Recap: Hopfield network

\[\Theta(z) = \begin{cases}
 +1 & \text{if } z > 0 \\
 -1 & \text{if } z \leq 0
\end{cases} \]

\[y_i = \Theta \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) \]

- **Symmetric loopy network**
- Each neuron is a perceptron with +1/-1 output
- Every neuron *receives* input from every other neuron
- Every neuron *outputs* signals to every other neuron
Recap: Hopfield network

At each time each neuron receives a “field” $\sum_{j \neq i} w_{ji} y_j + b_i$

If the sign of the field matches its own sign, it does not respond

If the sign of the field opposes its own sign, it “flips” to match the sign of the field

$$y_i = \Theta \left(\sum_{j \neq i} w_{ji} y_j + b_i \right)$$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \leq 0 \end{cases}$$
Recap: Energy of a Hopfield Network

\[
E = -\sum_{i,j<i} w_{ij} y_i y_j
\]

- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not used in Hopfield nets)

\[
E = -\frac{1}{2} y^T W y - b^T y
\]
Recap: Evolution

\[E = -\frac{1}{2}y^TWy \]

• The network will evolve until it arrives at a local minimum in the energy contour
Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
 – If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern

• This is a content addressable memory
 – Recall memory content from partial or corrupt values

• Also called associative memory
Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
The bottom line

• With an network of N units (i.e. N-bit patterns)
• The maximum number of stable patterns is actually exponential in N
 – McElice and Posner, 84’
 – E.g. when we had the Hebbian net with N orthogonal base patterns, all patterns are stable

• For a specific set of K patterns, we can always build a network for which all K patterns are stable provided $K \leq N$
 – Mostafa and St. Jacques 85’
 • For large N, the upper bound on K is actually $N/\log N$
 – McElice et. Al. 87’
 – But this may come with many “parasitic” memories
Training the Net

• How do we make the network store a specific pattern or set of patterns?
 – Hebbian learning
 – Geometric approach
 – Optimization

• Secondary question
 – How many patterns can we store?
Consider the energy function

$$E = -\frac{1}{2} y^T W y - b^T y$$

- This must be *maximally* low for target patterns
- Must be *maximally* high for *all other patterns*
 - So that they are unstable and evolve into one of the target patterns
Optimizing W

$$E(y) = -\frac{1}{2} y^T W y$$

$$\hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y)$$

- Minimize total energy of target patterns
 - Which could be repeated to emphasize their importance
- Maximize the total energy of all non-target patterns
 - Which too could be repeated to emphasize their importance
Optimizing W

\[E(y) = -\frac{1}{2} y^T W y \quad \hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

• Simple gradient descent:

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P} yy^T \right) \]

Various versions of choosing \(y \in Y_P \) let us assign importance to \(y \)

Various versions of choosing \(y \notin Y_P \) gave us different learning algorithms
Optimizing W

\[E(y) = -\frac{1}{2} y^T W y \quad \hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

• Simple gradient descent:

\[W = W + \eta \left(\sum_{y \in Y_P} \alpha_y yy^T - \sum_{y \notin Y_P} \beta_y yy^T \right) \]

Weighted average (weights sum to 1.0)
Weights capture importance
Optimizing W

\[E(y) = -\frac{1}{2} y^T Wy \quad \hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

- Simple gradient descent:

\[W = W + \eta \left(\sum_{y \in Y_P} \alpha_y yy^T - \sum_{y \notin Y_P} \beta_y yy^T \right) \]

Weighted average (weights sum to 1.0)
Weights capture importance

THIS LOOKS LIKE AN EXPECTATION!
Optimizing W

$$E(y) = -\frac{1}{2}y^T Wy \quad \hat{W} = \text{argmin}_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y)$$

• Simple gradient descent:

$$W = W + \eta \left(\sum_{y \in Y_P} \alpha_y yy^T - \sum_{y \notin Y_P} \beta(E(y))yy^T \right)$$

Desideratum: The weights should ideally reflect confusability. Lower-energy patterns (according to the current weights) should be more important to pull “up”.

If you want the dependence on energy to be exponential..
A probabilistic interpretation

\[E(y) = \frac{1}{2} y^T Wy \quad P(y) = C \exp \left(-\frac{1}{2} y^T Wy \right) \]

- For continuous \(y \), the energy of a pattern is a perfect analog to the negative log likelihood of a Gaussian density.
- For binary \(y \) it is the analog of the negative log likelihood of a Boltzmann distribution.
 - Minimizing energy maximizes log likelihood.

\[E(y) = -\frac{1}{2} y^T Wy \quad P(y) = C \exp \left(\frac{1}{2} y^T Wy \right) \]
The Boltzmann Distribution

\[E(y) = -\frac{1}{2} y^T W y - b^T y \]

\[P(y) = C \exp \left(\frac{-E(y)}{kT} \right) \]

\[C = \frac{1}{\sum_y P(y)} \]

- \(k \) is the Boltzmann constant
- \(T \) is the temperature of the system
- The energy terms are like the loglikelihood of a Boltzmann distribution at \(T = 1 \)
 - Derivation of this probability is in fact quite trivial..
Continuing the Boltzmann analogy

\[E(y) = -\frac{1}{2} y^T W y - b^T y \]

\[P(y) = C \exp \left(\frac{-E(y)}{kT} \right) \]

\[C = \frac{1}{\sum_y P(y)} \]

- At each instant the system \textit{probabilistically} moves to a new state, greatly favoring states with lower energy
 - The lower the \(T \), the more it favors low-energy states
 - With infinitesimally slow cooling, at \(T = 0 \), it arrives at the global minimal state
Spin glasses and Hopfield nets

- Selecting a next state is akin to drawing a sample from the Boltzmann distribution at $T = 1$, in a universe where $k = 1$
Optimizing W

\[E(\mathbf{y}) = -\frac{1}{2} \mathbf{y}^T \mathbf{W} \mathbf{y} \]

\[\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y}) \]

- Simple gradient descent:

\[\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y}\mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(\mathbf{E}(\mathbf{y})) \mathbf{y}\mathbf{y}^T \right) \]

This looks like an expectation!
Optimizing W

\[E(y) = -\frac{1}{2}y^T W y \]
\[\hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

- Update rule

\[W = W + \eta \left(\sum_{y \in Y_P} \alpha_y yy^T - \sum_{y \notin Y_P} \beta(E(y)) yy^T \right) \]

\[W = W + \eta \left(E_{y \sim Y_P} yy^T - E_{y \sim Y} yy^T \right) \]

Natural distribution for variables: The Boltzmann Distribution
• Adding capacity to a Hopfield network
 – And the Boltzmann analogy
Storing more than N patterns

• The memory capacity of an N-bit network is at most N
 – Stable patterns (not necessarily even stationary)
 • Abu Mustafa and St. Jacques, 1985
 • Although “information capacity” is $\mathcal{O}(N^3)$

• How do we increase the capacity of the network
 – Store more patterns
Expanding the network

- Add a large number of neurons whose actual values you don’t care about!
• New capacity: $\sim (N + K)$ patterns
 – Although we only care about the pattern of the first N neurons
 – We’re interested in N-bit patterns
• Terminology:
 – The neurons that store the actual patterns of interest: Visible neurons
 – The neurons that only serve to increase the capacity but whose actual values are not important: Hidden neurons
 – These can be set to anything in order to store a visible pattern
Training the network

- For a given pattern of visible neurons, there are any number of hidden patterns \(2^K\)
- Which of these do we choose?
 - Ideally choose the one that results in the lowest energy
 - But that’s an exponential search space!
 - Solution: Combinatorial optimization
 - Simulated annealing
The patterns

• In fact we could have *multiple* hidden patterns coupled with any visible pattern
 – These would be multiple stored patterns that all give the same visible output
 – How many do we permit

• Do we need to specify one or more particular hidden patterns?
 – How about *all* of them
 – What do I mean by this bizarre statement?
Is the system actually in a specific state at any time?

No – the state is actually continuously changing

Based on the temperature of the system

At higher temperatures, state changes more rapidly

What is actually being characterized is the probability of the state

And the expected value of the state
The Helmholtz Free Energy of a System

• A thermodynamic system at temperature T can exist in one of many states
 – Potentially infinite states
 – At any time, the probability of finding the system in state s at temperature T is $P_T(s)$
• At each state s it has a potential energy E_s
• The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_s P_T(s) E_s$$
The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

\[H_T = - \sum_s P_T(s) \log P_T(s) \]

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

\[F_T = U_T + kTH_T \]

\[= \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]
The Helmholtz Free Energy of a System

\[F_T = \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]

- A system held at a specific temperature \textit{anneals} by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved.

- The probability distribution of the states at steady state is known as the \textit{Boltzmann distribution}.
The Helmholtz Free Energy of a System

\[F_T = \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]

- Minimizing this w.r.t \(P_T(s) \), we get

\[P_T(s) = \frac{1}{Z} \exp \left(\frac{-E_s}{kT} \right) \]

- Also known as the Gibbs distribution
- \(Z \) is a normalizing constant
- Note the dependence on \(T \)
- A \(T = 0 \), the system will always remain at the lowest-energy configuration with prob = 1.
The Energy of the Network

We can define the energy of the system as before:

\[E(S) = - \sum_{i<j} w_{ij} s_i s_j - b_i s_i \]

The equilibrium probability distribution over states is the Boltzmann distribution at T=1:

\[P(S) = \frac{\exp(E(S))}{\sum_{S'} \exp(E(S'))} \]

- We can define the energy of the system as before
- Since each neuron are stochastic, there is disorder or entropy (with T = 1)
- The *equilibrium* probability distribution over states is the Boltzmann distribution at T=1
 - This is the probability of different states that the network will wander over at *equilibrium*
The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = $+1$ and S' has i-th bit = -1

\[
P(S) = P(s_i = 1 \mid s_{j \neq i})P(s_{j \neq i})
\]
\[
P(S') = P(s_i = -1 \mid s_{j \neq i})P(s_{j \neq i})
\]

\[
\log P(S) - \log P(S') = \log P(s_i = 1 \mid s_{j \neq i}) - \log P(s_i = 0 \mid s_{j \neq i})
\]

\[
\log P(S) - \log P(S') = \log \frac{P(s_i = 1 \mid s_{j \neq i})}{1 - P(s_i = 1 \mid s_{j \neq i})}
\]
The field at a single node

- Let S and S' be the states with the ith bit in the $+1$ and -1 states.

\[
E(S) = \log P(S) + C \\
E(S) = \frac{1}{2} \left(E_{not\ i} + \sum_{j \neq i} w_j s_j + b_i \right) \\
E(S') = \frac{1}{2} \left(E_{not\ i} - \sum_{j \neq i} w_j s_j - b_i \right) \\
E(S) - E(S') = \log P(S) - \log P(S') = \sum_{j \neq i} w_j s_j + b_i
\]
The field at a single node

\[
\log \left(\frac{P(s_i = 1|s_{j\neq i})}{1 - P(s_i = 1|s_{j\neq i})} \right) = \sum_{j \neq i} w_j s_j + b_i
\]

• Giving us

\[
P(s_i = 1|s_{j\neq i}) = \frac{1}{1 + e^{-\left(\sum_{j\neq i} w_j s_j + b_i\right)}}
\]

• The probability of any node taking value 1 given other node values is a logistic
Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state s_i, which can take value 0 or 1 with a probability that depends on the local field
 – Note the slight change from Hopfield nets
 – Not actually necessary; only a matter of convenience

$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1|s_j \neq i) = \frac{1}{1 + e^{-z_i}}$$
Running the network

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or -1 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until “convergence”), sample the individual neurons

$$z_i = \sum_j w_{ji}s_j + b_i$$

$$P(s_i = 1|s_j \neq i) = \frac{1}{1 + e^{-z_i}}$$
As in Hopfield nets, in order to train the network, we need to select weights such that those states are more probable than other states.

- Maximize the likelihood of the “stored” states.
Maximum Likelihood Training

\[
\log(P(S)) = \left(\sum_{i<j} w_{ij} s_i s_j + b_i s_i \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s_i' s_j' + b_i s_i' \right) \right)
\]

\[< \log(P(S)) > = \frac{1}{N} \sum_{S \in \mathcal{S}} \log(P(S)) \]

\[
= \frac{1}{N} \sum_{S} \left(\sum_{i<j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s_i' s_j' + b_i s_i' \right) \right)
\]

- Maximize the average log likelihood of all “training” vectors \(S = \{S_1, S_2, ..., SN\} \)
 - In the first summation, \(s_i \) and \(s_j \) are bits of \(S \)
 - In the second, \(s_i' \) and \(s_j' \) are bits of \(S' \)
Maximum Likelihood Training

\[
\langle \log(P(S)) \rangle = \frac{1}{N} \sum_S \left(\sum_{i<j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij}' s_i' s_j' + b_i s_i' \right) \right)
\]

\[
\frac{d \langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_S s_i s_j - ??
\]

- We will use gradient descent, but we run into a problem..
- The first term is just the average \(s_i s_j \) over all training patterns
- But the second term is summed over all states
 - Of which there can be an exponential number!
The second term

\[
\frac{d\log(\sum_{S'} \exp(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i))}{dw_{ij}} = \sum_{s_i} \frac{\exp(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i)}{\sum_{s_i} \exp(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i)} s'_i s'_j
\]

\[
\frac{d\log(\sum_{S'} \exp(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i))}{dw_{ij}} = \sum_{s'_i} P(S') s'_i s'_j
\]

- The second term is simply the *expected value* of \(s_i s_j\), over all possible values of the state.
- We cannot compute it exhaustively, but we can compute it by sampling!
The simulation solution

- Initialize the network randomly and let it “evolve”
 - By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be
 \[S_{simul} = \{S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M} \} \]
The simulation solution for the second term

\[
\frac{d\log(\sum_{S'} \exp(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i))}{d w_{ij}} = \sum_{S'} P(S') s'_i s'_j
\]

\[
\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
\]

- The second term in the derivative is computed as the average of sampled states when the network is running “freely”
Maximum Likelihood Training

\[
\langle \log(P(S)) \rangle = \frac{1}{N} \sum_S \left(\sum_{i<j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j + b_i s'_i \right) \right)
\]

\[
\frac{d \langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_S s_i s_j - \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d \langle \log(P(S)) \rangle}{dw_{ij}}
\]

- The overall gradient ascent rule
Overall Training

- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- Iterate

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
But this is missing hidden nodes

- This framework only works for networks with only visible nodes
- We wanted *hidden* nodes
- How do we extend the paradigm?

\[
\frac{d \langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_s s_is_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d \langle \log(P(S)) \rangle}{dw_{ij}}
\]
Now, with hidden neurons the complete state pattern for even the \textit{training} patterns is unknown

- Since they are only defined over visible neurons
We will now only maximize \textit{marginal} probabilities over visible bits

- \(S = (V, H) \)
 - \(V \) = visible bits
 - \(H \) = hidden bits
More simulations

• Maximizing the marginal probability of V requires summing over all values of H
 – An exponential state space
 – So we will use simulations again

\[
P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}
\]

\[
P(V) = \sum_H P(S)
\]
Step 1

- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training $S = \{S_{1,1}, S_{1,2}, ..., S_{1K}, S_{2,1}, ..., S_{N,K}\}$
• Now *unclamp* the visible units and let the entire network evolve several times to generate

\[S_{\text{simul}} = \{ S_{\text{simul},1}, S_{\text{simul},1=2}, \ldots, S_{\text{simul},M} \} \]
Gradients are computed as before, except that the first term is now computed over the expanded training data.

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]
Overall Training

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{s_i \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than Hopfield nets
• But also enables computation of probabilities of patterns, and completion of pattern
Boltzmann machines: Overall

Training:
- Given a set of training patterns
 - Which could be repeated to represent relative probabilities
- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[z_i = \sum_j w_{ji} s_i + b_i \]

\[P(s_i = 1) = \frac{1}{1 + e^{-z_i}} \]

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}} \]
Boltzmann machines: Overall

- Running: Pattern completion
 - “Anchor” the *known* visible units
 - Let the network evolve
 - Sample the unknown visible units
 - Choose the most probable value
Applications

- Filling out patterns
- Denoising patterns
- Computing conditional probabilities of patterns
- Classification!!
 - How?
Boltzmann machines for classification

- Training patterns:
 - \([f_1, f_2, f_3, \ldots, \text{class}]\)
 - Features can have binarized or continuous valued representations
 - Classes have “one hot” representation

- Classification:
 - Given features, anchor features, estimate a posteriori probability distribution over classes
 - Or choose most likely class
Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems
 – A small number of training instances over a small number of bits
Solution: *Restricted* Boltzmann Machines

- Partition visible and hidden units
 - Visible units ONLY talk to hidden units
 - Hidden units ONLY talk to visible units
- Restricted Boltzmann machine..
Topics missed..

• The Boltzmann machine as a probability distribution
• RBMs
• Running RBMs
• Inference over RBMs
• RBMs as feature extractors
 – Pre training
• RBMs as generative models
• DBMs