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Recap: Recurrent networks can be
iIncredibly effective

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

s
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (1 = @; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
¥
rw->name = "Getjbbregs";

bprm_self _clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
return segtable; 2
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Story so far
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A lterated structures are good for analyzing time series data
with shorttime dependence on the past
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A Recurrent structuresire good for analyzing time series
data withlong-term dependence on the past
I These are@ecurrentneural networks




Recurrent structures can do what
static structures cannot
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A The addition problem: Add two-bit numbers to produce a N+dit number
I Inputis binary
I Will require large number of training instances

A Output must be specified for every pair of inputs
A Weights that generalize will make errors

T Network trained for Noit numbers will not work for N+1 brtumbers

A An RNN learns to do this very quickly
T With very little training data!



Story so far

Ydesireo(t)

Time

A Recurrent structures can be trained by minimiz
the divergence between theequenceof outputs
and thesequenceof desired outputs

I Through gradient descent and backpropagation
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StOry SO far Primary topic

for today

Ydesireo(t) /

Time

A Recurrent structures can be trained by minimiz
the divergence between theequenceof outputs
and thesequenceof desired outputs

I Through gradient descent and backpropagation
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Story so far: stability

A Recurrent networks can be unstable

I And not very good at remembering at other times

sigmoid



Vanishing gradient examples..

ELU activation, Batch gradients

Input layer

Output layer

A Learning is difficult: gradients tend to vanish..



The longterm dependency problem
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Janehad a quick lunch in the bistro. Thehe..

A Longterm dependencies are hard to learn in a
network where memory behavior is an
untriggeredfunction of thenetwork

I Need it to be a triggered responseitgput

10



Long ShoH{Term Memory
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A The LSTM addresses the probleningfut-
dependenimemory behavior



LSTMbased architecture
Y(t)
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A LSTM based architectures are identical to
RNNbased architectures
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Bidirectional LSTM

Y(0) Y(1) Y(2) Y(F2) Y(F1) Y(T)
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A Bidirectional version..

13



Key I SS u e Primary topic

for today

Ydesireo(t) /

Time

A How do we define the divergence
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How do wetrain the network

Y(0) Y(1) Y(2) Y(F2) Y(F1) Y(T)
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X(0) X(1) X(2) X(F2)  X(F1)  X(T)

t

A Back propagation through time (BPTT)

A Given a collection afequencénputs
i N hA , where
in OB
i A OpB RO .



Training: Forward pass

Y(0) Y(1) Y(2) Y(F2) Y(F1) Y(T)
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A For each training input:
A Forward pass: pass the entire data sequence through the network
generate outputs
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Training: Computing gradients

Y(0) Y(1) Y(2) Y(F2) Y(F1) Y(T)

EEETEEE.

—> o000 —>

A A A A A A

X(0) X(1) X(2) X(F2)  X(F1) X(T)

t

<

A For each training input:
A Backward pass: Compute gradients via backpropagation
I Back Propagation Through Time

17



Back Propagation Throughime

00w
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A The divergence computed is between thequence of outputs
by the network and the&lesired sequence of outputs

A This isnot just the sum of the divergences at individual times

A Unless we explicitly define it that way iy



Back Propagation Through Time
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First step obackprop Computet 'O "Ofor allt
The rest obackpropcontinues from there
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Back Propagation Through Time
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First step obackprop Computet 'O "Ofor allt
O0w O0w wo
And so on!
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Back Propagation Through Time

O0w
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& T & P & c OY ¢ OY p O

First step obackprop Computet 'O "Ofor allt
/

A The key component is the computation of this glqrivative!!
ACKAA& RSLISYRa 2y UKS RSTAYAUA
A Which depends on the network structure itself 21



Variants on recurrent nets

one to one one to many many to one

Images from
Karpathy

A 1: Conventional MLP

A 2: Sequence@eneration e.g. image to caption

A 3: Sequence baseaatediction or classificatiore.g. Speech recognition,
text classification 22



Variants

many to many many to many

Images from
Karpathy

A 1. Delayedsequence to sequence
A 2: Sequence to sequence, e.g. stock problem, lptssliction
A EtcX 23



Variants on recurrent nets

one to many many to one

one to one

Images from
Karpathy

A 1: ConVvestidhal MLP

A 2: Sequencgeneration e.g. image to caption

A 3: Sequence basautediction or classificatiore.g. Speech recognition,
text classification 24



Reqgular MLP

L LB L B A

X(t)

t=0

Time

A No recurrence
I Exactly as many outputs as inputs

I Every input produces a unigue output
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Learning in a Regular MLP
Yesired )

LA 2NN 2NN 2 S S

Y (1)

X(t)

t=0

Time
A No recurrence

I Exactly as many outputs as inputs

A One to one correspondence between desired output and actual
output

i The output at timedis not a function of the output ailee 0.
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Reqgular MLP

Ytarget(t)

* * * i v \ v
Y (1)

A Gradientbackpropagatedt each time
o Odd (8 YR p8 UY)
A Common assumption:
O "ddd (P8 "y p8 “Y) 0 O"qd (O o)
(ON¢{i\ (P8 Yo p8Y) 0 O "ddd (O o)

I 0 istypically setto 1.0
I This is furthebackpropagatedo update weightsetc
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Regular MLP
Ytarget(t)
{ Vv

M

Y (1)

A Gradientbackpropagatedit each time
O (P8 "Yhd p8 "Y)
A Common assumption:
O ddd (P8 "Yhd p8 "Y) (eX¢{i\ (O o)
O dd (P8 "Yhd p8 "Y) O dd (O o)

I This is furthebackpropagatedo update weightsetc
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Typical Divergence for classificatigd@®  (Ohd o) ®Q&EW  h
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Variants on recurrent nets

one to man many to one

one to one

Images from
Karpathy

A 1: Conventional MLP

A 2: Sequencgeneration e.g. image to caption

A 3: Sequence basautediction or classificatiore.g. Speech recognition,
text classification 29



Sequence generation

tEEEEEE.

» » » » »
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X(t)

t=0

Time
A Single input, sequence of outputs
I Outputs are recurrently dependent
A Units may be simple RNNs or LSTM/GRUs

I A single input produces a sequence of outputs of arbitrary length
A Until terminated by some criterion, e.g. max length

A Typical example: Predicting the state trajectory of a system
(e.g. a robot) in response to an input

30



Seqguence generation: Learning, Case
Ytargt(t)
2 2R 2 AN S S

Y(t)

v
v
v
\ 4
v

X

t=0 Time
A Learning from trainingéoh p&EY pairs
A Gradientbackpropagatedt each time
odd  (p8 Y p8 "Y)
A Common assumptiarOneto-one correspondence between desiradd actual
outputs
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Variants

many to many many to man

Iages from

A 1. Delayedsequence to sequence
A 2: Sequence to sequence, e.g. stock problem, lptssliction
A EtcX 32



Recurrent Net
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A Simple recurrent computation of outputs

I Sequence of inputs produces a sequence of outputs
A Exactly as many outputs as inputs

I Output computation utilizes recurrence (RNN or LSTM) in hidden layel
A Also generalizes to other forms of recurrence
A Example:
i t NBRAOUAY3I G2Y2NNRgsQa aiz201] a
it NBRAOGAY3I GKS YySEG 62NRX 33




Training Recurrent Net
Ytarget(t)

LA 2NN 2N 2 S S

Y ()
n, t 'FL
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X(t)
t=0
Time
A Learning from traininght PpEBY pairs

A Gradientbackpropagatedt each time
odd  (p8 Y p8Y)

A General setting y



Training Recurrent Net
Ytarget(t) * *
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Time
A Usual assumptiarOneto-one correspondence between
desired and actual outputs

odd  (p8 Yy p8Y) odd  (9hd o)

odd  (p8 Yhdp8Y) odd  (9hdo)



Simple recurrence example: Text

Modelling
0 0 0 0 0 0 0
. ®H B B N NN #
1 f f f f { f
. > > > > >
0 0 0 0 0 0 0

A Learn a model that can predict the next
character given a sequence of characters

I Or, at a higher level, words
A After observing input® 8 0 it predicts
¥
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Simple recurrence example: Text
Modelling

target chars: “e” g @ “5"

. . 1.0 0.5 0.1 0.2
Figure from AndreiKarpathy ——— 03 05 15
4.1 12 11 2.2
Input: Sequence of characters (presented T T T Tw_hy
as onehot vectors). | 0 i . . B
hidden layer | -0.1 0.3 -0.5 — 0.9
A 4 . . L oA o |Q9 | |01 -0.3 | 0.7 |
¢ NBSU 2dziLdzid FIEF BN @da SNAY 30 K-S
R R A
1 0 0 0
input layer 8 8 (1) (1)
0 0 0 0
input chars: “h” e 5 “I

A Input presented as onbot vectors
i | OU dznfbéd@ingst 2 FhotXettbrs

A Output: probability distribution over characters
I Must ideally peak at the target character



Training
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A Input: symbols as onkot vectors

A 5AYSyarzylftAade

2T

iKS @Sou

A Output: Probability distribution over symbols

(NP

A is thei-th symbol in the vocabulary

A Divergence

(eX¢{i)

(P8 "Yhd p8Y)

O Q{d

0 o 80

O 0)

A 4

The probability assigned
to the correct next word

‘I 'I' 1) g‘IV,
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Brief Seqgue..

A Language Modeling using neural networks



Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

by
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = @; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
¥
rw->nhame = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
return segtable;

40



Language modelling using RNNSs

Four score and seven years ?7?

ABRAHAMLINCOL??

A Problem: Given a sequence of words (or
characters) predict the next one

41



Language modelling: Representing

words
A Represent words as orot vectors

I Prespecify a vocabulary of N words in fixed (e.g. lexical)
order
A9 oo o ! 1 w5+x! w5 !l whb ! .1/
I Represent each word by andiimensional vector with NL
zeros and a single 1 (in the position of the word in the
ordered list of words)

A Characters can be similarly represented

I English will require about 100 characters, to include both
cases, special characters such as commas, hyphens,
apostrophes, etc., and the space character



Predicting words

[TT]
€ Tt
Four score and seven years ??? W g
LT
o W7 pho MR ) o
(D p I;v‘ !
é N
LT T
\/ é n
Nx1 one-hot vectors )
Tt
o |
Tt
Tt

A Given onehot representations ofo Xw , predictw
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Predicting words

Four score and seven years ??? @

w @7 pho B )

N ’

Nx1 one-hot vectors

443 »© F
8.

M), Zm»© 33 d° ond o

3 o3 O

8.

A Given onehot representations ofo Xw , predictw

A Dimensionality problemAll inputs®o X&  are both
very highdimensional and very sparse

44



The onehot representation

(1,0,0)

(0,1,0)

(0,0,1)

A The one hot representation uses only N corners of thedners of a unit
cube

I Actual volume of space used =0
A ph R has nomeaning exceptfor |1

i Density of points (—)
A This is a tremendously inefficient use of dimensions



Why onehot representation

(1,0,0)

(0,5

v

(0,0,1)

A The onehot representation makes no assumptions about the relative
Importance of words

I All word vectors are the same length

A It makes no assumptions about the relationships between words
I The distance between every pair of words is the same

46



Solution to dimensionality problem

(1,0,0)

v

(0,0,1)

A Project the points onto a lowedimensional subspace
I The volume used is still O, but density can go up by many orders of magnitude

A Density of points® (—)

47



Solution to dimensionality problem

(1,0,0)

(0,1.9)

v

(0,0,1)

A Project the points onto a lowedimensional subspace
I The volume used is still 0, but density can go up by many orders of magnitude
A Density of points! (—)

i If properly learned, the distances between projected points will capture semantic relations
between the words

A This will also require linear transformation (stretching/shrinking/rotation) of the subspace
48



TheProjectedword vectors

[TT]
Four score and seven years ??? 0 ld— 0
P
© @0 ok B o ) t
v Tt ~
W |p|— U P
E Q — |&| W
LT Tt
~ TC
(1,0,0) e
p
Tt ~
@ |94~ 0
Tt
TC

v

A Projectthe N-dimensional onehot word vectors into a lowedimensional space
T Replace every onbot vectorw by0
i Oisand 0 matrix
i 0 wis now and -dimensional vector

I Learn Rusing an appropriate objective

A Distances in the projected space will reflect relationships imposed by the objective 40



W

To o I

[ TT|
Tt
W |s&
n 5 [t ) g g N ] P
L whhw Bhw ) th
[ TT]
Tt
W |p 0
(10,0) M Q ’ gm
TC
e
p
Tt
W é
Tt
Tt

Pis a simple linear transform
A single transform can be implemented as a layer of M neurons with linear activation

The transforms that apply to the individual inputs are alhBuron linearactivation subnets with

tied weights
50



Predicting words: The TDNN model

TN
A A

I
4

0 0 0 0 0 0 0 0 0
A A A A A A A A A
W W W W W W W W W

A Predict each word based on the past N words
i &' Yy SdzNI f

LINR 0 | 0 ABergigetial. 2003 I y 3dz 3S Y2 RSt £€3
I Hidden layer ha3anh) activation, output isoftmax

A One of the outcomes of learning this model is that we also learrdionensional
representations) wof words
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Alternative models to learn
projections

o] @] o]

*

| Mean pooling

Color indicates
shared parameters

A Soft bag of words: Predict word based on words in
Immediate context

I Without considering specific position

A Skipgrams: Predict adjacent words based on current
word

A More on these in a futureecitation
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EmbeddingsExamples

Country and Capital Vectors Pr

ojected by PCA

2 T L] < I T T
China¢
Beijing
151 Russiac .
Japan«
1k *Moscow |
Turkeys Ankara Tokyo
05 | .
Poland«
0 Germany« -
Francé' "Warsaw
x Berlin
05 | Italy< Paris -
.- »Athens
Greecer "
-1} Spainx Fome -
b . Madrid i
-1.5 | Portugal Pt
.2 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about

what a capital city means.

A FromMikolovet ald ¥

HAOAMO 2

G5Aa0GNROdzi SR

and Phrases andtheir2 YLI2 AA A2y I f AG&é



Generating Language: The model

RENRRERE
i ;T__>T J__»T i ;T T__»T

—>

~ ~
£

0 0 0 0 0| |0 0 0 0
A A A A A A A A A

A The hidden units are (one or more layers of) LSTM units
A Trained via backpropagation from a lot of text
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Generating Language: Synthesis

A On trained model : Provide the first few words
T  Onehot vectors

A After the last input word, the network generates a probability distribution
over words

I Outputs an Nvalued probability distribution rather than a ofiet vector
55



Generating Language: Synthesis

W
E NN
t 1

—

A 4

0 0 0

v

A On trained model : Provide the first few words
i Onehot vectors
A Atfter the last input word, the network generates a probability distribution over words
i Outputs an Nvalued probability distribution rather than a ot vector
A Draw a word from the distribution
I And set it as the next word in the series
56



Generating Language: Synthesis

W W
EENB
t t t t
0 0 0 0

A Feed the drawn word as the next word in the series
I And draw the next word from the output probability distribution
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Generating Language: Synthesis

C-
C-
C-
C-
> C
» T
CA
Ca
» C

A Feed the drawn word as the next word in the series
I And draw the next word from the output probability distribution

A Continue this process until we terminate generation

I In some cases, e.g. generating programs, there may be a natural termination
58



Which open source project?

static int indicate_policy(void)

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();
else
ret = 1;
goto bail;
by
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = @; 1 < blocks; i++) {
buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}
¥

rw->nhame = "Getjbbregs";

seq

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Trained oninux source code

Actually uses aharacterlevel
model (predicts character sequence:

59



Composing music with RNN

%

310N

http:// www.hexahedria.co2015/08/03/composingmusicwith-recurrentneuratnetworks/



Returning to our problem

A Divergences are harder to define in other
scenarios..



Variants on recurrent nets

one to one one to many

ages from
arpathy

A 1: Conventional MLP

A 2: Sequencgeneration e.g. image to caption

A 3: Sequence basautediction or classificatiore.g. Speech recognition,
text classification 62



Example..

VAH]

T
TR T

A Speech recognition
A Input : Sequence of feature vectors (e.g. Mel spectra)
A Output: Phoneme ID at the end of the sequence

63



Issues: Forward pass

VAH/

T
TR T

A Exact input sequence provided

I Output generated when the last vector is processed
A Output is a probability distribution over phonemes

A But what about aintermediate stages?



Forward pass

VAH/
A A T
tr 1
0 ) 0

A Exact input sequence provided

I Output generated when the last vector is processed
A Output is a probability distribution over phonemes

A Outputs are actually produced fewveryinput
I We onlyreadit at the end of the sequence

65



Training

IAH/

-
\ Y(2)
t
1T v 1
A The Divergence is only defined at the final input

TO0@ hd) QOQEM Y Q¢ & QaQ
A This divergence must propagate through the net
to update all parameters
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Training

Shortcoming: PretendmpH/t hereds no useful
information in these

. .

)

A The Divergence is only defined at the final input
TO0@ hd) QOQEM Y Q¢ & QaQ

A This divergence must propagate through the net
to update all parameters
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Training

Fix: Use these iaH/| Lianr| lany
outputs too. |

v v
These too must - - -

ideally point to the f J f
correct phoneme Y(2)
A A T
1 1 t

A Define the divergence everywhere
O0@  h) 0 OQEMON Q¢ ¢ Qa Q
I Typical weighting scheme: all are equally important

A This reduces it to a previously seen problem for training
68



A more complex problem

/B JAH) Il
t t t
T B ) )

A Obijective: Given a sequence of inputs, asynchronously
output a sequence of symbols

I This Is just a simple concatenation of many copies of the simple
G2dziLddzi & OKS SYyR 2F UKS Ayl

A But this simple extension complicates matters..

69



Thesequencdo-sequenceroblem

B/ VAH] [T/
t . r 1+ t+ 1 1 1
- - —» —» - — —» - ==
TN it | (R T T

A How do we knowvhento output symbols

I In fact, the network produces outputs avery
time
I Whichof these are theeal outputs

70



The actual output of the network

JAH/ | ® W W W W W W W W
/B/ W W W W W W W W W
/D/ W W W W W W W W W
[EH/ | @ W W W W W W W W
1Y/ W W W W W W W W W
IE/ W W W W W W W W W
G/ W W W W W W W W W
| | I I I I I I I
| | — —] —] |—] [—] |—] |—

A At each time the network outputs a probability
for eachoutput symbol
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The actual output of the network

JAH/ | ® ) W W [ ) ) W )
Bl | ® ® ® ® ® ® ® ® ®
D/ | ® ® ® ® ® ® R ®
IEH/ | & ® o’o o’o o’o o’o ® ® ®
[ o | [ o &
P ® ® ® ®
/G - - o | [o] [[@

1 1 !

. — ) |—

A Option 1: Simply select the most probable symbo
at each time

I Merged 72



IAH/
B/
/DI
IEH/
1Y/
IF/
1G/

The actual output of the network

W W W W W W W W D/
W W W W W W Y/ W
) W =} ) ) W
IG/ W W W W W W W
| | I I I I I I I
— — —

A Option 1: Simp

time

y se

ect the most probable symbol at each

I Mergeadjacent repeated symbols, and place the actual emissiot

of the symbol in the final instant
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IAH/
B/
/DI
IE

/l
IF/
1G/

The actual output of the network

@ @ @ @ R @ @ @ /DY
ot d 0 hetwee extended oJo W W W
epetitio DO @ Y/ @
W W W = W B/ W (& W
0 IGI @ @ R @ @ @ @
t t t t 1 1 1 1 t

A Option 1: Simply select the most probable symbol at each

time

I Mergeadjacent repeated symbols, and place the actual emissiot
of the symbol in the final instant
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IAH/
/B/
/DA
IE
/l
IFI
IGI

The actual output of the network

W W W W W W W W W
@ @ @ @ @ @ @ @
; g sequence B
C Ol 0 0 JE CC C elaed 0lo (00 w w
epetitions of the symbo @ Y/ @
W W W = W B/ W (& W
0 IGI @ @ R @ @ @ @
t t t t 1 1 1 1 t
A Option 1: Simply select the most probable symbol at each

time
I Mergeadjacent repeated symbols, and place the actual emissiot
of the symbol in the final instant

75



The actual output of the network

JAH/ | ® ) W W [ ) ) [ )
/B & & & & & &
o | o 0 @ @ R 0 @
[EHI | @ & @ 0 @ 0 @ @ R
w o] o] o] [ 0 [ B2 [o] [«
mo | @ @ @ @ & % @ @
Gl | © ? @ @ R 0 @ @ @
t t ! ! ! ! ! ! !
S e PN [ Y e R (o P e Y e Y o

A Option 2: Impose external constraints on what sequences are
allowed
I E.g.only allow sequences corresponding to dictionary words
I E.g. Sulsymbolunits (like in HWZX, what were they?)
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Thesequencdo-sequenceroblem

B/ VAH] [T/
t . r 1+ t+ 1 1 1
- - —» —» - — —» - ==
TN it | (R T T

A How do we knowvhesto output symbols
I In fact, the r ddv?ﬁs oduces outputs averytime
I Whichof these are theeal outputs

A How do wetrain these models?
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Training

/Bl UAH T
t t t

- - —» —» - — —» - ==
TN it | (R T T

A Given output symbolat the right locations
I The phoneme /B/ ends at, X/AH/ at X, /T/ at X



ITI

o

& Traininﬂ

t t t
TET D | T T 1 i T

A Either just define Divergence as:
00w GOQEWB) OQLBD P OQEWNY

A Or..



= B S SEE o

L | 1 1 1 1

- - —» —» - — —» - ——
e T T T ]
D) D) D) ) ) ) ) D) D) )

A Either just define Divergence as:
O0WOQLWD) GQLWD QP GOQE@WNY

A Orrepeat the symbols over their duration

00w OQLEN wd Wi a I Tah wa e a
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Problem: No timing information providec
/Bl |AH/ [T/

[ N N N N N N

W W W W W A W W W W

> e > | P > >

A Only the sequence of output symbols is
provided for the training data

I But no indication of which one occurs where

A How do we compute the divergence?
i And how do we compute its gradient w.Icb.



Not given alignment

/B/ IAHIIAHI IAHI IAHIIARI IAHI IAH] IAHT [T/

o Tov Lo Jov o Lo Jov Tov T ov Jow
A A a a a a a A a a

> e > | P > >

A There are many possible alignments

A Corresponding each there is a divergence
O "B o '@y

I Taheh '@ ho @Y )
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Not given alignment

/B/ [B/ IAHI IAHI JAHI/AHI IAHI IAH] IAHI [T/

o Tov Lo Jov Jov Lo Jov Tov T ov Jo
A A a a a a a A a a

> e > | P > >

A There are many possible alignments

A Corresponding each there is a divergence
O"aohs 8 o '@y

I Tahehvm n @y )
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Not given alignment

/B/ [B/ [B/ IAHI IAHI/AHI IAHI IAH] IAHI [T/

o T o [o Jov Tov Lo fov Tov T ov Jon

A There are many possible alignments

A Corresponding each there is a divergence
oo hd 8 o "(5’\5

I Tadhoh o @Y )
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Not given alignment

/B/ IAHIIAHI IAHI IAHIIARI IART IAH] [T1 [T/

o Tov [or Jov o Lo Jov Tov T ov Jo
A A a a a a a A a a

> e > | P > >

A There are many possible alignments

A Corresponding each there is a divergence
O 6 " 'Y

I Tadhoéh @ FRY )
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In the absence of alignment

A Any of these alignments is possible
A Simply consideall of these alignments

A The total Divergence is the weighted sum of
the Divergences for the individual alignments

A0"06)

0 (8F @ Fd "EYOABD "B b "EY
L(0ho 8 b @BYO@oho 8 o @Y
DO @ HKHYO o '@ MY 8



In the absence of alignment

A Any of these alignments is possible
A Simply consideall of these alignments

A The total Divergence is the weighted sum of the
Divergences for the individual alignments

O 0w L 81 )OQDL 81
3

i Wherei 8 i Iisthe sequence of target symbols
corresponding to an alignment of the target (e.g.
phoneme) sequence 8 U

ANote: 0 0



In the absence of alignment

A Any of these alignments is possible
A Simply consideall of these alignments

A The total Divergence is the weighted sum of
the Divergences for the individual alignments

O 0w t')/i 81 )OQD 81
8

Give less weight to less likely alignments




In the absence of alignment

A Any of these alignments is possible
A Simply consideall of these alignments

A The total Divergence is the weighted sum of
the Divergences for the individual alignments

00w 0( 8i LD 80 )OO QD 8i

]

Weigh by the probability of the alignment

This is the expected divergence across all alignments




In the absence of alignment

A Any of these alignments is possible
A Simply consideall of these alignments

A The total Divergence is the weighted sum of the
Divergences for the individual alignments

0°06) @si 9D 80 ) 1 Tagi )

8/

Must compute this




