Reinforcement Learning

Fall 2018

Defining MDPs, Planning
Markov Process

- Where you will go depends only on where you are
The *information* state of a Markov process may be different from its physical state.
Markov Reward Process

- Random wandering through states will occasionally win you a reward
There are, in fact, only four states, not eight
- Manhattan distance between fly and spider = 0 (s_0)
- Distance between fly and spider = 1 (s_1)
- Distance between fly and spider = 2 (s_2)
- Distance between fly and spider = 3 (s_3)

Can, in fact, redefine the MRP entirely in terms of these 4 states
The discounted return

\[G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]

• Total *future* reward all the way to the end
Markov Decision Process

- Markov Reward Process with following change:
 - Agent has real agency
 - Agent’s actions modify environment’s behavior
The Fly Markov Decision Process

- S_0: Process ends
- S_1: Transition with a_+ and a_-
- S_2: Transition with a_+ and a_-
- S_3: Transition with a_-

States and Transitions:
- s_0 to s_1: 1
- s_1 to s_0: 1/3
- s_1 to s_3: 2/3
- s_2 to s_1: 1
- s_2 to s_3: 1
- s_3 to s_1: 1/3
- s_3 to s_2: 2/3

Transition Probabilities:
- a_+ and a_- indicate transitions between states.
• The *policy* is the agent’s choice of action in each state
 – May be stochastic
The Bellman Expectation Equations

• The Bellman expectation equation for state value function

\[v_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^{a} v_\pi(s') \right) \]

• The Bellman expectation equation for action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^{a} \sum_{a \in \mathcal{A}} \pi(a|s') q_\pi(s', a) \]
Optimal Policies

• The optimal policy is the policy that will maximize the expected total discounted reward at every state: \(E[G_t|S_t = s] \)

\[
E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | S_t = s \right]
\]

• **Optimal Policy Theorem**: For any MDP there exist optimal policies \(\pi_* \) that is better than or equal to every other policy:

\[
\pi_* \geq \pi \quad \forall \pi \\
v_*(s) \geq v_\pi(s) \quad \forall s \\
q_*(s, a) \geq q_\pi(s, a) \quad \forall s, a
\]
The optimal value function

\[\pi^*(a|s) = \begin{cases} 1 & \text{for } \arg\max_{a'} q^*(s, a') \\ 0 & \text{otherwise} \end{cases} \]

\[\nu^*(s) = \max_a q^*(s, a) \]
Bellman Optimality Equations

• Optimal value function equation

\[\nu^*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu^*(s') \]

• Optimal action value equation

\[q^*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \max_{a'} q^*(s', a') \]
Planning with an MDP

- Problem:
 - Given: an MDP $\langle S, P, A, R, \gamma \rangle$
 - Find: Optimal policy π^*

- Can either
 - Value-based Solution: Find optimal value (or action value) function, and derive policy from it OR
 - Policy-based Solution: Find optimal policy directly
Value-based Planning

• “Value”-based solution

• Breakdown:
 – Prediction: Given any policy \(\pi \) find value function \(v_\pi(s) \)
 – Control: Find the optimal policy
Prediction DP

• Iterate

$$v^{(k+1)}_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} p_{s,s'}^a v^{(k)}_\pi(s') \right)$$
Policy Iteration

- Start with any policy $\pi^{(0)}$
- Iterate ($k = 0 \ldots$ convergence):
 - Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 - Find the greedy policy
 $$\pi^{(k+1)}(s) = greedy \left(v_{\pi^{(k)}}(s) \right)$$
Value iteration

\[\nu_{*}^{(k)}(s) = \max_{a} R_{s}^{a} + \gamma \sum_{s'} P_{s,s',\nu_{*}^{(k-1)}}^{a}(s') \]

- Each state simply inherits the cost of its best neighbour state
 - Cost of neighbor is the value of the neighbour plus cost of getting there
Problem so far

- *Given all details of the MDP*
 - Compute optimal value function
 - Compute optimal action value function
 - *Compute optimal policy*

- This is the problem of *planning*

- **Problem:** In real life, nobody gives you the MDP
 - How do we plan???
Model-Free Methods

• AKA model-free *reinforcement learning*

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free *prediction*

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free *control*
Model-Free Methods

- AKA model-free *reinforcement learning*

- How do you find the value of a policy, without knowing the underlying MDP?
 - Model-free *prediction*

- How do you find the optimal policy, without knowing the underlying MDP?
 - Model-free *control*

- **Assumption:** We can identify the states, know the *actions*, and measure rewards, but have no knowledge of the system dynamics
 - The key knowledge required to “solve” for the best policy
 - A reasonable assumption in many discrete-state scenarios
 - Can be generalized to other scenarios with infinite or unknowable state
Model-Free Assumption

- Can see the fly
- Know the distance to the fly
- Know possible actions (get closer/farther)
- But have no idea of how the fly will respond
 - Will it move, and if so, to what corner
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control
Model-Free Assumption

- Can see the fly and distance to the fly
- But have no idea of how the fly will respond to actions
 - Will it move, and if so, to what corner
- But will always try to reduce distance to fly (have a known, fixed, policy)
- What is the value of being a distance D from the fly?
Methods

• **Monte-Carlo Learning**

• **Temporal-Difference Learning**
 – $TD(1)$
 – $TD(K)$
 – $TD(\lambda)$
Monte-Carlo learning to learn the value of a policy π

- Just “let the system run” while following the policy π and learn the value of different states

- Procedure: Record several *episodes* of the following
 - Take actions according to policy π
 - Note states visited and rewards obtained as a result
 - Record entire sequence:
 - $S_1, A_1, R_2, S_2, A_2, R_3, ..., S_T$

 - **Assumption:** Each “episode” ends at some time

- Estimate value functions based on observations by counting
Monte-Carlo Value Estimation

- Objective: Estimate value function $v_\pi(s)$ for every state s, given recordings of the kind: $S_1, A_1, R_2, S_2, A_2, R_3, \ldots, S_T$

- Recall, the value function is the expected return:
 $$v_\pi(s) = E[G_t | S_t = s]$$
 $$= E[R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-1} R_T | S_t = s]$$

- To estimate this, we replace the statistical expectation $E[G_t | S_t = s]$ by the empirical average $avg[G_t | S_t = s]$
A bit of notation

- We actually record many episodes
 - \(\text{episode}(1) = S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, ..., S_{1T_1} \)
 - \(\text{episode}(2) = S_{21}, A_{21}, R_{22}, S_{22}, A_{22}, R_{23}, ..., S_{2T_2} \)
 - ...
 - Different episodes may be different lengths
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time t
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
 \[G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 – \(S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \)

• Return at time \(t \)
 – \(G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \)
 – \(G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1} \)
 – \(\ldots \)
 – \(G_{1,t} = R_{1,t+1} + \gamma R_{1,t+2} + \cdots + \gamma^{T_1-t-1} R_{1T_1} \)
Estimating the Value of a State

• To estimate the value of any state, identify the instances of that state in the episodes:

\[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

\[s_a \quad s_b \quad s_a \quad \ldots \]

• Compute the average return from those instances

\[\nu_\pi(s_a) = avg(G_{1,1}, G_{1,3}, \ldots) \]
Estimating the Value of a State

- For every state \(s \)
 - Initialize: Count \(N(s) = 0 \), Total return \(v_\pi(s) = 0 \)
 - For every episode \(e \)
 - For every time \(t = 1 \ldots T_e \)
 - Compute \(G_t \)
 - If \((S_t = s) \)
 - \(N(s) = N(s) + 1 \)
 - \(v_\pi(s) = v_\pi(s) + G_t \)
 - \(v_\pi(s) = v_\pi(s)/N(s) \)

- Can be done more efficiently..
Online Version

• For all s Initialize: Count $N(s) = 0$, Total return $totv_\pi(s) = 0$

• For every episode e
 – For every time $t = 1 \ldots T_e$
 • Compute G_t
 • $N(S_t) = N(S_t) + 1$
 • $totv_\pi(S_t) = totv_\pi(S_t) + G_t$
 – For every state $s : v_\pi(s) = totv_\pi(s)/N(s)$

• Updating values at the end of each episode
• Can be done more efficiently.
Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in which all states have been visited a sufficiently large number of times, we will obtain good estimates of the value functions of all states

• Easily extended to evaluating action value functions
Estimating the Action Value function

• To estimate the value of any state-action pair, identify the instances of that state-action pair in the episodes:

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T$$

$$s_a \ a_x \ s_b \ a_y \ s_a \ a_y \ \ldots$$

• Compute the average return from those instances

$$q_\pi(s_a, a_x) = avg(G_{1,1}, \ldots)$$
Online Version

- For all \(s, a \) Initialize: Count \(N(s, a) = 0 \), Total value \(\text{tot}q_{\pi}(s, a) = 0 \)

- For every episode \(e \)
 - For every time \(t = 1 \ldots T_e \)
 - Compute \(G_t \)
 - \(N(S_t, A_t) = N(S_t, A_t) + 1 \)
 - \(\text{tot}q_{\pi}(S_t, A_t) = \text{tot}q_{\pi}(S_t, A_t) + G_t \)
 - For every \(s, a \): \(q(s, a) = \text{tot}q_{\pi}(s, a)/N(s, a) \)

- Updating values at the end of each episode
Monte Carlo: Good and Bad

• Good:
 – Will eventually get to the right answer
 – Unbiased estimate

• Bad:
 – Cannot update anything until the end of an episode
 • Which may last for ever
 – High variance! Each return adds many random values
 – Slow to converge
Online methods for estimating the value of a policy: Temporal Difference Leaning (TD)

- Idea: Update your value estimates after every observation

 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

 - Do not actually wait until the end of the episode
Incremental Update of Averages

• Given a sequence x_1, x_2, x_3, \ldots a running estimate of their average can be computed as

$$\mu_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• This can be rewritten as:

$$\mu_k = \frac{(k - 1)\mu_{k-1} + x_k}{k}$$

• And further refined to

$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$
Incremental Update of Averages

• Given a sequence x_1, x_2, x_3, \ldots a running estimate of their average can be computed as:

$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

• Or more generally as:

$$\mu_k = \mu_{k-1} + \alpha(x_k - \mu_{k-1})$$

• The latter is particularly useful for non-stationary environments
Incremental Updates

\[\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1}) \]

- Example of running average of a uniform random variable
Incremental Updates

- Correct equation is *unbiased* and converges to true value
- Equation with α is *biased* (early estimates can be expected to be wrong) but *converges* to true value

\[
\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})
\]

\[
\mu_k = \mu_{k-1} + \alpha (x_k - \mu_{k-1})
\]

$\alpha = 0.1$

$\alpha = 0.05$

$\alpha = 0.03$
Updating Value Function Incrementally

• Actual update

\[v_\pi(s) = \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_t(i) \]

• \(N(s) \) is the total number of visits to state \(s \) across all episodes

• \(G_t(i) \) is the discounted return at the time instant of the \(i \)-th visit to state \(s \)
Online update

- Given any episode
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \]
- Update the value of each state visited
 \[N(S_t) = N(S_t) + 1 \]
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)}(G_t - \nu_\pi(S_t)) \]
- Incremental version
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]
- Still an unrealistic rule
 - Requires the entire track until the end of the episode to compute \(G_t \)
Online update

• Given any episode

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

• Update the value of each state visited

\[N(S_t) = N(S_t) + 1 \]

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)} (G_t - \nu_\pi(S_t)) \]

• Incremental version

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t)) \]

• Still an unrealistic rule

 • Requires the entire track until the end of the episode to compute \(G_t \)
TD solution

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]

• But

\[G_t = R_{t+1} + \gamma G_{t+1} \]

• We can approximate \(G_{t+1} \) by the expected return at the next state \(S_{t+1} \)
Counting Returns

• For each episode, we count the returns at all times:
 – \(S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \)

• Return at time \(t \)
 – \(G_1 = R_2 + \gamma R_3 + \cdots + \gamma^{T-2}R_T \)
 – \(G_2 = R_3 + \gamma R_4 + \cdots + \gamma^{T-3}R_T \)
 – \(\ldots \)
 – \(G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-2}R_T \)

• Can rewrite as
 – \(G_1 = R_2 + \gamma G_2 \)

• Or
 – \(G_1 = R_2 + \gamma R_3 + \gamma^2 G_3 \)
 – \(\ldots \)
 – \(G_t = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} G_{t+1+N} \)
TD solution

\[
\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t))
\]

- But

\[
G_t = R_{t+1} + \gamma G_{t+1}
\]

- We can approximate \(G_{t+1}\) by the expected return at the next state \(S_{t+1} \approx \nu_\pi(S_{t+1})\)

\[
G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1})
\]

- We don’t know the real value of \(\nu_\pi(S_{t+1})\) but we can “bootstrap” it by its current estimate
TD(1) true online update

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]

- Where

\[G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1}) \]

- Giving us

\[-\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(R_{t+1} + \gamma \nu_\pi(S_{t+1}) - \nu_\pi(S_t)) \]
TD(1) true online update

$$v_\pi(S_t) = v_\pi(S_t) + \alpha \delta_t$$

• Where

$$\delta_t = R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t)$$

• δ_t is the TD error

 – The error between an (estimated) observation of G_t and the current estimate $v_\pi(S_t)$
TD(1) true online update

• For all s Initialize: $v_\pi(s) = 0$

• For every episode e
 – For every time $t = 1 \ldots T_e$
 • $v_\pi(S_t) = v_\pi(S_t) + \alpha(R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t))$

• There’s a “lookahead” of one state, to know which state the process arrives at at the next time

• But is otherwise online, with continuous updates
TD(1)

- Updates continuously – improve estimates as soon as you observe a state (and its successor)

- Can work even with *infinitely long* processes that never terminate

- Guaranteed to converge to the true values eventually
 - Although initial values will be biased as seen before
 - Is actually lower variance than MC!!
 - Only incorporates one RV at any time

- TD can give correct answers when MC goes wrong
 - Particularly when TD is allowed to *loop* over all learning episodes
What are $v(A)$ and $v(B)$

- Using MC
- Using TD(1), where you are allowed to repeatedly go over the data
TD – look ahead further?

• TD(1) has a look ahead of 1 time step
 \[G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1}) \]

• But we can look ahead further out
 \begin{align*}
 - G_t(2) &= R_{t+1} + \gamma R_{t+2} + \gamma^2 \nu_\pi(S_{t+2}) \\
 - \ldots \\
 - G_t(N) &= R_{t+1} \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} \nu_\pi(S_{t+N})
 \end{align*}
TD(N) with lookahead

\[v_\pi(S_t) = v_\pi(S_t) + \alpha \delta_t(N) \]

- **Where**

\[\delta_t(N) = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} v_\pi(S_{t+N}) - v_\pi(S_t) \]

- **\(\delta_t(N) \) is the TD error with \(N \) step lookahead**
Lookahead is good

- Good: The further you look ahead, the better your estimates get

- Problems:
 - But you also get more variance
 - At infinite lookahead, you’re back at MC

- Also, you have to wait to update your estimates
 - A lag between observation and estimate

- So how much lookahead must you use
Looking Into The Future

Let TD target look n steps into the future

- How much various TDs look into the future
- Which do we use?
Solution: Why choose?

- Each lookahead provides an estimate of G_t
- Why not just combine the lot with discounting?
TD(λ)

$$G_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n)$$

- Combine the predictions from all lookaheads with an exponentially falling weight
 - Weights sum to 1.0

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^\lambda - V(S_t) \right)$$
Something magical just happened

- TD(λ) looks into the infinite future
 - I.e. we must have all the rewards of the future to compute our updates
 - How does that help?
The contribution of future rewards to the present update

- All future rewards contribute to the update of the value of the current state
The contribution of current reward to past states

- All current reward contributes to the update of the value of all past states!
TD(\(\lambda\)) backward view

- The **Eligibility** trace:
 - Keeps track of *total* weight for any state
 - Which may have occurred at multiple times in the past
TD(λ)

- Maintain an eligibility trace for every state

\[E_0(s) = 0 \]

\[E_t(s) = \gamma E_{t-1}(s) + 1(S_t = s) \]

- Computes total weight for the state until the present time
TD(\(\lambda\))

- At every time, update the value of *every state* according to its eligibility trace

\[\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \]

\[V(s) \leftarrow V(s) + \alpha \delta_t E_t(S_t) \]

- Any state that was visited will be updated
 - Those that were not will not be, though
The magic of TD(λ)

• Managed to get the effect of infinite lookahead, by performing infinite \textit{lookbehind}
 – Or at least look behind to the beginning

• Every reward updates the value of \textit{all states} leading to the reward!
 – E.g., in a chess game, if we win, we want to increase the value of all game states we visited, not just the final move
 – But early states/moves must gain much less than later moves

• When $\lambda = 1$ this is exactly equivalent to MC
Story so far

• Want to compute the values of all states, given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal difference solutions
 – TD is quicker to update, and in many situations the better solution
 – TD(\(\lambda\)) actually emulates an infinite lookahead
 • But we must choose good values of \(\alpha\) and \(\lambda\)
Optimal Policy: Control

• We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown for a given policy.

• How do we find the optimal policy?
Value vs. Action Value

• The solution we saw so far only computes the value functions of states

• Not sufficient – to compute the optimal policy from value functions alone, we will need extra information, namely transition probabilities
 – Which we do not have

• Instead, we can use the same method to compute action value functions
 – Optimal policy in any state: Choose the action that has the largest optimal action value
Value vs. Action value

• Given only value functions, the optimal policy must be estimated as:

\[\pi'(s) = \arg\max_{a \in \mathcal{A}} \mathcal{R}^a_s + \mathcal{P}^a_{ss'}V(s') \]

 – Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

\[\pi'(s) = \arg\max_{a \in \mathcal{A}} Q(s, a) \]

• This is model free (no need for knowledge of model parameters)
Problem of optimal control

• From a series of episodes of the kind: $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T$

• Find the optimal action value function $q^*(s, a)$
 – The optimal policy can be found from it

• Ideally do this online
 – So that we can continuously improve our policy from ongoing experience
Exploration vs. Exploitation

- Optimal policy search happens while gathering experience while following a policy.

- For fastest learning, we will follow an estimate of the optimal policy.

- Risk: We run the risk of positive feedback
 - Only learn to evaluate our current policy
 - Will never learn about alternate policies that may turn out to be better.

- Solution: We will follow our current optimal policy $1 - \epsilon$ of the time
 - But choose a random action ϵ of the time
 - The “epsilon-greedy” policy.
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$
- Process the episode using the following online update rules:
 \[
 N(S_t, A_t) \leftarrow N(S_t, A_t) + 1
 \]
 \[
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
 \]
- Compute the ϵ-greedy policy for each state
 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg \max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]
- Repeat
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy \(\pi \)
- Start the process at the initial state, and follow an action according to initial policy \(\pi \)
- Produce the episode \(S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \)
- Process the episode using the following online update rules:

 \[
 N(S_t, A_t) \leftarrow N(S_t, A_t) + 1 \\
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
 \]

- Compute the \(\epsilon \)-greedy policy for each state

 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]
- Repeat
On-line version of GLIE: SARSA

- Replace G_t with an estimate
- TD(1) or TD(λ)
 - Just as in the prediction problem
- TD(1) \Rightarrow SARSA

\[Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A)) \]
SARSA

- Initialize $Q(s, a)$ for all s, a
- Start at initial state S_1
- Select an initial action A_1
- For $t = 1..$ Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ-greedy policy
 $$\pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{Na - 1} & \text{otherwise}
 \end{cases}$$
 - Update
 $$Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$
SARSA(λ)

- Again, the TD(1) estimate can be replaced by a TD(λ) estimate
- Maintain an eligibility trace for every state-action pair:

\[
E_0(s, a) = 0 \\
E_t(s, a) = \gamma E_{t-1}(s, a) + 1(S_t = s, A_t = a)
\]

- Update every state-action pair visited so far

\[
\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \\
Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)
\]
SARSA(\(\lambda\))

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots \text{Termination}\)
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) using policy obtained from \(Q\)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + \alpha \delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s, a)\)
On-policy vs. Off-policy

• SARSA assumes you’re following the same policy that you’re learning
• It’s possible to follow one policy, while learning from others
 – E.g. learning by observation
• The policy for learning is the what-if policy
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \]
 hypothetical

• Modifies learning rule
 \[Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)) \]
 to
 \[Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t) \right) \]
• \(Q \) will actually represent the action value function of the hypothetical policy
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Use TD rules to update:

\[\delta = R + \gamma Q(S', A') - Q(S, A) \]

• Problem: which policy do we use to choose \(A'\)
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Problem: which policy do we use to choose \(A'\)

• If we choose the current judgment of the best action at \(S'\) we will become too greedy
 – Never explore

• If we choose a sub-optimal policy to follow, we will never find the best policy
Solution: Off-policy learning

• The policy for learning is the whatif policy
\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]
\[\hat{A}_2 \quad \hat{A}_3 \quad \text{hypothetical} \]

• Use the best action for \(S_{t+1} \) as your hypothetical off-policy action

• But actually follow an \textit{epsilon-greedy} action
 – The hypothetical action is guaranteed to be better than the one you actually took
 – But you still explore (non-greedy)
Q-Learning

- From any state-action pair S, A
 - Accept reward R
 - Transition to S'
 - Find the best action A' for S'
 - Use it to update $Q(S, A)$
 - But then actually perform an epsilon-greedy action A'' from S'
Q-Learning (TD(1) version)

• For all s, a initialize $Q(s, a)$
• For each episode e
 – Initialize S_1, A_1
 – For $t = 1 \ldots$ Termination
 • Observe R_{t+1}, S_{t+1}
 • Choose action A_{t+1} at S_{t+1} using epsilon-greedy policy obtained from Q
 • Choose action \hat{A}_{t+1} at S_{t+1} as $\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a)$
 • $\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)$
 • $Q(S_t, A_t) = Q(S_t, A_t) + \alpha \delta$
Q-Learning (TD(\(\lambda\)) version)

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots\) Termination
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) at \(S_{t+1}\) using epsilon-greedy policy obtained from \(Q\)
 - Choose action \(\hat{A}_{t+1}\) at \(S_{t+1}\) as \(\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a)\)
 - \(\delta = R_{t+1} + \gamma Q(\hat{S}_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + \alpha \delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s, a)\)
What about the actual policy?

- Optimal greedy policy:
 \[\pi(a|s) = \begin{cases}
 1 & \text{for } a = \arg\max_{a'} Q(s, a') \\
 0 & \text{otherwise}
\end{cases} \]

- Exploration policy
 \[\pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases} \]

- Ideally \(\epsilon \) should decrease with time
Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:
 – Value function approximation
 – Continuous state spaces
 – Deep-Q learning
 – Action replay
 – Application to real problem..