Reinforcement Learning

Spring 2018

Defining MDPs, Planning
Markov Process

- Where you will go depends only on where you are
Markov Process: Information state

- The *information* state of a Markov process may be different from its physical state

This spider doesn’t like to turn back
Markov Reward Process

- Random wandering through states will occasionally win you a reward.
The Fly Markov Reward Process

- There are, in fact, only four states, not eight
 - Manhattan distance between fly and spider = 0 (s_0)
 - Distance between fly and spider = 1 (s_1)
 - Distance between fly and spider = 2 (s_2)
 - Distance between fly and spider = 3 (s_3)
- Can, in fact, redefine the MRP entirely in terms of these 4 states
The discounted return

\[G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]

- Total *future* reward all the way to the end
• Markov Reward Process with following change:
 – Agent has real agency
 – Agent’s actions modify environment’s behavior
The Fly Markov Decision Process

- **State Transition Diagram**:
 - State S_0: Process ends.
 - States S_1, S_2, S_3: Transition probabilities.
 - Actions: a_+, a_-.
 - Probabilities: 1, $1/3$, $2/3$, 1.0.
The policy is the agent’s choice of action in each state

– May be stochastic
The Bellman Expectation Equations

• The Bellman expectation equation for state value function

\[v_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi(s') \right) \]

• The Bellman expectation equation for action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a \in \mathcal{A}} \pi(a|s') q_\pi(s', a) \]
Optimal Policies

• The optimal policy is the policy that will maximize the expected total discounted reward at every state: \(E[G_t | S_t = s] \)

\[
\begin{align*}
&= E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | S_t = s \right] \\
&\end{align*}
\]

• **Optimal Policy Theorem**: For any MDP there exist optimal policies \(\pi_* \) that is better than or equal to every other policy:

\[
\begin{align*}
\pi_* &\geq \pi \quad \forall \pi \\
v_*(s) &\geq v_{\pi}(s) \quad \forall s \\
q_*(s,a) &\geq q_{\pi}(s,a) \quad \forall s, a
\end{align*}
\]
The optimal value function

\[\pi_*(a|s) = \begin{cases}
1 & \text{for} \quad \arg\max_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases} \]

\[v_*(s) = \max_a q_*(s, a) \]
Bellman Optimality Equations

• Optimal value function equation

\[v^*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v^*(s') \]

• Optimal action value equation

\[q^*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \max_{a'} q^*(s', a') \]
Planning with an MDP

• Problem:
 – **Given:** an MDP $\langle S, P, A, R, \gamma \rangle$
 – **Find:** Optimal policy π^*

• Can either
 – **Value-based Solution:** Find optimal value (or action value) function, and derive policy from it OR
 – **Policy-based Solution:** Find optimal policy directly
Value-based Planning

• “Value”-based solution

• Breakdown:
 – Prediction: Given any policy π find value function $v_\pi(s)$
 – Control: Find the optimal policy
Prediction DP

- Iterate

\[
\nu^{(k+1)}_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu^{(k)}_\pi(s') \right)
\]
Policy Iteration

• Start with any policy $\pi^{(0)}$
• Iterate ($k = 0$... convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy
 \[\pi^{(k+1)}(s) = greedy \left(v_{\pi^{(k)}}(s) \right) \]
Value iteration

\[v_{\star}^{(k)}(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\star}^{(k-1)}(s') \]

- Each state simply inherits the cost of its best neighbour state
 - Cost of neighbor is the value of the neighbour plus cost of getting there
Problem so far

• Given all details of the MDP
 – Compute optimal value function
 – Compute optimal action value function
 – Compute optimal policy

• This is the problem of planning

• Problem: In real life, nobody gives you the MDP
 – How do we plan???
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control
Model-Free Methods

• AKA model-free *reinforcement learning*

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free *prediction*

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free *control*

• **Assumption:** We can identify the states, know the *actions*, and measure rewards, but have no knowledge of the system dynamics
 – The key knowledge required to “solve” for the best policy
 – A reasonable assumption in many discrete-state scenarios
 – Can be generalized to other scenarios with infinite or unknowable state
Model-Free Assumption

- Can see the fly
- Know the distance to the fly
- Know possible actions (get closer/farther)
- But have no idea of how the fly will respond
 - Will it move, and if so, to what corner
Model-Free Methods

- AKA model-free *reinforcement learning*

- How do you find the value of a policy, without knowing the underlying MDP?
 - Model-free *prediction*

- How do you find the optimal policy, without knowing the underlying MDP?
 - Model-free *control*
Model-Free Assumption

• Can see the fly and distance to the fly
• But have no idea of how the fly will respond to actions
 – Will it move, and if so, to what corner
• But will always try to reduce distance to fly (have a known, fixed, policy)
• What is the value of being a distance D from the fly?
Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
 – $TD(1)$
 – $TD(K)$
 – $TD(\lambda)$
Monte-Carlo learning to learn the value of a policy π

• Just “let the system run” while following the policy π and learn the value of different states

• Procedure: Record several *episodes* of the following
 – Take actions according to policy π
 – Note states visited and rewards obtained as a result
 – Record entire sequence:
 – $S_1, A_1, R_2, S_2, A_2, R_3, ..., S_T$
 – **Assumption**: Each “episode” ends at some time

• Estimate value functions based on observations by counting
Monte-Carlo Value Estimation

• Objective: Estimate value function $v_\pi(s)$ for every state s, given recordings of the kind:

 $S_1, A_1, R_2, S_2, A_2, R_3, ..., S_T$

• Recall, the value function is the expected return:

 $v_\pi(s) = E[G_t | S_t = s]$

 $= E[R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-1} R_T | S_t = s]$

• To estimate this, we replace the statistical expectation $E[G_t | S_t = s]$ by the empirical average $avg[G_t | S_t = s]$
A bit of notation

• We actually record many episodes
 – episode(1) = $S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, \ldots, S_{1T_1}$
 – episode(2) = $S_{21}, A_{21}, R_{22}, S_{22}, A_{22}, R_{23}, \ldots, S_{2T_2}$
 – …
 – Different episodes may be different lengths
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
 \[G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 – $S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, ..., S_{1T_1}$

• Return at time t
 – $G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1}$
 – $G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1}$
 – ...
 – $G_{1,t} = R_{1,t+1} + \gamma R_{1,t+2} + \cdots + \gamma^{T_1-t-1} R_{1T_1}$
Estimating the Value of a State

• To estimate the value of any state, identify the instances of that state in the episodes:

\[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, ..., S_{1T_1} \]

\[s_a \quad s_b \quad s_a \quad ... \]

• Compute the average return from those instances

\[\nu_\pi(s_a) = avg(G_{1,1}, G_{1,3}, ...) \]
Estimating the Value of a State

• For every state s
 – Initialize: Count $N(s) = 0$, Total return $v_\pi(s) = 0$
 – For every episode e
 • For every time $t = 1 \ldots T_e$
 – Compute G_t
 – If ($S_t == s$)
 » $N(s) = N(s) + 1$
 » $v_\pi(s) = v_\pi(s) + G_t$
 – $v_\pi(s) = v_\pi(s)/N(s)$

• Can be done more efficiently..
Online Version

- For all s Initialize: Count $N(s) = 0$, Total return $\text{tot}v_\pi(s) = 0$

- For every episode e
 - For every time $t = 1 \ldots T_e$
 - Compute G_t
 - $N(S_t) = N(S_t) + 1$
 - $\text{tot}v_\pi(S_t) = \text{tot}v_\pi(S_t) + G_t$
 - For every state s:
 - $v_\pi(s) = \frac{\text{tot}v_\pi(s)}{N(s)}$

- Updating values at the end of each episode
- Can be done more efficiently..
Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in which all states have been visited a sufficiently large number of times, we will obtain good estimates of the value functions of all states

• Easily extended to evaluating action value functions
Estimating the Action Value function

• To estimate the value of any state-action pair, identify the instances of that state-action pair in the episodes:

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

\[s_a \ a_x \quad s_b \ a_y \quad s_a \ a_y \ \ldots \]

• Compute the average return from those instances

\[q_\pi(s_a, a_x) = avg(G_{1,1}, \ldots) \]
Online Version

• For all s, a Initialize: Count $N(s, a) = 0$, Total value $totq_{\pi}(s, a) = 0$

• For every episode e

 – For every time $t = 1 \ldots T_e$

 • Compute G_t

 • $N(S_t, A_t) = N(S_t, A_t) + 1$

 • $totq_{\pi}(S_t, A_t) = totq_{\pi}(S_t, A_t) + G_t$

 – For every $s, a : q(s, a) = totq_{\pi}(s, a)/N(s, a)$

• Updating values at the end of each episode
Monte Carlo: Good and Bad

• Good:
 – Will eventually get to the right answer
 – *Unbiased* estimate

• Bad:
 – Cannot update anything until the end of an episode
 • Which may last for ever
 – High variance! Each return adds many random values
 – Slow to converge
Online methods for estimating the value of a policy: Temporal Difference Leaning (TD)

- Idea: Update your value estimates after every observation

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

- Do not actually wait until the end of the episode
Incremental Update of Averages

• Given a sequence $x_1, x_2, x_3, ...$ a running estimate of their average can be computed as

$$\mu_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• This can be rewritten as:

$$\mu_k = \frac{(k - 1)\mu_{k-1} + x_k}{k}$$

• And further refined to

$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$
Incremental Update of Averages

- Given a sequence $x_1, x_2, x_3, ...$ a running estimate of their average can be computed as

$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

- Or more generally as

$$\mu_k = \mu_{k-1} + \alpha(x_k - \mu_{k-1})$$

- The latter is particularly useful for non-stationary environments
Incremental Updates

\[\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1}) \]

- Example of running average of a uniform random variable
Incremental Updates

• Correct equation is *unbiased* and converges to true value
• Equation with α is *biased* (early estimates can be expected to be wrong) but *converges* to true value

\[
\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})
\]

\[
\mu_k = \mu_{k-1} + \alpha (x_k - \mu_{k-1})
\]

- $\alpha = 0.1$
- $\alpha = 0.05$
- $\alpha = 0.03$
Updating Value Function Incrementally

- Actual update

\[\nu_\pi(s) = \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_{t(i)} \]

- \(N(s) \) is the total number of visits to state \(s \) across all episodes

- \(G_{t(i)} \) is the discounted return at the time instant of the i-th visit to state \(s \)
Online update

• Given any episode
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T \]

• Update the value of each state visited
 \[N(S_t) = N(S_t) + 1 \]
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)}(G_t - \nu_\pi(S_t)) \]

• Incremental version
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]

• Still an unrealistic rule
 • Requires the entire track until the end of the episode to compute \(G_t \)
Online update

- Given any episode
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

- Update the value of each state visited
 \[
 N(S_t) = N(S_t) + 1
 \]
 \[
 \nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)} (G_t - \nu_\pi(S_t))
 \]

- Incremental version
 \[
 \nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t))
 \]

- Still an unrealistic rule
 - Requires the entire track until the end of the episode to compute \(G_t \)
TD solution

$$\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t))$$

- But

$$G_t = R_{t+1} + \gamma G_{t+1}$$

- We can approximate G_{t+1} by the expected return at the next state S_{t+1}
Counting Returns

- For each episode, we count the returns at all times:
 - $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$

- Return at time t
 - $G_1 = R_2 + \gamma R_3 + \cdots + \gamma^{T-2} R_T$
 - $G_2 = R_3 + \gamma R_4 + \cdots + \gamma^{T-3} R_T$
 - ...
 - $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-2} R_T$

- Can rewrite as
 - $G_1 = R_2 + \gamma G_2$

- Or
 - $G_1 = R_2 + \gamma R_3 + \gamma^2 G_3$
 - ...
 - $G_t = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} G_{t+1+N}$
TD solution

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t)) \]

• But

\[G_t = R_{t+1} + \gamma G_{t+1} \]

• We can approximate \(G_{t+1} \) by the expected return at the next state \(S_{t+1} \approx \nu_\pi(S_{t+1}) \)

\[G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1}) \]

• We don’t know the real value of \(\nu_\pi(S_{t+1}) \) but we can “bootstrap” it by its current estimate
TD(1) true online update

\[v_\pi(S_t) = v_\pi(S_t) + \alpha(G_t - v_\pi(S_t)) \]

• Where

\[G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1}) \]

• Giving us

\[-v_\pi(S_t) = v_\pi(S_t) + \alpha(R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t)) \]
TD(1) true online update

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha \delta_t \]

- Where

\[\delta_t = R_{t+1} + \gamma \nu_\pi(S_{t+1}) - \nu_\pi(S_t) \]

- \(\delta_t \) is the TD error
 - The error between an (estimated) observation of \(G_t \) and the current estimate \(\nu_\pi(S_t) \)
TD(1) true online update

- For all s Initialize: $\nu_\pi(s) = 0$

- For every episode e
 - For every time $t = 1 \ldots T_e$
 - $\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha \left(R_{t+1} + \gamma \nu_\pi(S_{t+1}) - \nu_\pi(S_t) \right)$

- There’s a “lookahead” of one state, to know which state the process arrives at at the next time

- But is otherwise online, with continuous updates
TD(1)

• Updates continuously – improve estimates as soon as you observe a state (and its successor)

• Can work even with *infinitely long* processes that never terminate

• Guaranteed to converge to the true values eventually
 – Although initial values will be biased as seen before
 – Is actually lower variance than MC!!
 • Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
 – Particularly when TD is allowed to *loop* over all learning episodes
What are \(v(A) \) and \(v(B) \)

- Using MC
- Using TD(1), where you are allowed to repeatedly go over the data
TD – look ahead further?

• TD(1) has a look ahead of 1 time step

\[G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1}) \]

• But we can look ahead further out

\[G_t(2) = R_{t+1} + \gamma R_{t+2} + \gamma^2 \nu_\pi(S_{t+2}) \]

\[\ldots \]

\[G_t(N) = R_{t+1} \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} \nu_\pi(S_{t+N}) \]
TD(N) with lookahead

\[v_\pi(S_t) = v_\pi(S_t) + \alpha \delta_t(N) \]

- Where

\[\delta_t(N) = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} v_\pi(S_{t+N}) - v_\pi(S_t) \]

- \(\delta_t(N) \) is the TD error with \(N \) step lookahead
Lookahead is good

- Good: The further you look ahead, the better your estimates get

- Problems:
 - But you also get more variance
 - At infinite lookahead, you’re back at MC

- Also, you have to wait to update your estimates
 - A lag between observation and estimate

- So how much lookahead must you use
Looking Into The Future

- How much various TDs look into the future
- Which do we use?
Solution: Why choose?

- Each lookahead provides an estimate of G_t
- Why not just combine the lot with discounting?
\[G_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n) \]

- Combine the predictions from all lookaheads with an exponentially falling weight
 - Weights sum to 1.0

\[V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^\lambda - V(S_t) \right) \]
Something magical just happened

- TD(λ) looks into the infinite future
 - I.e. we must have all the rewards of the future to compute our updates
 - How does that help?
The contribution of future rewards to the present update

- All future rewards contribute to the update of the value of the current state.
The contribution of current reward to past states

- All current reward contributes to the update of the value of all past states!
• The Eligibility trace:
 – Keeps track of total weight for any state
 • Which may have occurred at multiple times in the past
TD(\(\lambda\))

- Maintain an eligibility trace for every state

\[
E_0(s) = 0 \\
E_t(s) = \gamma E_{t-1}(s) + 1(S_t = s)
\]

- Computes total weight for the state until the present time
TD(λ)

- At every time, update the value of every state according to its eligibility trace

\[\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \]

\[V(s) \leftarrow V(s) + \alpha \delta_t E_t(S_t) \]

- Any state that was visited will be updated
 - Those that were not will not be, though
The magic of TD(\(\lambda\))

• Managed to get the effect of infinite lookahead, by performing infinite *lookbehind*
 – Or at least look behind to the beginning

• Every reward updates the value of *all states* leading to the reward!
 – E.g., in a chess game, if we win, we want to increase the value of all game states we visited, not just the final move
 – But early states/moves must gain much less than later moves

• When \(\lambda = 1\) this is exactly equivalent to MC
Story so far

• Want to compute the values of all states, given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal difference solutions
 – TD is quicker to update, and in many situations the better solution
 – TD(\(\lambda\)) actually emulates an infinite lookahead
 • But we must choose good values of \(\alpha\) and \(\lambda\)
Optimal Policy: Control

- We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown for a given policy.

- How do we find the optimal policy?
Value vs. Action Value

• The solution we saw so far only computes the value functions of states.

• Not sufficient – to compute the optimal policy from value functions alone, we will need extra information, namely transition probabilities.
 – Which we do not have.

• Instead, we can use the same method to compute action value functions.
 – Optimal policy in any state: Choose the action that has the largest optimal action value.
Value vs. Action value

- Given only value functions, the optimal policy must be estimated as:
 \[\pi'(s) = \arg\max_{a \in \mathcal{A}} \mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s') \]
 - Needs knowledge of transition probabilities

- Given action value functions, we can find it as:
 \[\pi'(s) = \arg\max_{a \in \mathcal{A}} Q(s, a) \]
 - This is *model free* (no need for knowledge of model parameters)
Problem of optimal control

• From a series of episodes of the kind:
 \(S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \)

• Find the optimal action value function \(q^*(s, a) \)
 – The optimal policy can be found from it

• Ideally do this online
 – So that we can continuously improve our policy from ongoing experience
Exploration vs. Exploitation

- Optimal policy search happens while gathering experience *while following a policy*

- For fastest learning, we will follow an estimate of the optimal policy

- Risk: We run the risk of positive feedback
 - Only learn to evaluate our current policy
 - Will never learn about alternate policies that may turn out to be better

- Solution: We will follow our current optimal policy $1 - \epsilon$ of the time
 - But choose a random action ϵ of the time
 - The “epsilon-greedy” policy
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy \(\pi \)
- Start the process at the initial state, and follow an action according to initial policy \(\pi \)
- Produce the episode
 \[
 S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T
 \]
- Process the episode using the following online update rules:
 \[
 N(S_t, A_t) \leftarrow N(S_t, A_t) + 1

 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
 \]
- Compute the \(\epsilon \)-greedy policy for each state
 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \underset{a'}{\text{argmax}} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]
- Repeat
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$
- Process the episode using the following online update rules:

$$
N(S_t, A_t) \leftarrow N(S_t, A_t) + 1
$$

$$
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_{t})} (G_t - Q(S_t, A_t))
$$

- Compute the ϵ-greedy policy for each state

$$
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \text{argmax}_{a'} Q(s, a') \\
\frac{\epsilon}{N_{a} - 1} & \text{otherwise}
\end{cases}
$$

- Repeat
On-line version of GLIE: SARSA

- Replace G_t with an estimate
- TD(1) or TD(λ)
 - Just as in the prediction problem
- TD(1) \rightarrow SARSA

\[Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A)) \]
SARSA

- Initialize $Q(s, a)$ for all s, a
- Start at initial state S_1
- Select an initial action A_1
- For $t = 1..$ Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ-greedy policy
 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]
 - Update
 \[
 Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right)
 \]
SARSA(\(\lambda\))

- Again, the TD(1) estimate can be replaced by a TD(\(\lambda\)) estimate
- Maintain an eligibility trace for every state-action pair:

\[
E_0(s, a) = 0 \\
E_t(s, a) = \gamma E_{t-1}(s, a) + 1(S_t = s, A_t = a)
\]

- Update every state-action pair visited so far

\[
\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)
\]

\[
Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)
\]
SARSA(\(\lambda\))

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots\) Termination
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) using policy obtained from \(Q\)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + \alpha\delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s, a)\)
On-policy vs. Off-policy

• SARSA assumes you’re following the same policy that you’re learning
• Its possible to follow one policy, while learning from others
 – E.g. learning by observation
• The policy for learning is the whatif policy

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

\[\hat{A}_2 \quad \hat{A}_3 \quad \text{hypothetical} \]

• Modifies learning rule

\[Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)) \]

• to

\[Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t) \right) \]

• Q will actually represent the action value function of the hypothetical policy
SARSA: Suboptimality

- SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

- Use TD rules to update:
 \[
 \delta = R + \gamma Q(S', A') - Q(S, A)
 \]

- Problem: which policy do we use to choose \(A'\)
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Problem: which policy do we use to choose \(A'\)
• If we choose the current judgment of the best action at \(S'\) we will become too greedy
 – Never explore
• If we choose a sub-optimal policy to follow, we will never find the best policy
Solution: Off-policy learning

• The policy for learning is the whatif policy
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]
 \[\hat{A}_2 \quad \hat{A}_3 \text{ hypothetical} \]

• Use the best action for \(S_{t+1} \) as your hypothetical off-policy action

• But actually follow an epsilon-greedy action
 – The hypothetical action is guaranteed to be better than the one you actually took
 – But you still explore (non-greedy)
Q-Learning

• From any state-action pair S, A
 – Accept reward R
 – Transition to S'
 – Find the best action A' for S'
 – Use it to update $Q(S, A)$
 – But then actually perform an epsilon-greedy action A'' from S'
Q-Learning (TD(1) version)

- For all s, a initialize $Q(s, a)$
- For each episode e
 - Initialize S_1, A_1
 - For $t = 1 \ldots$ Termination
 - Observe R_{t+1}, S_{t+1}
 - Choose action A_{t+1} at S_{t+1} using epsilon-greedy policy obtained from Q
 - Choose action \hat{A}_{t+1} at S_{t+1} as $\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a)$
 - $\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)$
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha \delta$
Q-Learning (TD(\(\lambda\)) version)

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots \text{Termination}\)
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) at \(S_{t+1}\) using epsilon-greedy policy obtained from \(Q\)
 - Choose action \(\hat{A}_{t+1}\) at \(S_{t+1}\) as \(\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a)\)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + a\delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s, a)\)
What about the actual policy?

- Optimal greedy policy:
 \[
 \pi(a|s) = \begin{cases}
 1 & \text{for } a = \arg\max_{a'} Q(s,a') \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Exploration policy
 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s,a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]

- Ideally ϵ should decrease with time
Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:
 – Value function approximation
 – Continuous state spaces
 – Deep-Q learning
 – Action replay
 – Application to real problem