_r or S_{r+1} (red blocks in figure)
 - The equation literally says that after the blue block, either of the two red arrows may be followed
A posteriori probabilities of symbols

- $P(s_t = S_r, S|X)$ can be decomposed as
 $P(s_t = S_r, S|X) = P(S_1, ..., S_r, ..., S_K, s_t = S_r|X)$
 $= P(S_1 ... S_r, s_t = S_r, s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_K, |X)$

- Where $\text{succ}(S_r)$ is a symbol that can follow S_r in a sequence
 - Here it is either S_r or S_{r+1} (red blocks in figure)
 - The equation literally says that after the blue block, either of the two red arrows may be followed
A posteriori probabilities of symbols

- $P(s_t = S_r, S|X)$ can be decomposed as
 $$P(s_t = S_r, S|X) = P(S_1, ..., S_r, ..., S_K, s_t = S_r | X)$$
 $$= P(S_1, ..., S_r, s_t = S_r, s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_K | X)$$

- Using Bayes Rule
 $$= P(S_1, ..., S_r, s_t = S_r | X)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_K | S_1, ..., S_r, s_t = S_r)$$

- The probability of the subgraph in the blue outline, times the conditional probability of the red-encircled subgraph, given the blue subgraph
A posteriori probabilities of symbols

- \(P(s_t = S_r, S|X) \) can be decomposed as
 \[
P(s_t = S_r, S|X) = P(S_1, ..., S_r, ..., S_K, s_t = S_r |X)
 = P(S_1 ... S_r, s_t = S_r, s_{t+1} \in succ(S_r), succ(S_r), ..., S_K |X)
\]

- Using Bayes Rule
 \[
 = P(S_1 ... S_r, s_t = S_r |X)P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_K |S_1 ... S_r, s_t = S_r X)
\]

- For a recurrent network without feedback from the output we can make the conditional independence assumption:
 \[
P(s_t = S_r, S|X) = P(S_1 ... S_r, s_t = S_r |X)P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_K |X)
\]

Assuming past output symbols do not directly feed back into the net
Conditional independence

- **Dependency graph:** Input sequence $X = X_0 \ X_1 \ldots X_{N-1}$ governs hidden variables $H = H_0 \ H_1 \ldots H_{N-1}$
- Hidden variables govern output predictions $y_0, y_1, \ldots y_{N-1}$ individually
- $y_0, y_1, \ldots y_{N-1}$ are conditionally independent given H
- Since H is deterministically derived from X, $y_0, y_1, \ldots y_{N-1}$ are also conditionally independent given X
 - This wouldn’t be true if the relation between X and H were not deterministic or if X is unknown, or if there were direct connections between the ys
We will call the first term the forward probability $\alpha(t, r)$

We will call the second term the backward probability $\beta(t, r)$

$$
P(s_t = S_r, S|X) = P(S_1 ... S_r, s_t = S_r |X)P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_K |X)
$$
We will call the first term the **forward probability** $\alpha(t, r)$

We will call the second term the **backward probability** $\beta(t, r)$
Computing $\alpha(t, r)$: Forward algorithm

$$\alpha(t, r) = P(S_1 \ldots S_r, s_t = S_r | X)$$

- The $\alpha(t, r)$ is the total probability of the subgraph shown
Computing $\alpha(t, r)$: Forward algorithm

$\alpha(3, IY) = P(S_1 \ldots S_r, s_t = S_r | X)$

$\alpha(3, IY)
= P(\text{subgraph ending at}(2,B))y_3^{IY} + P(\text{subgraph ending at}(2,IY))y_3^{IY}$
Computing $\alpha(t, r)$: Forward algorithm

\[\alpha(t, r) = P(S_1\ldots S_r, s_t = S_r | X) \]

$\alpha(3, IY)$

$= P(\text{subgraph ending at (2,B)}) y_3^{IY} + P(\text{subgraph ending at (2,IY)}) y_3^{IY}$

$\alpha(3, IY) = \alpha(2, B)y_3^{IY} + \alpha(2, IY)y_3^{IY}$
Computing $\alpha(t, r)$: Forward algorithm

$\alpha(t, r) = P(S_1 \ldots S_r, s_t = S_r | X)$

- The $\alpha(t, r)$ is the total probability of the subgraph shown
- We can marginalize the symbol at time $t-1$

$$\alpha(t, r) = \sum_{q: q \in \text{pred}(S_r)} P(S_1 \ldots S_q, s_{t-1} = S_q, s_t = S_r | X)$$

- Where $\text{pred}(S_r)$ is any symbol that is permitted to come before an S_r and may include S_r
- q is its row index, and can take values r and $r - 1$ in this example
Computing $\alpha(t, r)$: Forward algorithm

$\alpha(t, r) = P(S_1...S_r, s_t = S_r | X)$

- The $\alpha(t, r)$ is the total probability of the subgraph shown
- We can marginalize out the symbol at time $t-1$

$$\alpha(t, r) = \sum_{q: S_q \in \text{pred}(S_r)} P(S_1..., S_q, s_{t-1} = S_q, s_t = S_r | X)$$

- Using the conditional independence assumed

$$\alpha(t, r) = \sum_{q: S_q \in \text{pred}(S_r)} P(S_1..., S_q, s_{t-1} = S_q | X) P(s_t = S_r | X)$$
Computing $\alpha(t, r)$: Forward algorithm

\[\alpha(t, r) = P(S_1 \ldots S_r, s_t = S_r | X) \]

- The $\alpha(t, r)$ is the total probability of the subgraph shown

\[\alpha(t, r) = \sum_{q: S_q \in \text{pred}(S_r)} P(S_1 \ldots, S_q, s_{t-1} = S_q | X)P(s_t = S_r | X) \]

\[= \sum_{q: S_q \in \text{pred}(S_r)} \alpha(t - 1, q) y_t^{S_r} \]
Forward algorithm

\[\alpha(t, r) = \sum_{q \in \text{pred}(S_r)} \alpha(t - 1, q) y_t^{S_r} \]

• The \(\alpha(t, r) \) is the total probability of the subgraph shown
Forward algorithm

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1))y_t^{S(r)} \]
Forward algorithm

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

- Initialization:
 \[\alpha(0,1) = y_0^{S(1)}, \quad \alpha(0,r) = 0, \quad r > 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{S(1)} \]
 for \(l = 2 \ldots K \)
 \[\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \]
Forward algorithm

- Initialization:
 \[\alpha(0,1) = y_0^{S(1)}, \quad \alpha(0,r) = 0, \quad r > 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{S(1)} \]
 for \(l = 2 \ldots K \)
 - \(\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \)
Forward algorithm

- Initialization:
 \[\alpha(0,1) = y_0^{S(1)}, \quad \alpha(0,r) = 0, \quad r > 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{S(1)} \]
 for \(l = 2 \ldots K \)
 \[\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \]
Forward algorithm

- Initialization:
 \[\alpha(0,1) = y_0^{S(1)}, \quad \alpha(0,r) = 0, \quad r > 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{S(1)} \]
 for \(l = 2 \ldots K \)
 \[\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \]
Forward algorithm

- Initialization:
 \[\alpha(0,1) = y_0^{s(1)}, \quad \alpha(0,r) = 0, \ r > 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{s(1)} \]
 for \(l = 2 \ldots K \)
 \[\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{s(l)} \]
Forward algorithm

- **Initialization:**
 \[\alpha(0,1) = y_0^{S(1)}, \quad \alpha(0,r) = 0, \quad r > 1 \]
- **for** \(t = 1 \ldots T - 1 \)
 \[\alpha(t,1) = \alpha(t-1,1)y_t^{S(1)} \]
 for \(l = 2 \ldots K \)
 - \[\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \]
In practice..

• The recursion
 \[\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \]
 will generally underflow

• Instead we can do it in the log domain

 \[\log \alpha(t, l) \]
 \[= \log(e^{\log \alpha(t-1,l)} + e^{\log \alpha(t-1,l-1)}) + \log y_t^{S(l)} \]
 – This can be computed entirely without underflow
The algorithm can also be stated as follows which separates the graph probability from the observation probability. This is needed to compute derivatives.

Initialization:

\[\hat{\alpha}(0,1) = 1, \quad \hat{\alpha}(0,r) = 0, \quad r > 1 \]

\[\alpha(0,r) = \hat{\alpha}(0,r) y_0^{S(r)}, \quad 1 \leq r \leq K \]

for \(t = 1 \cdots T - 1 \)

\[\hat{\alpha}(t,1) = \alpha(t-1,1) \]

for \(l = 2 \cdots K \)

\[\hat{\alpha}(t,l) = \alpha(t-1,l) + \alpha(t-1,l-1) \]

\[\alpha(t,r) = \hat{\alpha}(t,r) y_t^{S(r)}, \quad 1 \leq r \leq K \]
We will call the first term the *forward probability* $\alpha(t, r)$.

We will call the second term the *backward probability* $\beta(t, r)$.

We have seen how to compute this.
We will call the first term the \textit{forward probability} \(\alpha(t, r) \)

We will call the second term the \textit{backward} probability \(\beta(t, r) \)

\[
P(s_t = S_r, S | X) = \alpha(t, r)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_K | X)
\]
A posteriori symbol probability

\[
P(s_t = S_r, S|X) = \alpha(t, r)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_K |X)
\]

- We will call the first term the **forward probability** \(\alpha(t, r)\)
- We will call the second term the **backward** probability \(\beta(t, r)\)

Let's look at this.
A posteriori symbol probability

\[\beta(t, r) = P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_K | \mathbf{X}) \]

- \(\beta(t, r) \) is the probability of the exposed subgraph, not including the orange shaded box
A posteriori symbol probability

\[
P(\beta(3,1) = Y_4^IY + P(Y_5^IY))
\]
A posteriori symbol probability

\[P(\beta_{(3,1)}) = P(\) + P(\) \]
A posteriori symbol probability

\[
\beta(3,1) = P(y^F_4) + P(y^IY_4)
\]
A posteriori symbol probability

\[y_{4}^{IY} \beta(4,1) \]

\[\beta(3,1) = + \]

\[y_{4}^{F} \beta(4,2) \]
\[\beta(t, r) = P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_K | X) \]

- \(\beta(t, r) \) is the probability of the exposed subgraph, not including the orange shaded box.
- Note that RHS includes all potential successors of \(S_r \). Let’s expand this out by explicitly summing over all potential successors.

\[\beta(t, r) = \sum_{q: S_q \in succ(S_r)} P(s_{t+1} = S_q, S_q, ..., S_K | X) \]
\[\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q, S_q, \ldots, S_K \mid X) \]

- Lets expand this out in terms of the *successors of* \(S_q \) at \(t+2 \)
 - Explicitly consider all possible successors, to cover all possibilities (the two red boxes)

\[\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q, s_{t+2} \in \text{succ}(S_q), \text{succ}(S_q), \ldots, S_K \mid X) \]
• Expressing $\beta(t, r)$ in terms of the successors of S_q

$$\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q, s_{t+2} \in \text{succ}(S_q), \ldots, S_K|X)$$

• Using our assumption of conditional independence

$$\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q|X)P(s_{t+2} \in \text{succ}(S_q), \ldots, S_K|X)$$
A posteriori symbol probability

- Expressing $\beta(t, r)$ in terms of the successors of S_q

$$\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q, s_{t+2} \in \text{succ}(S_q), \ldots, S_K | X)$$

- Using our assumption of conditional independence $\beta(t + 1, q)$

$$\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} P(s_{t+1} = S_q | X) P(s_{t+2} \in \text{succ}(S_q), \ldots, S_K | X)$$
A posteriori symbol probability

- Expressing $\beta(t, r)$ in terms of the successors of S_q

$$\beta(t, r) = \sum_{q: S_q \in succ(S_r)} P(s_{t+1} = S_q, s_{t+2} \in succ(S_q), succ(S_q), ..., S_K | X)$$

- Using our assumption of conditional independence

$$\beta(t, r) = \sum_{q: S_q \in succ(S_r)} y_{s_q}^{s_q} \beta(t + 1, q)$$
Backward algorithm

\[\beta(t, r) = y_{t+1}^{s(r)} \beta(t + 1, r) + y_{t+1}^{s(r+1)} \beta(t + 1, r + 1) \]
\[
\beta(t, r) = \sum_{q: S_q \in \text{succ}(S_r)} \beta(t + 1, q) y_{t+1}^{S_q}
\]

- The \(\beta(t, r)\) is the total probability of the subgraph shown
Backward algorithm

- **Initialization:**
 \[\beta(T - 1, K) = 1, \ \beta(T - 1, r) = 0, \ r < K \]
- **for** \(t = T - 2 \) **downto** 0
 \[\beta(t, K) = \beta(t + 1, K)y_t^{S(K)} \]
 for \(l = K - 1 \ldots 1 \)
 - \(\beta(t, r) = y_t^{S(l)}\beta(t + 1, r) + y_t^{S(r+1)}\beta(t + 1, r + 1) \)
Backward algorithm

- **Initialization:**
 \[\beta(T - 1, K) = 1, \quad \beta(T - 1, r) = 0, \quad r < K \]
- For \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(l = K - 1 \ldots 1 \)
 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Backward algorithm

- Initialization:
 \[\beta(T - 1, K) = 1, \quad \beta(T - 1, r) = 0, \quad r < K \]
- for \(t = T - 2 \) downto 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(l = K - 1 \ldots 1 \)
 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Backward algorithm

- Initialization:
 \[\beta(T - 1, K) = 1, \; \beta(T - 1, r) = 0, \; r < K \]
- for \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(l = K - 1 \ldots 1 \)
 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Backward algorithm

• Initialization:
 \[\beta(T - 1, K) = 1, \ \beta(T - 1, r) = 0, \ r < K \]

• for \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(l = K - 1 \) ... 1
 • \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Some implementations of the backward algorithm will use the above formula.

Note that here the probability of the observation at t is also factored into beta.

It will have to be unfactored later (we’ll see how).
The joint probability

\[P(s_t = S_r, S | X) = \alpha(t, r) P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_K | X) \]

- We will call the first term the **forward probability** \(\alpha(t, r) \)
- We will call the second term the **backward probability** \(\beta(t, r) \)
The joint probability

\[P(s_t = S_r, S|X) = \alpha(t, r)\beta(t, r) \]

- We will call the first term the **forward probability** \(\alpha(t, r) \)
- We will call the second term the **backward probability** \(\beta(t, r) \)

Forward algo | Backward algo
The posterior probability

\[P(s_t = S_r, S|X) = \alpha(t, r)\beta(t, r) \]

- The posterior is given by

\[
P(s_t = S_r|S, X) = \frac{P(s_t = S_r, S|X)}{\sum_{S'_r} P(s_t = S'_r, S|X)} = \frac{\alpha(t, r)\beta(t, r)}{\sum_{r'} \alpha(t, r')\beta(t, r')}
\]
The posterior probability

- Let the posterior $P(s_t = S_r | S, X)$ be represented by $\gamma(t, r)$

$$\gamma(t, r) = \frac{\alpha(t, r) \beta(t, r)}{\sum_{r'} \alpha(t, r') \beta(t, r')}$$
The posterior probability

\[P(s_t = S_r, S|X) = \alpha(t, r) \beta(t, r) \]

- The posterior is given by

\[\gamma(t, r) = \frac{\alpha(t, r) \beta(t, r)}{\sum_{r'} \alpha(t, r') \beta(t, r')} \]

- We can also write this using the modified beta formula as (you will see this in papers)

\[\gamma(t, r) = \frac{1}{\gamma_t} \frac{\alpha(t, r) \hat{\beta}(t, r)}{\sum_{r'} \frac{1}{\gamma_t} \alpha(t, r') \hat{\beta}(t, r')} \]
The expected divergence

\[
DIV = - \sum_t \sum_{s \in S_1 \ldots S_K} P(s_t = s | S, X) \log Y(t, s_t = s)
\]

\[
DIV = - \sum_t \sum_r \gamma(t, r) \log y_t^{S(r)}
\]
The expected divergence

\[
DIV = - \sum_{t} \sum_{s \in S_1 \ldots S_K} P(s_t = s | S, X) \log Y(t, s_t = s)
\]

\[
DIV = - \sum_{t} \sum_{r} \gamma(t, r) \log y_t^{S(r)}
\]

• The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
\frac{dDIV}{dy_t^{s_1}} & \frac{dDIV}{dy_t^{s_2}} & \cdots & \frac{dDIV}{dy_t^{s_L}}
\end{bmatrix}
\]

– Components will be non-zero only for symbols that occur in the training instance
The expected divergence

\[DIV = - \sum_t \sum_{s \in S_1 \ldots S_K} P(s_t = s | S, X) \log Y(t, s_t = s) \]

\[DIV = - \sum_t \sum_r \gamma(t, r) \log y_t^{s(r)} \]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[\nabla_{Y_t} DIV = \left[\frac{dDIV}{dy_t^{s_1}} \frac{dDIV}{dy_t^{s_2}} \ldots \right] \]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

\[
\frac{d\text{DIV}}{d\gamma_t^l} = - \sum_{r:S(r)=l} \frac{d}{d\gamma_t^{S(r)}} \gamma(t, r) \log \gamma_t^{S(r)}
\]

\[
\text{DIV} = - \sum_t \sum_r \gamma(t, r) \log \gamma_t^{S(r)}
\]

- The derivative of the divergence w.r.t the output \(Y_t\) of the net at any time:

\[
\nabla_{Y_t} \text{DIV} = \left[\frac{d\text{DIV}}{d\gamma_t^{S_1}} \frac{d\text{DIV}}{d\gamma_t^{S_2}} \ldots \frac{d\text{DIV}}{d\gamma_t^{S_k}} \right]
\]

- Components will be non-zero only for symbols that occur in the training instance

\[129\]
The expected divergence

\[
\frac{d\text{DIV}}{dy_t} = -\sum_{r : S(r) = l} \frac{d}{dy_t^{S(r)}} \gamma(t, r) \log y_t^{S(r)}
\]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[
\nabla_{Y_t} \text{DIV} = \left[\frac{d\text{DIV}}{dy_t^{S_1}} \quad \frac{d\text{DIV}}{dy_t^{S_2}} \quad \ldots \quad \frac{d\text{DIV}}{dy_t^{S_L}} \right]
\]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

The derivatives at both these locations must be summed to get

\[\frac{d\text{DIV}}{dy^l_t} = - \sum_{r : S(r) = t} \frac{d}{dy^{s(r)}_t} \gamma(t, r) \log y^{s(r)}_t \]

- The derivative of the divergence w.r.t the output \(Y_t\) of the net at any time:

\[\nabla_{Y_t} \text{DIV} = \left[\frac{d\text{DIV}}{dy^{s_1}_t}, \frac{d\text{DIV}}{dy^{s_2}_t}, \ldots, \frac{d\text{DIV}}{dy^{s_L}_t} \right] \]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

The derivatives at both these locations must be summed to get $\frac{dDIV}{dy_4^{IY}}$

$$\frac{dDIV}{dy_t^l} = - \sum_{r : S(r) = l} \frac{d}{dy_t^{S(r)}} \gamma(t, r) \log y_t^{S(r)}$$

$$\frac{d}{dy_t^{S(r)}} \gamma(t, r) \log y_t^{S(r)} = \frac{\gamma(t, r)}{y_t^{S(r)}} + \frac{dy(t, r)}{dy_t^{S(r)}} \log y_t^{S(r)}$$

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

<table>
<thead>
<tr>
<th>/B/</th>
<th>/IY/</th>
<th>/F/</th>
<th>/IY/</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0^B</td>
<td>y_0^{IY}</td>
<td>y_0^F</td>
<td>y_0^{IY}</td>
</tr>
<tr>
<td>y_1^B</td>
<td>y_1^{IY}</td>
<td>y_1^F</td>
<td>y_1^{IY}</td>
</tr>
<tr>
<td>y_2^B</td>
<td>y_2^{IY}</td>
<td>y_2^F</td>
<td>y_2^{IY}</td>
</tr>
<tr>
<td>y_3^B</td>
<td>y_3^{IY}</td>
<td>y_3^F</td>
<td>y_3^{IY}</td>
</tr>
<tr>
<td>y_4^B</td>
<td>y_4^{IY}</td>
<td>y_4^F</td>
<td>y_4^{IY}</td>
</tr>
<tr>
<td>y_5^B</td>
<td>y_5^{IY}</td>
<td>y_5^F</td>
<td>y_5^{IY}</td>
</tr>
<tr>
<td>y_6^B</td>
<td>y_6^{IY}</td>
<td>y_6^F</td>
<td>y_6^{IY}</td>
</tr>
<tr>
<td>y_7^B</td>
<td>y_7^{IY}</td>
<td>y_7^F</td>
<td>y_7^{IY}</td>
</tr>
<tr>
<td>y_8^B</td>
<td>y_8^{IY}</td>
<td>y_8^F</td>
<td>y_8^{IY}</td>
</tr>
</tbody>
</table>

The derivatives at both these locations must be summed to get $\frac{dDIV}{dy_{4^{IY}}}$

$$\frac{dDIV}{dy_t^l} = - \sum_\{r : S(r) = l\} \frac{d}{dy_t^{S(r)}} \gamma(t, r) \log y_t^{S(r)}$$

- The derivative at any time:

$$\frac{d}{dy_t^{S(r)}} \gamma(t, r) \log y_t^{S(r)} \approx \frac{\gamma(t, r)}{y_t^{S(r)}}$$

The approximation is exact if we think of this as a maximum-likelihood estimate.
The expected divergence

\[DIV = -\sum_t \sum_r \gamma(t, r) \log y_t^{S(r)} \]

- The derivative of the divergence w.r.t any particular output of the network must sum over all instances of that symbol in the target sequence

\[\frac{dDIV}{dy_t^l} = - \sum_{r : S(r) = l} \gamma(t, r) \frac{y_t^{S(r)}}{y_t} \]

- E.g. the derivative w.r.t \(y_t^{lY} \) will sum over both rows representing /lY/ in the above figure
Overall training procedure for Seq2Seq case 1

• Problem: Given input and output sequences without alignment, train models
Overall training procedure for Seq2Seq case 1

• **Step 1:** Setup the network
 – Typically many-layered LSTM

• **Step 2:** Initialize all parameters of the network
Overall Training: Forward pass

- Foreach training instance
 - **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
Overall training: Backward pass

- Foreach training instance
 - **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
 - **Step 4**: Construct the graph representing the specific symbol sequence in the instance. This may require having multiple rows of nodes with the same symbol scores
• Foreach training instance:
 – **Step 5:** Perform the forward backward algorithm to compute $\alpha(t, r)$ and $\beta(t, r)$ at each time, for each row of nodes in the graph
 – **Step 6:** Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t
Overall training: Backward pass

• Foreach instance
 – **Step 6**: Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t

 \[
 \nabla_{Y_t} DIV = \left[\frac{dDIV}{dy_t^1} \quad \frac{dDIV}{dy_t^2} \quad \ldots \quad \frac{dDIV}{dy_t^L} \right]
 \]

 \[
 \frac{dDIV}{dy_t^l} = - \sum_{r : S(r) = l} \frac{\gamma(t, r)}{y_t^{S(r)}}
 \]

• **Step 7**: Aggregate derivatives over minibatch and update parameters
• Sequence-to-sequence networks which irregularly output symbols can be “decoded” by Viterbi decoding
 – Which assumes that a symbol is output at each time and **merges** adjacent symbols

• They require alignment of the output to the symbol sequence for training
 – This alignment is generally not given

• Training can be performed by iteratively estimating the alignment by Viterbi-decoding and time-synchronous training

• Alternately, it can be performed by optimizing the expected error over all possible alignments
 – Posterior probabilities for the expectation can be computed using the forward backward algorithm
A key decoding problem

• Consider a problem where the output symbols are characters
• We have a decode: R R R O O O O O D
• Is this the merged symbol sequence ROD or ROOD?
We’ve seen this before

• /G/ /F/ /F/ /IY/ /D/ or /G/ /F/ /IY/ /D/ ?
A key *decoding* problem

• Consider a problem where the output symbols are characters

• We have a decode: R R R O O O O O D

• Is this the symbol sequence ROD or ROOD?

• Note: This problem does not always occur, e.g. if repetition is not permitted by the structure of the problem
 – E.g. when symbols have sub symbols
 • E.g. If O is produced as O1 and O2 and must always begin with O1 and terminate with O2
 – A single O would be of the form O1 O1 .. O2 → O
 – Multiple Os would have the decode O1 .. O2.. O1..O2.. → OO
A key decoding problem

• We have a decode: R R R O O O O O D
• Is this the symbol sequence ROD or ROOD?

• Solution: Introduce an explicit extra symbol which serves to separate discrete versions of a symbol
 – A “blank” (represented by “-”)
 – RRR---OO---DDD = ROD
 – RR-R---OO---D-DD = RRODD
 – R-R-R---O-ODD-DDDD-D = RRROODDD
 • The next symbol at the end of a sequence of blanks is always a new character
 • When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra blank symbol
 – Which too must be trained
The modified forward output

• Note the extra “blank” at the output
The modified forward output

- Note the extra “blank” at the output

[/B/ /IY/ /F/ /IY/]

/A/	\(y_0^b \)	\(y_0^{AH} \)	\(y_0^D \)	\(y_0^I \)	\(y_0^F \)	\(y_0^G \)
/A/	\(y_1^b \)	\(y_1^{AH} \)	\(y_1^D \)	\(y_1^I \)	\(y_1^F \)	\(y_1^G \)
/B/	\(y_2^b \)	\(y_2^{AH} \)	\(y_2^D \)	\(y_2^I \)	\(y_2^F \)	\(y_2^G \)
/D/	\(y_3^b \)	\(y_3^{AH} \)	\(y_3^D \)	\(y_3^I \)	\(y_3^F \)	\(y_3^G \)
/E/	\(y_4^b \)	\(y_4^{AH} \)	\(y_4^D \)	\(y_4^I \)	\(y_4^F \)	\(y_4^G \)
/I/	\(y_5^b \)	\(y_5^{AH} \)	\(y_5^D \)	\(y_5^I \)	\(y_5^F \)	\(y_5^G \)
/Y/	\(y_6^b \)	\(y_6^{AH} \)	\(y_6^D \)	\(y_6^I \)	\(y_6^F \)	\(y_6^G \)
/F/	\(y_7^b \)	\(y_7^{AH} \)	\(y_7^D \)	\(y_7^I \)	\(y_7^F \)	\(y_7^G \)
/G/	\(y_8^b \)	\(y_8^{AH} \)	\(y_8^D \)	\(y_8^I \)	\(y_8^F \)	\(y_8^G \)
The modified forward output

• Note the extra “blank” at the output

/B/ /IY/ /F/ /IY/

\[\begin{array}{cccccccc}
- & y_0^b & y_1^b & y_2^b & y_3^b & y_4^b & y_5^b & y_6^b & y_7^b & y_8^b \\
/AH/ & y_0^{AH} & y_1^{AH} & y_2^{AH} & y_3^{AH} & y_4^{AH} & y_5^{AH} & y_6^{AH} & y_8^{AH} \\
/B/ & y_0^B & y_1^B & y_2^B & y_3^B & y_4^B & y_5^B & y_6^B & y_8^B \\
/D/ & y_0^D & y_1^D & y_2^D & y_3^D & y_4^D & y_5^D & y_6^D & y_8^D \\
/EH/ & y_0^{EH} & y_1^{EH} & y_2^{EH} & y_3^{EH} & y_4^{EH} & y_5^{EH} & y_6^{EH} & y_8^{EH} \\
/IY/ & y_0^{IY} & y_1^{IY} & y_2^{IY} & y_3^{IY} & y_4^{IY} & y_5^{IY} & y_6^{IY} & y_8^{IY} \\
/F/ & y_0^F & y_1^F & y_2^F & y_3^F & y_4^F & y_5^F & y_6^F & y_8^F \\
/G/ & y_0^G & y_1^G & y_2^G & y_3^G & y_4^G & y_5^G & y_6^G & y_8^G \\
\end{array} \]
The modified forward output

- Note the extra “blank” at the output

/B/ /\Y/ /F/ /F/ /\Y/

Row labels:
- /AH/
- /B/
- /D/
- /EH/
- /\Y/
- /F/
- /G/

Col labels:
- y_0^b
- y_1^b
- y_2^b
- y_3^b
- y_4^b
- y_5^b
- y_6^b
- y_7^b
- y_8^b

Rows:
- y_0^{AH}
- y_0^B
- y_0^D
- y_0^{EH}
- y_0^{\Y}
- y_0^F
- y_0^G
- y_1^{AH}
- y_1^B
- y_1^D
- y_1^{EH}
- y_1^{\Y}
- y_1^F
- y_1^G
- y_2^{AH}
- y_2^B
- y_2^D
- y_2^{EH}
- y_2^{\Y}
- y_2^F
- y_2^G
- y_3^{AH}
- y_3^B
- y_3^D
- y_3^{EH}
- y_3^{\Y}
- y_3^F
- y_3^G
- y_4^{AH}
- y_4^B
- y_4^D
- y_4^{EH}
- y_4^{\Y}
- y_4^F
- y_4^G
- y_5^{AH}
- y_5^B
- y_5^D
- y_5^{EH}
- y_5^{\Y}
- y_5^F
- y_5^G
- y_6^{AH}
- y_6^B
- y_6^D
- y_6^{EH}
- y_6^{\Y}
- y_6^F
- y_6^G
- y_7^{AH}
- y_7^B
- y_7^D
- y_7^{EH}
- y_7^{\Y}
- y_7^F
- y_7^G
- y_8^{AH}
- y_8^B
- y_8^D
- y_8^{EH}
- y_8^{\Y}
- y_8^F
- y_8^G
Composing the graph for training

- The original method without blanks
- Changing the example to /B/ /IY/ /IY/ /F/ from /B/ /IY/ /F/ /IY/ for illustration
Composing the graph for training

<table>
<thead>
<tr>
<th></th>
<th>(y_0^b)</th>
<th>(y_1^b)</th>
<th>(y_2^b)</th>
<th>(y_3^b)</th>
<th>(y_4^b)</th>
<th>(y_5^b)</th>
<th>(y_6^b)</th>
<th>(y_7^b)</th>
<th>(y_8^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>(y_0^B)</td>
<td>(y_1^B)</td>
<td>(y_2^B)</td>
<td>(y_3^B)</td>
<td>(y_4^B)</td>
<td>(y_5^B)</td>
<td>(y_6^B)</td>
<td>(y_7^B)</td>
<td>(y_8^B)</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
<tr>
<td></td>
<td>(y_0^b)</td>
<td>(y_1^b)</td>
<td>(y_2^b)</td>
<td>(y_3^b)</td>
<td>(y_4^b)</td>
<td>(y_5^b)</td>
<td>(y_6^b)</td>
<td>(y_7^b)</td>
<td>(y_8^b)</td>
</tr>
</tbody>
</table>

- With blanks
- Note: a row of blanks between any two symbols
- Also blanks at the very beginning and the very end
Composing the graph for training

- Add edges such that all paths from initial node(s) to final node(s) unambiguously represent the target symbol sequence.
Composing the graph for training

<table>
<thead>
<tr>
<th>Column</th>
<th>(y_0^b)</th>
<th>(y_1^b)</th>
<th>(y_2^b)</th>
<th>(y_3^b)</th>
<th>(y_4^b)</th>
<th>(y_5^b)</th>
<th>(y_6^b)</th>
<th>(y_7^b)</th>
<th>(y_8^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(y_0^B)</td>
<td>(y_1^B)</td>
<td>(y_2^B)</td>
<td>(y_3^B)</td>
<td>(y_4^B)</td>
<td>(y_5^B)</td>
<td>(y_6^B)</td>
<td>(y_7^B)</td>
<td>(y_8^B)</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
</tbody>
</table>

- The first and last column are allowed to also end at initial and final blanks
Composing the graph for training

- The first and last column are allowed to also end at initial and final blanks
- Skips are permitted across a blank, but only if the symbols on either side are different
 - Because a blank is *mandatory between repetitions of a symbol* but *not required between distinct symbols*
Modified Forward Algorithm

- Initialization:

\[\alpha(0,0) = y_0^b, \alpha(0,1) = y_0^b, \alpha(0,r) = 0 \quad r > 1 \]
Modified Forward Algorithm

- Iteration:

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1)) y_t^{S(r)} \]

- If \(S(r) = "-" \) or \(S(r) = S(r - 2) \)

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1) + \alpha(t - 1, r - 2)) y_t^{S(r)} \]

- Otherwise

156
Modified Forward Algorithm

- Iteration:

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1))y_t^{S(r)} \]

- If \(S(r) = "-" \) or \(S(r) = S(r - 2) \)

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1) + \alpha(t - 1, r - 2))y_t^{S(r)} \]

- Otherwise
Modified Backward Algorithm

<table>
<thead>
<tr>
<th>t</th>
<th>y_0^b</th>
<th>y_1^b</th>
<th>y_2^b</th>
<th>y_3^b</th>
<th>y_4^b</th>
<th>y_5^b</th>
<th>y_6^b</th>
<th>y_7^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
</tr>
<tr>
<td>IY</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
</tr>
<tr>
<td>IY</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
</tr>
<tr>
<td>F</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
</tr>
<tr>
<td></td>
<td>y_0^b</td>
<td>y_1^b</td>
<td>y_2^b</td>
<td>y_3^b</td>
<td>y_4^b</td>
<td>y_5^b</td>
<td>y_6^b</td>
<td>y_7^b</td>
</tr>
</tbody>
</table>

- **Initialization:**

\[
\beta(T - 1, 2K) = \beta(T - 1, 2K - 1) = 1 \\
\beta(T - 1, r) = 0 \quad r < 2K - 1
\]
Modified Backward Algorithm

- Iteration:

\[\beta(t, r) = \beta(t + 1, r) y_t^{S(r)} + \beta(t + 1, r + 1) y_t^{S(r+1)} \]

- If \(S(r) = "-" \) or \(S(r) = S(r + 2) \)

\[\beta(t, r) = \beta(t + 1, r) y_t^{S(r)} + \beta(t + 1, r + 1) y_t^{S(r+1)} + \beta(t + 1, r + 2) y_t^{S(r+2)} \]

- Otherwise
Overall training procedure for Seq2Seq with blanks

/B/ /IY/ /F/ /IY/

• Problem: Given input and output sequences without alignment, train models
Overall training procedure

• **Step 1**: Setup the network
 – Typically many-layered LSTM

• **Step 2**: Initialize all parameters of the network
 – Include a “blank” symbol in vocabulary
Overall Training: Forward pass

• Foreach training instance
 • **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time, including blanks

```
<table>
<thead>
<tr>
<th></th>
<th>y_0^b</th>
<th>y_1^b</th>
<th>y_2^b</th>
<th>y_3^b</th>
<th>y_4^b</th>
<th>y_5^b</th>
<th>y_6^b</th>
<th>y_7^b</th>
<th>y_8^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH/</td>
<td>y_0^{AH}</td>
<td>y_1^{AH}</td>
<td>y_2^{AH}</td>
<td>y_3^{AH}</td>
<td>y_4^{AH}</td>
<td>y_5^{AH}</td>
<td>y_6^{AH}</td>
<td>y_7^{AH}</td>
<td>y_8^{AH}</td>
</tr>
<tr>
<td>B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>
```

Diagram:

```
X_0  X_1  X_2  X_3  X_4  X_5  X_6  X_7  X_8
```
Overall training: Backward pass

- Foreach training instance
 - **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
 - **Step 4**: Construct the graph representing the specific symbol sequence in the instance. Use appropriate connections if blanks are included
Overall training: Backward pass

Step 5: Perform the forward backward algorithm to compute $\alpha(t, r)$ and $\beta(t, r)$ at each time, for each row of nodes in the graph using the modified forward-backward equations.

Step 6: Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t.

<table>
<thead>
<tr>
<th>Y_0</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>Y_6</th>
<th>Y_7</th>
<th>Y_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0^b</td>
<td>y_1^b</td>
<td>y_2^b</td>
<td>y_3^b</td>
<td>y_4^b</td>
<td>y_5^b</td>
<td>y_6^b</td>
<td>y_7^b</td>
<td>y_8^b</td>
</tr>
<tr>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>y_0^IY</td>
<td>y_1^IY</td>
<td>y_2^IY</td>
<td>y_3^IY</td>
<td>y_4^IY</td>
<td>y_5^IY</td>
<td>y_6^IY</td>
<td>y_7^IY</td>
<td>y_8^IY</td>
</tr>
<tr>
<td>y_0^I</td>
<td>y_1^I</td>
<td>y_2^I</td>
<td>y_3^I</td>
<td>y_4^I</td>
<td>y_5^I</td>
<td>y_6^I</td>
<td>y_7^I</td>
<td>y_8^I</td>
</tr>
<tr>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>y_0^b</td>
<td>y_1^b</td>
<td>y_2^b</td>
<td>y_3^b</td>
<td>y_4^b</td>
<td>y_5^b</td>
<td>y_6^b</td>
<td>y_7^b</td>
<td>y_8^b</td>
</tr>
</tbody>
</table>
Overall training: Backward pass

- **Foreach instance**
 - **Step 6**: Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
\frac{dDIV}{dy_1^t} & \frac{dDIV}{dy_2^t} & \cdots & \frac{dDIV}{dy_L^t}
\end{bmatrix}
\]

\[
\frac{dDIV}{dy_l^t} = - \sum_{r : S(r) = t} \frac{\gamma(t, r)}{y_t^{S(r)}}
\]

- **Step 7**: Aggregate derivatives over minibatch and update parameters
CTC: Connectionist Temporal Classification

• The overall framework we saw is referred to as CTC
 – Applies when “duplicating” labels at the output is considered acceptable, and when output sequence length < input sequence length
Returning to an old problem:
Decoding

Using a trained network, we can “decode” the symbol sequence for an input by tracing the most likely symbol at each frame and merging.

This is in fact a suboptimal decode that actually finds the most likely synchronous output sequence — which is not necessarily the most likely asynchronous sequence.

Nevertheless it is effective with CTC models that have blanks.
What a CTC system outputs

Figure 1. Framewise and CTC networks classifying a speech signal. The shaded lines are the output activations, corresponding to the probabilities of observing phonemes at particular times. The CTC network predicts only the sequence of phonemes (typically as a series of spikes, separated by ‘blanks’, or null predictions), while the framewise network attempts to align them with the manual segmentation (vertical lines). The framewise network receives an error for misaligning the segment boundaries, even if it predicts the correct phoneme (e.g. ‘dh’). When one phoneme always occurs beside another (e.g. the closure ‘del’ with the stop ‘d’), CTC tends to predict them together in a double spike. The choice of labelling can be read directly from the CTC outputs (follow the spikes), whereas the predictions of the framewise network must be post-processed before use.

- Ref: Graves
- Symbol outputs peak at the ends of the sounds
 - But are smeared..
- Better ability to find most likely symbol sequence, and can handle repetitions
- But this is still suboptimal..
Actual objective of decoding

• Want to find most likely asynchronous symbol sequence
 – /R/ /EH/ /D/

• What Viterbi finds: most likely synchronous symbol sequence
 – Which must be compressed

• The likelihood of an asynchronous symbol sequence $S = S_1, ..., S_K$, given an input $X = X_1, ..., X_T$, is given by the forward algorithm
 \[P(S|X) = P(S, s_T = S_K | X) = \alpha_S(S_K, T) \]
Actual decoding objective

• Find the most likely (asynchronous) symbol sequence

\[\hat{S} = \arg \max_{S} \alpha_s(S_K, T) \]

• Unfortunately, explicit computation of this will require evaluate of an exponential number of symbol sequences

• Solution: Organize all possible symbol sequences as a (semi)tree
The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

Every symbol connects to every symbol other than itself
 - It also connects to a blank, which connects to every symbol including itself

The simple structure repeats recursively

Each node represents a unique (partial) symbol sequence!
The decoding graph for the tree

- Graph with more than 2 symbols will be similar but much more cluttered and complicated.
The decoding graph for the tree

- The figure to the left is the tree, drawn in a vertical line
- The graph is just the tree unrolled over time
 - For a vocabulary of V symbols, every node connects out to V other nodes at the next time
- Every node in the graph represents a unique symbol sequence
The decoding graph for the tree

- The forward score \(\alpha(r, T) \) at the final time represents the full forward score for a unique symbol sequence (including sequences terminating in blanks)
- Select the symbol sequence with the largest \(\alpha \)
 - Some sequences may have two \(\alpha \)s, one for the sequence itself, one for the sequence followed by a blank
 - Add the \(\alpha \)s before selecting the most likely
CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and computation) manageable
 – This may cause suboptimal decodes, however
 – The fact that CTC scores peak at symbol terminations minimizes the damage due to pruning
Story so far: CTC models

• Sequence-to-sequence networks which irregularly produce output symbols can be trained by
 – Iteratively aligning the target output to the input and time-synchronous training
 – Optimizing the expected error over all possible alignments: CTC training

• Distinct repetition of symbols can be disambiguated from repetitions representing the extended output of a single symbol by the introduction of blanks

• Decoding the models can be performed by
 – Best-path decoding, i.e. Viterbi decoding
 – Optimal CTC decoding based on the application of the forward algorithm to a tree-structured representation of all possible output strings
CTC caveats

• The “blank” structure (with concurrent modifications to the forward-backward equations) is only one way to deal with the problem of repeating symbols

• Possible variants:
 – Symbols partitioned into two or more sequential subunits
 • No blanks are required, since subunits must be visited in order
 – Symbol-specific blanks
 • Doubles the “vocabulary”
 – CTC can use bidirectional recurrent nets
 • And frequently does
 – Other variants possible.
Most common CTC applications

• Speech recognition
 – Speech in, phoneme sequence out
 – Speech in, character sequence (spelling out)

• Handwriting recognition
Speech recognition using Recurrent Nets

- Recurrent neural networks (with LSTMs) can be used to perform speech recognition
 - Input: Sequences of audio feature vectors
 - Output: Phonetic label of each vector
• Alternative: Directly output phoneme, character or word sequence
Next up: Attention models
CNN-LSTM-DNN for speech recognition

Ensembles of RNN/LSTM, DNN, & Conv Nets (CNN):
T. Sainath, O. Vinyals, A. Senior, H. Sak.
Translating Videos to Natural Language Using Deep Recurrent Neural Networks

Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"a young boy is holding a baseball bat."

"a cat is sitting on a couch with a remote control."

"a woman holding a teddy bear in front of a mirror."

"a horse is standing in the middle of a road."
Not explained

• Can be combined with CNNs
 – Lower-layer CNNs to extract features for RNN

• Can be used in tracking
 – Incremental prediction