
Deep Learning

Recurrent Networks

2/28/2018

1

Recap: Recurrent networks can be
incredibly effective

2

Story so far

ÅIterated structures are good for analyzing time series
data with short-time dependence on the past
ï¢ƘŜǎŜ ŀǊŜ άTime delayέ ƴŜǳǊŀƭ ƴŜǘǎΣ !Y! convnets

ÅRecurrent structures are good for analyzing time series
data with long-term dependence on the past
ïThese are recurrentneural networks

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

3

Story so far

ÅIterated structures are good for analyzing time series data
with short-time dependence on the past

ï¢ƘŜǎŜ ŀǊŜ ά¢ƛƳŜ ŘŜƭŀȅέ ƴŜǳǊŀƭ ƴŜǘǎΣ !Y! convnets

ÅRecurrent structures are good for analyzing time series
data with long-term dependence on the past

ïThese are recurrentneural networks

Time

X(t)

Y(t)

t=0

h-1

4

Recurrent structures can do what
static structures cannot

Å The addition problem: Add two N-bit numbers to produce a N+1-bit number
ï Input is binary

ï Will require large number of training instances

Å Output must be specified for every pair of inputs

Å Weights that generalize will make errors

ï Network trained for N-bit numbers will not work for N+1 bit numbers

Å An RNN learns to do this very quickly
ï With very little training data!

1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0

MLP

1 0 1 0 1 0 1 1 1 1 0

1 0

1

RNN unitPrevious
carry

Carry
out

5

Story so far

ÅRecurrent structures can be trained by minimizing
the divergence between the sequenceof outputs
and the sequenceof desired outputs

ïThrough gradient descent and backpropagation

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

6

Story so far

ÅRecurrent structures can be trained by minimizing
the divergence between the sequenceof outputs
and the sequenceof desired outputs

ïThrough gradient descent and backpropagation

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

Primary topic
for today

7

Story so far: stability

ÅRecurrent networks can be unstable

ïAnd not very good at remembering at other times

sigmoid tanh relu 8

Vanishing gradient examples..

ÅLearning is difficult: gradients tend to vanish..

ELU activation, Batch gradients

Output layer

Input layer

9

The long-term dependency problem

ÅLong-term dependencies are hard to learn in a

network where memory behavior is an

untriggeredfunction of the network

ïNeed it to be a triggered response to input

t!¢¢9wbм ώΧΧΧΧΧΧΧΧΧΧΦΦϐ t!¢¢9wb н

1

Jane had a quick lunch in the bistro. Then she..

10

Long Short-Term Memory

ÅThe LSTM addresses the problem of input-

dependent memory behavior

11

LSTM-based architecture

ÅLSTM based architectures are identical to

RNN-based architectures

Time
X(t)

Y(t)

12

Bidirectional LSTM

ÅBidirectional version..

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

13

Key Issue

ÅHow do we define the divergence

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

Primary topic
for today

14

How do we train the network

ÅBack propagation through time (BPTT)

ÅGiven a collection of sequence inputs

ï ἦȟἎ , where

ïἦ ὢȟȟȣȟὢȟ

ïἎ ὈȟȟȣȟὈȟ

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

15

Training: Forward pass

Å For each training input:

Å Forward pass: pass the entire data sequence through the network,
generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

16

Training: Computing gradients

Å For each training input:

Å Backward pass: Compute gradients via backpropagation

ïBack Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

17

Back Propagation Through Time

h-1

ὢπ ὢρ ὢς ὢὝ ς ὢὝ ρ ὢὝ

ὣπ ὣρ ὣς ὣὝ ς ὣὝ ρ ὣὝ

ὈρȢȢὝ

ὈὍὠ

ÅThe divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

ÅThis is not just the sum of the divergences at individual times
Á Unless we explicitly define it that way

18

Back Propagation Through Time

h-1

ὢπ ὢρ ὢς ὢὝ ς ὢὝ ρ ὢὝ

ὣπ ὣρ ὣς ὣὝ ς ὣὝ ρ ὣὝ

ὈρȢȢὝ

ὈὍὠ

First step of backprop: Compute ɳ ὈὍὠfor all t

The rest of backpropcontinues from there

19

Back Propagation Through Time

h-1

ὢπ ὢρ ὢς ὢὝ ς ὢὝ ρ ὢὝ

ὣπ ὣρ ὣς ὣὝ ς ὣὝ ρ ὣὝ

ὈρȢȢὝ

ὈὍὠ

20

​ ὈὍὠ​ ὈὍὠ​ ὣὸ

First step of backprop: Compute ɳ ὈὍὠfor all t

And so on!

Back Propagation Through Time

h-1

ὢπ ὢρ ὢς ὢὝ ς ὢὝ ρ ὢὝ

ὣπ ὣρ ὣς ὣὝ ς ὣὝ ρ ὣὝ

ὈρȢȢὝ

ὈὍὠ

21

First step of backprop: Compute ɳ ὈὍὠfor all t

ÅThe key component is the computation of this derivative!!
Å¢Ƙƛǎ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ά5L±έ
ÅWhich depends on the network structure itself

Variants on recurrent nets

Å 1: Conventional MLP
Å 2: Sequence generation, e.g. image to caption
Å 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

22

Variants

Å 1: Delayed sequence to sequence

Å 2: Sequence to sequence, e.g. stock problem, label prediction

Å EtcΧ

Images from
Karpathy

23

Variants on recurrent nets

Å 1: Conventional MLP
Å 2: Sequence generation, e.g. image to caption
Å 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

24

Regular MLP

ÅNo recurrence

ïExactly as many outputs as inputs

ïEvery input produces a unique output

Time

X(t)

Y(t)

t=0

25

Learning in a Regular MLP

ÅNo recurrence

ïExactly as many outputs as inputs

ÅOne to one correspondence between desired output and actual
output

ïThe output at time ὸis not a function of the output at ὸᴂ ὸ.

Time

X(t)

Y(t)

t=0

DIVERGENCE

Ydesired(t)

26

Regular MLP

ÅGradient backpropagatedat each time

ᶯ ὈὭὺὣ ρȣὝȟὣρȣὝ

Å Common assumption:

ὈὭὺὣ ρȣὝȟὣρȣὝ ύὈὭὺὣ ὸȟὣὸ

​ ὈὭὺὣ ρȣὝȟὣρȣὝ ύ​ ὈὭὺὣ ὸȟὣὸ

ïύ is typically set to 1.0
ïThis is further backpropagatedto update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

27

Regular MLP

ÅGradient backpropagatedat each time

ᶯ ὈὭὺὣ ρȣὝȟὣρȣὝ

Å Common assumption:

ὈὭὺὣ ρȣὝȟὣρȣὝ ὈὭὺὣ ὸȟὣὸ

​ ὈὭὺὣ ρȣὝȟὣρȣὝ ​ ὈὭὺὣ ὸȟὣὸ

ïThis is further backpropagatedto update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

Typical Divergence for classification: ὈὭὺὣ ὸȟὣὸ ὢὩὲὸὣ ȟὣ
28

Variants on recurrent nets

Å 1: Conventional MLP
Å 2: Sequence generation, e.g. image to caption
Å 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

29

Sequence generation

ÅSingle input, sequence of outputs

ïOutputs are recurrently dependent

ÅUnits may be simple RNNs or LSTM/GRUs

ïA single input produces a sequence of outputs of arbitrary length

ÅUntil terminated by some criterion, e.g. max length

ÅTypical example: Predicting the state trajectory of a system
(e.g. a robot) in response to an input

Time

X(t)

Y(t)

t=0

30

Sequence generation: Learning, Case 1

Å Learning from training ὢȟὣ ρȢȢὝ pairs

Å Gradient backpropagatedat each time

​ ὈὭὺὣ ρȣὝȟὣρȣὝ

Å Common assumption: One-to-one correspondence between desired and actual
outputs

ὈὭὺὣ ρȣὝȟὣρȣὝ ὈὭὺὣ ὸȟὣὸ

​ ὈὭὺὣ ρȣὝȟὣρȣὝ ​ ὈὭὺὣ ὸȟὣὸ

Time

X

Y(t)

t=0

DIVERGENCE

Ytarget(t)

31

Variants

Å 1: Delayed sequence to sequence

Å 2: Sequence to sequence, e.g. stock problem, label prediction

Å EtcΧ

Images from
Karpathy

32

Recurrent Net

Å Simple recurrent computation of outputs

ïSequence of inputs produces a sequence of outputs

ÅExactly as many outputs as inputs

ïOutput computation utilizes recurrence (RNN or LSTM) in hidden layer

ÅAlso generalizes to other forms of recurrence

Å Example:

ïtǊŜŘƛŎǘƛƴƎ ǘƻƳƻǊǊƻǿΩǎ ǎǘƻŎƪǎ

ïtǊŜŘƛŎǘƛƴƎ ǘƘŜ ƴŜȄǘ ǿƻǊŘΧ

Time

X(t)

Y(t)

t=0

h-1

33

Training Recurrent Net

ÅLearning from training ὢȟὣ ρȢȢὝ pairs

ÅGradient backpropagatedat each time

​ ὈὭὺὣ ρȣὝȟὣρȣὝ

ÅGeneral setting

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

34

Training Recurrent Net

ÅUsual assumption: One-to-one correspondence between
desired and actual outputs

ὈὭὺὣ ρȣὝȟὣρȣὝ ὈὭὺὣ ὸȟὣὸ

​ ὈὭὺὣ ρȣὝȟὣρȣὝ ​ ὈὭὺὣ ὸȟὣὸ

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

35

Simple recurrence example: Text
Modelling

ÅLearn a model that can predict the next
character given a sequence of characters

ïOr, at a higher level, words

ÅAfter observing inputs ύ ȣύ it predicts
ύ

h-1

ύ ύ ύ ύ ύ ύ ύ

ύ ύ ύ ύ ύ ύ ύ

36

Simple recurrence example: Text
Modelling

ÅInput presented as one-hot vectors

ï!Ŏǘǳŀƭƭȅ άembeddingsέ ƻŦ ƻƴŜ-hot vectors

ÅOutput: probability distribution over characters

ïMust ideally peak at the target character

Figure from Andrej Karpathy.

Input: Sequence of characters (presented
as one-hot vectors).

¢ŀǊƎŜǘ ƻǳǘǇǳǘ ŀŦǘŜǊ ƻōǎŜǊǾƛƴƎ άƘ Ŝ ƭ lέ ƛǎ άƻέ

37

Training

Å Input: symbols as one-hot vectors
Å 5ƛƳŜƴǎƛƻƴŀƭƛǘȅ ƻŦ ǘƘŜ ǾŜŎǘƻǊ ƛǎ ǘƘŜ ǎƛȊŜ ƻŦ ǘƘŜ άǾƻŎŀōǳƭŀǊȅέ

Å Output: Probability distribution over symbols
ὣὸȟὭ ὖὠȿύ ȣύ

Å ὠis the i-th symbol in the vocabulary

Å Divergence

ὈὭὺὣ ρȣὝȟὣρȣὝ ὢὩὲὸὣ ὸȟὣὸ ÌÏÇὣὸȟύ

Time

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

ύ ύ ύ ύ ύ ύ ύ

ύ ύ ύ ύ ύ ύ ύ

The probability assigned
to the correct next word

38

Brief Segue..

ÅLanguage Modeling using neural networks

39

Which open source project?

40

Language modelling using RNNs

ÅProblem: Given a sequence of words (or
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??

41

Language modelling: Representing
words

ÅRepresent words as one-hot vectors
ïPre-specify a vocabulary of N words in fixed (e.g. lexical)

order
Å9ΦƎΦ ώ ! !!w5±!w5 !!whb !.!/Y !.!/¦{Χ ½½¸tϐ

ïRepresent each word by an N-dimensional vector with N-1
zeros and a single 1 (in the position of the word in the
ordered list of words)

ÅCharacters can be similarly represented
ïEnglish will require about 100 characters, to include both

cases, special characters such as commas, hyphens,
apostrophes, etc., and the space character

42

Predicting words

ÅGiven one-hot representations of ὡΧὡ , predict ὡ

ÅDimensionality problem:All inputs ὡΧὡ are both
very high-dimensional and very sparse

ὡ Ὢ7 ρͅȟὡȟȣȟὡ

Four score and seven years ???

Nx1 one-hot vectors

Ὢ

π
π
ể
ρ
π
π
π
ρ
ể
π

ρ
π
ể
π
π

ể

π
ρ
ể
π
π

ὡ

ὡ

ὡ

ὡ

43

Predicting words

ÅGiven one-hot representations of ὡΧὡ , predict ὡ

ÅDimensionality problem:All inputs ὡΧὡ are both
very high-dimensional and very sparse

ὡ Ὢ7 ρͅȟὡȟȣȟὡ

Four score and seven years ???

Nx1 one-hot vectors

Ὢ

π
π
ể
ρ
π
π
π
ρ
ể
π

ρ
π
ể
π
π

ể

π
ρ
ể
π
π

ὡ

ὡ

ὡ

ὡ

44

The one-hot representation

Å The one hot representation uses only N corners of the 2N corners of a unit
cube

ï Actual volume of space used = 0
Å ρȟ‐ȟ‏ has no meaning except for ‐ ‏ π

ï Density of points: ַײ

Å This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)

45

Why one-hot representation

Å The one-hot representation makes no assumptions about the relative
importance of words

ïAll word vectors are the same length

Å It makes no assumptions about the relationships between words

ïThe distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)

46

Solution to dimensionality problem

Å Project the points onto a lower-dimensional subspace

ï The volume used is still 0, but density can go up by many orders of magnitude

ÅDensity of points: ַײ

ï If properly learned, the distances between projected points will capture semantic
relations between the words

(1,0,0)

(0,1,0)

(0,0,1)

47

Solution to dimensionality problem

Å Project the points onto a lower-dimensional subspace
ï The volume used is still 0, but density can go up by many orders of magnitude

Å Density of points: ַײ

ï If properly learned, the distances between projected points will capture semantic relations
between the words

Å This will also require linear transformation (stretching/shrinking/rotation) of the subspace

(1,0,0)

(0,1,0)

(0,0,1)

48

The Projected word vectors

Å Project the N-dimensional one-hot word vectors into a lower-dimensional space
ï Replace every one-hot vector ὡ by ὖὡ

ï ὖis an ὓ ὔmatrix

ï ὖὡis now an ὓ-dimensional vector

ï Learn P using an appropriate objective

Å Distances in the projected space will reflect relationships imposed by the objective

ὡ Ὢὖὡȟὖὡȟȣȟὖὡ

Four score and seven years ???

Ὢ

π
π
ể
ρ
π
π
π
ρ
ể
π

ρ
π
ể
π
π

ể

π
ρ
ể
π
π

ὡ

ὡ

ὡ

ὡ

ὖ

ὖ

ὖ

(1,0,0)

(0,1,0)

(0,0,1)

49

άtǊƻƧŜŎǘƛƻƴέ

Å P is a simple linear transform

Å A single transform can be implemented as a layer of M neurons with linear activation

Å The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with
tied weights

ὡ Ὢὖὡȟὖὡȟȣȟὖὡ

(1,0,0)

(0,1,0)

(0,0,1)

ể ể

ể ể

Ὢ

π
ρ
ể
π
π

ὡể ể

ể

π
π
ể
ρ
π

π
π
ρ
ể
π

ρ
π
ể
π
π

ὡ

ὡ

ὡ

ὔ
ὓ

50

Predicting words: The TDNN model

Å Predict each word based on the past N words
ï ά! ƴŜǳǊŀƭ ǇǊƻōŀōƛƭƛǎǘƛŎ ƭŀƴƎǳŀƎŜ ƳƻŘŜƭέΣ Bengioet al. 2003

ï Hidden layer has Tanh() activation, output is softmax

Å One of the outcomes of learning this model is that we also learn low-dimensional
representations ὖὡof words

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὡ ὡ ὡ ὡ ὡ ὡ

51

Alternative models to learn
projections

ÅSoft bag of words: Predict word based on words in
immediate context

ïWithout considering specific position

ÅSkip-grams: Predict adjacent words based on current
word

ÅMore on these in a future recitation

ὖ

Mean pooling

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὡ

ὖ

ὡ

ὡ ὡ ὡ ὡ ὡὡ

Color indicates
shared parameters

52

Embeddings: Examples

Å From Mikolovet alΦΣ нлмоΣ ά5ƛǎǘǊƛōǳǘŜŘ wŜǇǊŜǎŜƴǘŀǘƛƻƴǎ ƻŦ ²ƻǊŘǎ
and Phrases and their /ƻƳǇƻǎƛǘƛƻƴŀƭƛǘȅέ

53

Generating Language: The model

ÅThe hidden units are (one or more layers of) LSTM units

ÅTrained via backpropagation from a lot of text

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὡ ὡ ὡ ὡ ὡ ὡὡ ὡ ὡ

54

Generating Language: Synthesis

Å On trained model : Provide the first few words

ï One-hot vectors

Å After the last input word, the network generates a probability distribution
over words

ï Outputs an N-valued probability distribution rather than a one-hot vector

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

55

Generating Language: Synthesis

Å On trained model : Provide the first few words

ï One-hot vectors

Å After the last input word, the network generates a probability distribution over words

ï Outputs an N-valued probability distribution rather than a one-hot vector

Å Draw a word from the distribution

ï And set it as the next word in the series

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὡ

56

Generating Language: Synthesis

Å Feed the drawn word as the next word in the series

ï And draw the next word from the output probability distribution

Å Continue this process until we terminate generation

ï In some cases, e.g. generating programs, there may be a natural termination

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ

ὡὡ

57

Generating Language: Synthesis

Å Feed the drawn word as the next word in the series

ï And draw the next word from the output probability distribution

Å Continue this process until we terminate generation

ï In some cases, e.g. generating programs, there may be a natural termination

ὖ

ὡ

ὖ

ὡ

ὖ

ὡ

ὖ ὖ ὖ ὖ ὖ ὖ

ὡ ὡ ὡ ὡ ὡ ὡὡ

58

Which open source project?

Trained on linuxsource code

Actually uses a character-level
model (predicts character sequences)

59

Composing music with RNN

http:// www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
60

Returning to our problem

ÅDivergences are harder to define in other
scenarios..

61

Variants on recurrent nets

Å 1: Conventional MLP
Å 2: Sequence generation, e.g. image to caption
Å 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

62

Example..

ÅSpeech recognition

ÅInput : Sequence of feature vectors (e.g. Mel spectra)

ÅOutput: Phoneme ID at the end of the sequence

ὢ ὢ ὢ

/AH/

63

Issues: Forward pass

ÅExact input sequence provided

ïOutput generated when the last vector is processed

ÅOutput is a probability distribution over phonemes

ÅBut what about at intermediate stages?

ὢ ὢ ὢ

/AH/

64

Forward pass

Å Exact input sequence provided

ïOutput generated when the last vector is processed

ÅOutput is a probability distribution over phonemes

ÅOutputs are actually produced for every input

ïWe only read it at the end of the sequence

ὢ ὢ ὢ

/AH/

65

Training

ÅThe Divergence is only defined at the final input

ïὈὍὠὣ ȟὣ ὢὩὲὸὣὝȟὖὬέὲὩάὩ

ÅThis divergence must propagate through the net
to update all parameters

ὢ ὢ ὢ

/AH/

Div

Y(2)

66

Training

ÅThe Divergence is only defined at the final input

ïὈὍὠὣ ȟὣ ὢὩὲὸὣὝȟὖὬέὲὩάὩ

ÅThis divergence must propagate through the net
to update all parameters

ὢ ὢ ὢ

/AH/

Div

Y(2)

Shortcoming: Pretends thereõs no useful
information in these

67

Training

ÅDefine the divergence everywhere

ὈὍὠὣ ȟὣ ύὢὩὲὸὣὸȟὖὬέὲὩάὩ

ïTypical weighting scheme: all are equally important

ÅThis reduces it to a previously seen problem for training

ὢ ὢ ὢ

/AH/

Div

Y(2)

Fix: Use these
outputs too.

These too must
ideally point to the
correct phoneme

/AH/

Div

/AH/

Div

68

A more complex problem

ÅObjective: Given a sequence of inputs, asynchronously
output a sequence of symbols

ïThis is just a simple concatenation of many copies of the simple
άƻǳǘǇǳǘ ŀǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ƛƴǇǳǘ ǎŜǉǳŜƴŎŜέ ƳƻŘŜƭ ǿŜ Ƨǳǎǘ ǎŀǿ

ÅBut this simple extension complicates matters..

ὢ ὢ ὢ

/B/

ὢ ὢ ὢ

/AH/

ὢ ὢ ὢ

/T/

ὢ

69

The sequence-to-sequence problem

ÅHow do we know when to output symbols
ïIn fact, the network produces outputs at every

time

ïWhich of these are the real outputs

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/B/ /AH/ /T/

70

The actual output of the network

ÅAt each time the network outputs a probability
for each output symbol

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

71

The actual output of the network

ÅOption 1: Simply select the most probable symbol
at each time
ïMerge d

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

72

The actual output of the network

ÅOption 1: Simply select the most probable symbol at each
time

ïMerge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ/G/

/F/

/IY/

/D/

73

The actual output of the network

ÅOption 1: Simply select the most probable symbol at each
time

ïMerge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

74

The actual output of the network

ÅOption 1: Simply select the most probable symbol at each
time

ïMerge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

Resulting sequence may be meaningless (what word is òGFIYDó?)

75

The actual output of the network

ÅOption 2: Impose external constraints on what sequences are
allowed

ïE.g. only allow sequences corresponding to dictionary words

ïE.g. Sub-symbol units (like in HW1 ςwhat were they?)

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

ώ

76

The sequence-to-sequence problem

ÅHow do we know when to output symbols

ïIn fact, the network produces outputs at every time

ïWhich of these are the real outputs

ÅHow do we train these models?

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

/B/ /AH/ /T/

77

Training

ÅGiven output symbols at the right locations

ïThe phoneme /B/ ends at X2, /AH/ at X6, /T/ at X9

ὢ ὢ ὢ

/B/

ὢ ὢ ὢ

/AH/

ὢ ὢ ὢ

/T/

ὢ

78

Training

ÅEither just define Divergence as:
ὈὍὠὢὩὲὸὣȟὄ ὢὩὲὸὣȟὃὌ ὢὩὲὸὣȟὝ

ÅOr..

ὢ ὢ ὢ

/B/

ὢ ὢ ὢ ὢ ὢ ὢὢ

Div Div Div

/AH/ /T/

ὣ ὣ ὣ

79

ÅEither just define Divergence as:
ὈὍὠὢὩὲὸὣȟὄ ὢὩὲὸὣȟὃὌ ὢὩὲὸὣȟὝ

ÅOr repeat the symbols over their duration

ὈὍὠ ὢὩὲὸὣȟίώάὦέὰ ÌÏÇὣὸȟίώάὦέὰ

ὢ ὢ ὢ

/B/

ὢ ὢ ὢ ὢ ὢ ὢὢ

Div Div Div

/AH/ /T/

ὣ ὣ ὣ

DivDivDivDivDivDivDiv

80

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

Problem: No timing information provided

ÅOnly the sequence of output symbols is
provided for the training data
ïBut no indication of which one occurs where

ÅHow do we compute the divergence?
ïAnd how do we compute its gradient w.r.t. ὣ

/B/ /AH/ /T/

? ? ? ? ? ? ? ? ? ?
ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣὣ

81

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

Not given alignment

ÅThere are many possible alignments

ÅCorresponding each there is a divergence
ὈὭὺὄȟὃὌȣȟὃὌȟὝ

ÌÏÇὣὸȟὄȟὃὌȟȣȟὃὌȟὝ

/B/ /AH/ /T/

ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣὣ

Div Div Div Div Div Div Div Div Div Div

/AH//AH/ /AH/ /AH//AH/ /AH//AH/

82

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

Not given alignment

ÅThere are many possible alignments

ÅCorresponding each there is a divergence
ὈὭὺὄȟὄȣȟὃὌȟὝ

ÌÏÇὣὸȟὄȟὄȟȣȟὃὌȟὝ

/B/ /B/ /T/

ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣὣ

Div Div Div Div Div Div Div Div Div Div

/AH//AH/ /AH/ /AH//AH/ /AH//AH/

83

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

Not given alignment

ÅThere are many possible alignments

ÅCorresponding each there is a divergence
ὈὭὺὄȟὄȟὄȣȟὃὌȟὝ

ÌÏÇὣὸȟὄȟὄȟὄȟȣȟὃὌȟὝ

/B/ /B/ /T/

ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣὣ

Div Div Div Div Div Div Div Div Div Div

/AH//B/ /AH/ /AH//AH/ /AH//AH/

84

ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢ ὢὢ

Not given alignment

ÅThere are many possible alignments

ÅCorresponding each there is a divergence
ὈὭὺὄȟὃὌȣȟὝȟὝ

ÌÏÇὣὸȟὄȟὃὌȟȣȟὝȟὝ

/B/ /AH/ /T/

ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣ ὣὣ

Div Div Div Div Div Div Div Div Div Div

/AH//AH/ /AH/ /AH//AH/ /T//AH/

85

In the absence of alignment

ÅAny of these alignments is possible

ÅSimply consider all of these alignments

ÅThe total Divergence is the weighted sum of
the Divergences for the individual alignments

ÅὈὍὠ
ύὄȟὃὌȣȟὃὌȟὝὈὭὺὄȟὃὌȣȟὃὌȟὝ
ύὄȟὄȣȟὃὌȟὝὈὭὺὄȟὄȣȟὃὌȟὝ
ύὄȟὃὌȣȟὝȟὝὈὭὺὄȟὃὌȣȟὝȟὝȣ

86

In the absence of alignment

ÅAny of these alignments is possible

ÅSimply consider all of these alignments

ÅThe total Divergence is the weighted sum of the
Divergences for the individual alignments

ὈὍὠ

ȣ

ύίȣί ὈὭὺίȣί

ïWhere ίȣί is the sequence of target symbols
corresponding to an alignment of the target (e.g.
phoneme) sequence ὖȣὖ
ÅNote: ὑ ὔ

87

In the absence of alignment

ÅAny of these alignments is possible

ÅSimply consider all of these alignments

ÅThe total Divergence is the weighted sum of
the Divergences for the individual alignments

ὈὍὠ

ȣ

ύίȣί ὈὭὺίȣί

Give less weight to less likely alignments

88

In the absence of alignment

ÅAny of these alignments is possible

ÅSimply consider all of these alignments

ÅThe total Divergence is the weighted sum of
the Divergences for the individual alignments

ὈὍὠ

ȣ

ὖίȣίȿὢȟὖȣὖ ὈὭὺίȣί

Weigh by the probability of the alignment

This is the expected divergence across all alignments 89

In the absence of alignment

ÅAny of these alignments is possible

ÅSimply consider all of these alignments

ÅThe total Divergence is the weighted sum of the

Divergences for the individual alignments

ὈὍὠ

ȣ

ὖίȣίȿὢȟὖȣὖ ÌÏÇὣὸȟί

Must compute this

90

