Which open source project?

```c
/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */

static int indicate_policy(void)
{
    int error;
    if (fd == MARN_EPT) {
        /*
         * The kernel blank will coel d it to userspace.
         */
        if (ss->segment < mem_total)
            unblock_graph_and_set_blocked();
        else
            ret = 1;
        goto bail;
    }

    segaddr = in_SB(in.addr);
    selector = seg / 16;
    setup_works = true;
    for (i = 0; i < blocks; i++) {
        seq = buf[i++];
        bpf = bd->bd.next + i * search;
        if (fd) {
            current = blocked;
        }
    }
}

rw->name = "Getjbbregs";
bprm_self_clear(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON;
return segtable;
```
Related math. What is it talking about?

Proof. Omitted.

Lemma 0.1. Let \(\mathcal{C} \) be a set of the construction.
Let \(\mathcal{C} \) be a gerber covering. Let \(\mathcal{F} \) be a quasi-coherent sheaves of \(\mathcal{O} \)-modules. We have to show that
\[O_{\mathcal{O}_X} = O_X(\mathcal{L}) \]

Proof. This is an algebraic space with the composition of sheaves \(\mathcal{F} \) on \(X_{\text{étale}} \) we have
\[O_X(\mathcal{F}) = \{\text{morph} \times_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F})\} \]
where \(\mathcal{G} \) defines an isomorphism \(\mathcal{F} \rightarrow \mathcal{F} \) of \(\mathcal{O} \)-modules.

Lemma 0.2. This is an integer \(\mathcal{Z} \) is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let \(S \) be a scheme. Let \(X \) be a scheme and \(X \) is an affine open covering. Let \(U \subset X \) be a canonical and locally of finite type. Let \(X \) be a scheme. Let \(X \) be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let \(X \) be a scheme. Let \(X \) be a scheme covering. Let
\[b : X \rightarrow Y' \rightarrow Y \rightarrow Y'' \rightarrow \mathcal{Y} \rightarrow X. \]
be a morphism of algebraic spaces over \(S \) and \(Y \).

Proof. Let \(X \) be a nonzero scheme of \(X \). Let \(X \) be an algebraic space. Let \(\mathcal{F} \) be a quasi-coherent sheaf of \(\mathcal{O}_X \)-modules. The following are equivalent

1. \(\mathcal{F} \) is an algebraic space over \(S \).
2. If \(X \) is an affine open covering.

Consider a common structure on \(X \) and \(X \) the functor \(O_X(U) \) which is locally of finite type.

This since \(\mathcal{F} \in \mathcal{F} \) and \(x \in \mathcal{G} \) the diagram

\[\begin{array}{ccc}
S & \rightarrow & \mathcal{G} \\
\downarrow & \downarrow & \downarrow \\
\mathcal{G}_x & \rightarrow & \mathcal{G}_x \\
\end{array} \]

is a limit. Then \(\mathcal{G} \) is a finite type and assume \(S \) is a flat and \(\mathcal{F} \) and \(\mathcal{G} \) is a finite type \(f_1 \). This is of finite type diagrams, and

- the composition of \(\mathcal{G} \) is a regular sequence,
- \(\mathcal{O}_{X'} \) is a sheaf of rings.

Proof. We have see that \(X = \text{Spec}(R) \) and \(\mathcal{F} \) is a finite type representable by algebraic space. The property \(\mathcal{F} \) is a finite morphism of algebraic stacks. Then the cohomology of \(X \) is an open neighbourhood of \(U \).

Proof. This is clear that \(\mathcal{G} \) is a finite presentation, see Lemmas ??.
A reduced above we conclude that \(U \) is an open covering of \(C \). The functor \(\mathcal{F} \) is a "field"
\[O_{X,x} \rightarrow \mathcal{F}_x \rightarrow O_{X,x} \rightarrow O_{X,x}(O_{X,x}^*) \]
is an isomorphism of covering of \(O_{X,x} \). If \(\mathcal{F} \) is the unique element of \(\mathcal{F} \) such that \(X \) is an isomorphism.
The property \(\mathcal{F} \) is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \(O_X \)-algebra with \(\mathcal{F} \) are opens of finite type over \(S \).
If \(\mathcal{F} \) is a scheme theoretic image points.

If \(\mathcal{F} \) is a finite direct sum \(O_{X,x} \) is a closed immersion, see Lemma ??, This is a sequence of \(\mathcal{F} \) is a similar morphism.
Naturalism and decision for the majority of Arab countries' capitalism was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.yahoo.com/guardian.cfm/77548002786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripad of aid exile.]]
The unreasonable effectiveness of recurrent neural networks..

- All previous examples were *generated* blindly by a *recurrent* neural network..
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Modelling Series

• In many situations one must consider a series of inputs to produce an output
 – Outputs to may be a series

• Examples: ..
Should I invest..

To invest or not to invest?

- Stock market
 - Must consider the series of stock values in the past several days to decide if it is wise to invest today
 - Ideally consider all of history
- Note: Inputs are vectors. Output may be scalar or vector
 - Should I invest, vs. should I invest in X
Representational shortcut

- Input at each time is a *vector*
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything simple boxes
 - Each box actually represents an entire *layer with many units*
• Input at each time is a *vector*
• Each layer has many neurons
 – Output layer too may have many neurons
• But will represent everything simple boxes
 – Each box actually represents an entire *layer with many units*
Representational shortcut

• Input at each time is a *vector*
• Each layer has many neurons
 – Output layer too may have many neurons
• But will represent everything simple boxes
 – Each box actually represents an entire *layer with many units*
The stock predictor

- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*
• The sliding predictor
 – Look at the last few days
 – This is just a convolutional neural net applied to series data
 • Also called a *Time-Delay neural network*
The stock predictor

- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*
The stock predictor

• The sliding predictor
 – Look at the last few days
 – This is just a convolutional neural net applied to series data
 • Also called a *Time-Delay neural network*
The stock predictor

• The sliding predictor
 – Look at the last few days
 – This is just a convolutional neural net applied to series data
 • Also called a *Time-Delay neural network*
Finite-response model

• This is a finite response system
 – Something that happens today only affects the output of the system for N days into the future
 • N is the width of the system

$$Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N})$$
The stock predictor

- This is a finite response system
 - Something that happens *today* only affects the output of the system for N days into the future
 - N is the width of the system

$$Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N})$$
The stock predictor

- This is a *finite response* system
 - Something that happens *today* only affects the output of the system for N days into the future
 - N is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N})$$
The stock predictor

- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - N is the width of the system

$$Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N})$$
The stock predictor

- This is a *finite response* system
 - Something that happens *today* only affects the output of the system for N days into the future
 - N is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$
The stock predictor

- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - N is the width of the system

$$Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N})$$
The stock predictor

- This is a *finite response* system
 - Something that happens *today* only affects the output of the system for *N* days into the future
 - *N* is the *width* of the system

\[Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N}) \]
This is a finite response system—Something that happens today only affects the output of the system for \(N \) days into the future.

\[Y_t = f(X_t, X_{t-1}, \ldots, X_{t-N}) \]
Problem: Increasing the “history” makes the network more complex

- No worries, we have the CPU and memory
 - Or do we?
Systems often have long-term dependencies

- Longer-term trends –
 - Weekly trends in the market
 - Monthly trends in the market
 - Annual trends
 - Though longer history tends to affect us less than more recent events.

Typical seasonal pattern of relative rally into Thanksgiving
We want *infinite* memory

- Required: *Infinite* response systems
 - What happens today can continue to affect the output forever
 - Possibly with weaker and weaker influence
 \[Y_t = f(X_t, X_{t-1}, \ldots, X_{t-\infty}) \]
Examples of infinite response systems

\[Y_t = f(X_t, Y_{t-1}) \]

– Required: Define initial state: \(Y_{-1} \) for \(t = 0 \)
– An input at \(X_0 \) at \(t = 0 \) produces \(Y_0 \)
– \(Y_0 \) produces \(Y_1 \) which produces \(Y_2 \) and so on until \(Y_\infty \) even if \(X_1 \ldots X_\infty \) are 0
 • i.e. even if there are no further inputs!

• This is an instance of a NARX network
 – “nonlinear autoregressive network with exogenous inputs”
 – \(Y_t = f(X_{0:t}, Y_{0:t-1}) \)

• Output contains information about the entire past
A one-tap NARX network

• A NARX net with recursion from the output
A one-tap NARX network

• A NARX net with recursion from the output
A one-tap NARX network

- A NARX net with recursion from the output
A one-tap NARX network

- A NARX net with recursion from the output
A one-tap NARX network

- A NARX net with recursion from the output
A one-tap NARX network

• A NARX net with recursion from the output
A one-tap NARX network

- A NARX net with recursion from the output
A one-tap NARX network

• A NARX net with recursion from the output
A more complete representation

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at $t=0$ affects outputs forever
A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at $t=0$ affects outputs forever

Brown boxes show output nodes
All outgoing arrows are the same output
A more generic NARX network

- The output Y_t at time t is computed from the past K outputs Y_{t-1}, \ldots, Y_{t-K} and the current and past L inputs X_t, \ldots, X_{t-L}
A “complete” NARX network

The output Y_t at time t is computed from all past outputs and all inputs until time t

- Not really a practical model
NARX Networks

• Very popular for time-series prediction
 – Weather
 – Stock markets
 – As alternate system models in tracking systems

• Any phenomena with distinct “innovations” that “drive” an output

• Note: here the “memory” of the past is in the output itself, and not in the network
Lets make memory more explicit

• Task is to “remember” the past
• Introduce an explicit memory variable whose job it is to remember

\[m_t = r(y_{t-1}, h_{t-1}, m_{t-1}) \]
\[h_t = f(x_t, m_t) \]
\[y_t = g(h_t) \]

• \(m_t \) is a “memory” variable
 – Generally stored in a “memory” unit
 – Used to “remember” the past
• Memory unit simply retains a running average of past outputs
 • Input is constant (called a “plan”)
 • Objective is to train net to produce a specific output, given an input plan
 – Memory has fixed structure; does not “learn” to remember
 • The running average of outputs considers entire past, rather than immediate past
Elman Networks

- Separate memory state from output
 - “Context” units that carry historical state
 - For the purpose of training, this was approximated as a set of T independent 1-step history nets
- Only the weight from the memory unit to the hidden unit is learned
An alternate model for infinite response systems: the state-space model

\[h_t = f(x_t, h_{t-1}) \]
\[y_t = g(h_t) \]

- \(h_t \) is the *state* of the network
 - Model directly embeds the memory in the state
- Need to define initial state \(h_{-1} \)

- This is a *fully recurrent* neural network
 - Or simply a *recurrent neural network*
- *State* summarizes information about the entire past
The simple state-space model

- The state (green) at any time is determined by the input at that time, and the state at the previous time.
- An input at $t=0$ affects outputs forever.
- Also known as a recurrent neural net.
An alternate model for infinite response systems: the state-space model

\[h_t = f(x_t, h_{t-1}) \]
\[y_t = g(h_t) \]

- \(h_t \) is the state of the network
- Need to define initial state \(h_{-1} \)
- The state an be arbitrarily complex
Single hidden layer RNN

- Recurrent neural network
- All columns are identical
- An input at $t=0$ affects outputs forever
Multiple recurrent layer RNN

- Recurrent neural network
- All columns are identical
- An input at $t=0$ affects outputs forever
A more complex state

• All columns are identical

• *An input at t=0 affects outputs forever*
Or the network may be even more complicated

- Shades of NARX
- All columns are identical
- An input at $t=0$ affects outputs forever
Generalization with other recurrences

- All columns (including incoming edges) are identical

\[
\begin{array}{c|ccccccc}
Y(t) & \uparrow \\
X(t) & \downarrow \\
t=0 & & & & & & & \\
\end{array}
\]
State dependencies may be simpler

- Recurrent neural network
- All columns are identical
- *An input at t=0 affects outputs forever*
Multiple recurrent layer RNN

• We can also have skips..
A Recurrent Neural Network

- Simplified models often drawn
- The loops imply recurrence
The detailed version of the simplified representation

\[
\begin{align*}
X(t) & \\
Y(t) & \\
X(t-1) & \\
\vdots & \\
Y(t-n) & \\
X(t-n-1) & \\
\end{align*}
\]
Multiple recurrent layer RNN
Multiple recurrent layer RNN
Equations

\[h_i^{(1)}(-1) = \text{part of network parameters} \]

\[h_i^{(1)}(t) = f_1 \left(\sum_j w_{ji}^{(0)} X_j(t) + \sum_j w_{ji}^{(11)} h_i^{(1)}(t - 1) + b_i^{(1)} \right) \]

\[Y(t) = f_2 \left(\sum_j w_{jk}^{(1)} h_j^{(1)}(t) + b_k^{(1)}, k = 1..M \right) \]

• Note superscript in indexing, which indicates layer of network from which inputs are obtained
• Assuming vector function at output, e.g. softmax
• The state node activation, \(f_1() \) is typically \(\text{tanh}() \)
• Every neuron also has a bias input
\[Y(t) = f_3 \left(\sum_j w_{jk}^{(2)} h_j^{(2)}(t) + b_k^{(3)}, k = 1..M \right) \]

- Assuming vector function at output, e.g. softmax \(f_3() \)
- The state node activations, \(f_k() \) are typically \(\text{tanh}() \)
- Every neuron also has a \textbf{bias} input
Equations

\[h_i^{(1)}(-1) = \text{part of network parameters} \]
\[h_i^{(2)}(-1) = \text{part of network parameters} \]

\[
h_i^{(1)}(t) = f_1 \left(\sum_j w_{ji}^{(0,1)} X_j(t) + \sum_i w_{ii}^{(1,1)} h_i^{(1)}(t - 1) + b_i^{(1)} \right)
\]

\[
h_i^{(2)}(t) = f_2 \left(\sum_j w_{ji}^{(1,2)} h_j^{(1)}(t) + \sum_j w_{ji}^{(0,2)} X_j(t) + \sum_i w_{ii}^{(2,2)} h_i^{(2)}(t - 1) + b_i^{(2)} \right)
\]

\[
Y_i(t) = f_3 \left(\sum_j w_{jk}^{(2)} h_j^{(2)}(t) + \sum_j w_{jk}^{(1,3)} h_j^{(1)}(t) + b_k^{(3)}, k = 1..M \right)
\]
Variants on recurrent nets

- 1: Conventional MLP
- 2: Sequence *generation*, e.g. image to caption
- 3: Sequence based *prediction or classification*, e.g. Speech recognition, text classification
Variants

1: *Delayed* sequence to sequence
2: Sequence to sequence, e.g. stock problem, label prediction
 Etc...

Images from Karpathy
How do we train the network

- Back propagation through time (BPTT)

- Given a collection of sequence inputs
 - \((X_i, D_i)\), where
 - \(X_i = X_{i,0}, ..., X_{i,T}\)
 - \(D_i = D_{i,0}, ..., D_{i,T}\)

- Train network parameters to minimize the error between the output of the network \(Y_i = Y_{i,0}, ..., Y_{i,T}\) and the desired outputs
 - This is the most generic setting. In other settings we just “remove” some of the input or output entries
Training: Forward pass

• For each training input:
 • Forward pass: pass the entire data sequence through the network, generate outputs
Training: Computing gradients

- For each training input:
 - Backward pass: Compute gradients via backpropagation
 - Back Propagation Through Time

![Diagram](image_url)
Back Propagation Through Time

Will only focus on one training instance

All subscripts represent components and not training instance index
The divergence computed is between the sequence of outputs by the network and the desired sequence of outputs.

This is not just the sum of the divergences at individual times.

- Unless we explicitly define it that way.
Back Propagation Through Time

First step of backprop: Compute \(\frac{dDIV}{dY_i(T)} \) for all \(i \)

In general we will be required to compute \(\frac{dDIV}{dY_i(t)} \) for all \(i \) and \(t \) as we will see. This can be a source of significant difficulty in many scenarios.
Special case, when the overall divergence is a simple combination of local divergences at each time:

Must compute

\[
\frac{dDIV}{dY_i(t)} \text{ for all } i \text{ for all } T
\]

Will usually get

\[
\frac{dDIV}{dY_i(t)} = \frac{dDiv(t)}{dY_i(t)}
\]
Back Propagation Through Time

First step of backprop: Compute \(\frac{dDIV}{dy_i(T)} \) for all \(i \)

\[
\nabla_{Z^{(1)}(T)} DIV = \nabla_{Y(T)} DIV \nabla_{Z(T)} Y(T)
\]

Vector output activation

\[
\frac{dDIV}{dz_i^{(1)}(T)} = \frac{dDIV}{dy_i(T)} \frac{dy_i(T)}{dz_i^{(1)}(T)}
\]

OR

\[
\frac{dDIV}{dz_i(T)} = \sum_j \frac{dDIV}{dy_j(T)} \frac{dy_j(T)}{dz_i^{(1)}(T)}
\]
Back Propagation Through Time

\[\frac{d\text{DIV}}{dh_i(T)} = \sum_j w_{ij} \frac{d\text{DIV}}{dZ_j^{(1)}(T)} \]

\[\frac{d\text{DIV}}{dY_i(T)} = \frac{d\text{DIV}}{dZ_i^{(1)}(T)} = \frac{d\text{DIV}}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)} \]

\[\nabla_{h(T)} \text{DIV} = \nabla_{Z^{(1)}(T)} \text{DIV} W^{(1)} \]
Back Propagation Through Time

\[\frac{dDIV}{dZ_i^{(1)}(T)} = \frac{dDiv(T)}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)} \]

\[\nabla W^{(1)}DIV = h(T) \nabla_{Z_i^{(1)}(T)}DIV \]

\[\frac{dDIV}{dh_i(T)} = \sum_j w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T)} \]

\[\frac{dDIV}{dW_{ij}^{(1)}} = \frac{dDIV}{dZ_j^{(1)}(T)} \frac{dZ_j^{(1)}(T)}{dW_{ij}^{(1)}} = \frac{dDIV}{dZ_j^{(1)}(T)} h_i(T) \]
Back Propagation Through Time

\[\nabla_{Z(0)}(T) \text{DIV} = \nabla_{h(T)} \text{DIV} \nabla_{Z(0)}(T) h(T) \]

\[\frac{d \text{DIV}}{dZ_i^{(1)}(T)} = \frac{d \text{DIV}}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)} \]

\[\frac{d \text{DIV}}{dh_i(T)} = \sum_j w_{ij}^{(1)} \frac{d \text{DIV}}{dZ_j^{(1)}(T)} \]

\[\frac{d \text{DIV}}{dw_{ij}^{(1)}} = \frac{d \text{DIV}}{dZ_j^{(1)}(T)} h_i(T) \]
Back Propagation Through Time

\[\nabla_{W^{(0)}} DIV = X(T) \nabla_{Z^{(0)}(T)} DIV \]

\[\frac{dDIV}{dw_{ij}^{(0)}} = \frac{dDIV}{dZ_{j}^{(0)}(T')} X_i(T) \]
Back Propagation Through Time

\[\frac{dDIV}{dw_{ij}^{(0)}} = \frac{dDIV}{dZ_j^{(0)}(T)} X_i(T) \]

\[\frac{dDIV}{dw_{ij}^{(11)}} = \frac{dDIV}{dZ_j^{(0)}(T)} h_i(T - 1) \]
Back Propagation Through Time

\[\nabla_{Z^{(1)}(T-1)} DIV = \nabla_{Y(T-1)} DIV \nabla_{Z^{(1)}(T)} Y(T-1) \]

\[\frac{dDIV}{dZ_{i}^{(1)}(T-1)} = \frac{dDIV}{dY_{i}(T-1)} \frac{dY_{i}(T-1)}{dZ_{i}^{(1)}(T-1)} \]

OR

\[\frac{dDIV}{dZ_{i}^{(1)}(T-1)} = \sum_{j} \frac{dDIV}{dY_{j}(T-1)} \frac{dY_{j}(T-1)}{dZ_{i}^{(1)}(T-1)} \]
Back Propagation Through Time

\[
\frac{dDIV}{dh_i(T-1)} = \sum_j w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T-1)} + \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(0)}(T)}
\]

\[
\nabla_{h(T-1)} DIV = \nabla_{Z^{(1)}(T-1)} DIV W^{(1)} + \nabla_{Z^{(0)}(T)} DIV W^{(11)}
\]
Back Propagation Through Time

\[
\begin{align*}
\frac{dDIV}{dh_i(T-1)} &= \sum_j w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T-1)} + \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(0)}(T)} \\
\frac{dDIV}{dw_{ij}(1)} &= \frac{dDIV}{dZ_j^{(1)}(T-1)} h_i(T-1)
\end{align*}
\]

Note the addition

\[\nabla_{W^{(1)}} DIV + = h(T-1)\nabla_{Z^{(1)}(T-1)} DIV\]
Back Propagation Through Time

\[
\begin{align*}
\frac{d \text{DIV}}{dZ_i^{(0)}(T - 1)} &= \frac{d \text{DIV}}{dh_i(T - 1)} \frac{dh_i(T - 1)}{dZ_i^{(0)}(T - 1)} \\
\nabla_{Z^{(0)}(T-1)} \text{DIV} &= \nabla_{h(T-1)} \text{DIV} \nabla_{Z^{(0)}(T-1)} h(T - 1)
\end{align*}
\]
Back Propagation Through Time

\[
\frac{dDIV}{dZ_i^{(0)}(T - 1)} = \frac{dDIV}{dh_i(T - 1)} \frac{dh_i(T - 1)}{dZ_i^{(0)}(T - 1)}
\]

\[
\frac{dDIV}{dw_{ij}^{(0)}} + = \frac{dDIV}{dZ_j^{(0)}(T - 1)} X_i(T - 1)
\]

Note the addition

\[
\nabla_{W^{(0)}} DIV + = X(T - 1) \nabla_{Z^{(0)}}(T-1) DIV
\]
Back Propagation Through Time

\[Y^{(0)} \rightarrow X^{(0)} \rightarrow X^{(1)} \rightarrow X^{(2)} \rightarrow X^{(T-2)} \rightarrow X^{(T-1)} \rightarrow X^{(T)} \]

\[Y^{(0)} \rightarrow Y^{(1)} \rightarrow Y^{(2)} \rightarrow Y^{(T-2)} \rightarrow Y^{(T-1)} \rightarrow Y^{(T)} \]

\[dDIV_{w_{ij}^{(0)}} + = \frac{dDIV}{dZ_j^{(0)}(T-1)} X_i(T-1) \]

\[dDIV_{w_{ij}^{(11)}} + = \frac{dDIV}{dZ_j^{(0)}(T-1)} h_i(T-2) \]

Note the addition

\[\nabla W^{(11)} DIV + = h(T-2) \nabla Z^{(0)}(T-1) DIV \]
Back Propagation Through Time

\[
\begin{align*}
\n\n\end{align*}
\]

\[
\begin{align*}
\frac{d\text{DIV}}{dh_{-1}} &= \sum_j w_{ij}^{(11)} \frac{d\text{DIV}}{dZ_j^{(1)}(0)} \\
\n\n\end{align*}
\]

\[
\n\n\]

\[
\begin{align*}
\n\n\end{align*}
\]

\[
\begin{align*}
\n\n\end{align*}
\]

\[
\begin{align*}
\n\n\end{align*}
\]
Back Propagation Through Time

\[
\frac{d\text{DIV}}{dh_i^{(k)}(t)} = \sum_j w_{i,j}^{(k)} \frac{d\text{DIV}}{dZ_j^{(k+1)}(t)} + \sum_j w_{i,j}^{(k,k)} \frac{d\text{DIV}}{dZ_j^{(k)}(t + 1)}
\]

Not showing derivatives at output neurons

\[
\frac{d\text{DIV}}{dZ_i^{(k)}(t)} = \frac{d\text{DIV}}{dh_i^{(k)}(t)} f_k' \left(Z_i^{(k)}(t) \right)
\]
Back Propagation Through Time

\[
\begin{align*}
\frac{dDIV}{dh_{-1}} &= \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(1)}(0)} \\
\frac{dDIV}{dw_{ij}^{(0)}} &= \sum_t \frac{dDIV}{dZ_j^{(0)}(t)} X_i(t) \\
\frac{dDIV}{dw_{ij}^{(11)}} &= \sum_t \frac{dDIV}{dZ_j^{(0)}(t)} h_i(t - 1)
\end{align*}
\]
• Can be generalized to any architecture
Extensions to the RNN: *Bidirectional RNN*

- RNN with both forward and backward recursion
 - Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced from the future

Alex Graves, “Supervised Sequence Labelling with Recurrent Neural Networks”
Bidirectional RNN

- A forward net processes the data from $t=0$ to $t=T$
- A backward net processes it backward from $t=T$ down to $t=0$
Bidirectional RNN: Processing an input string

- The forward net processes the data from $t=0$ to $t=T$
 - Only computing the hidden states, initially
Bidirectional RNN: Processing an input string

- The backward nets process the input data in *reverse time*, end to beginning
 - Initially only the hidden state values are computed
 - Clearly, this is not an online process and requires the *entire* input data
 - Note: *This is not the backward pass of backprop.*
Bidirectional RNN: Processing an input string

- The computed states of both networks are used to compute the final output at each time.
Backpropagation in BRNNs

- Forward pass: Compute both forward and backward networks and final output
• Backward pass: Define a divergence from the desired output
Backpropagation in BRNNs

- Backward pass: Define a divergence from the desired output
- Separately perform back propagation on both nets
 - From $t=T$ down to $t=0$ for the forward net
Backpropagation in BRNNs

- Backward pass: Define a divergence from the desired output
- Separately perform backpropagation on both nets
 - From $t=T$ down to $t=0$ for the forward net
 - From $t=0$ up to $t=T$ for the backward net
RNNs..

• Excellent models for time-series analysis tasks
 – Time-series prediction
 – Time-series classification
 – Sequence prediction..
So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS) [http://www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripod of aid exile.]]
So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripad of aid exile.]]
RNNs..

• Excellent models for time-series analysis tasks
 – Time-series prediction
 – Time-series classification
 – Sequence prediction..
 – They can even simplify some problems that are difficult for MLPs
 • Next class..