Neural Networks: Optimization Part 1

Intro to Deep Learning, Fall 2018
Story so far

- Neural networks are universal approximators
 - Can model any odd thing
 - Provided they have the right architecture
- We must *train* them to approximate any function
 - Specify the architecture
 - Learn their weights and biases
- Networks are trained to minimize total “error” on a training set
 - We do so through empirical risk minimization
- We use variants of gradient descent to do so
- The gradient of the error with respect to network parameters is computed through backpropagation
Recap: Gradient Descent Algorithm

- In order to minimize any function $f(x)$ w.r.t. x
- Initialize:
 - x^0
 - $k = 0$
- While $|f(x^{k+1}) - f(x^k)| > \varepsilon$
 - $x^{k+1} = x^k - \eta \nabla_x f^T$
 - $k = k + 1$
Training Neural Nets by Gradient Descent

Total training error:

\[Err = \frac{1}{T} \sum_t \text{Div}(Y_t, d_t; W_1, W_2, \ldots, W_K) \]

- Gradient descent algorithm:
- Initialize all weights \(W_1, W_2, \ldots, W_K \)
- Do:
 - For every layer \(k \), compute:
 - \(\nabla_{W_k} Err = \frac{1}{T} \sum_t \nabla_{W_k} \text{Div}(Y_t, d_t) \)
 - \(W_k = W_k - \eta \nabla_{W_k} Err^T \)
- Until \(Err \) has converged
Training Neural Nets by Gradient Descent

Total training error:

\[Err = \frac{1}{T} \sum_t Div(Y_t, d_t; W_1, W_2, \ldots, W_K) \]

• Gradient descent algorithm:
• Initialize all weights \(W_1, W_2, \ldots, W_K \)
• Do:
 – For every layer \(k \), compute:
 • \(\nabla_{W_k} Err = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t) \)
 • \(W_k = W_k - \eta \nabla_{W_k} Err \)
• Until \(Err \) has converged
Computing $\text{Div}(Y_t, d_t)$: Forward pass

Forward pass:

Initialize

For $k = 1$ to N:

Output

$$
y_0 = x
$$

$$
z_k = W_k y_{k-1} + b_k
$$

$$
y_k = f_k(z_k)
$$

$$
Y = y_N
$$
Computing $Div(Y_t, d_t)$:
The Backward Pass

- Set $y_N = Y, y_0 = x$
- Initialize: Compute $\nabla_{y_N} Div = \nabla_Y Div$

- For layer $k = N$ downto 1:
 - Compute $J_{y_k}(z_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:
 \[
 \nabla_{z_k} Div = \nabla_{y_k} Div \cdot J_{y_k}(z_k)
 \]
 \[
 \nabla_{y_{k-1}} Div = \nabla_{z_k} Div \cdot W_k
 \]
 - Gradient computation:
 \[
 \nabla_{W_k} Div = y_{k-1} \cdot \nabla_{z_k} Div
 \]
 \[
 \nabla_{b_k} Div = \nabla_{z_k} Div
 \]
Recap: Backpropagation for training

• Initialize all weights and biases $(W_1, b_1, W_2, b_2, ..., W_N, b_N)$

• Do:

 – Initialize $Err = 0$, for all $k : \nabla_{W_k} Err = 0, \nabla_{b_k} Err = 0$

 – For all $t = 1: T$

 • Forward pass: Compute

 – Output $Y(X_t)$

 – $Err += \text{Div}(Y_t, d_t)$

 • Backward pass: For all k compute:

 – $\nabla_{W_k} \text{Div}(Y_t, d_t); \nabla_{b_k} \text{Div}(Y_t, d_t)$

 – $\nabla_{W_k} Err += \nabla_{W_k} \text{Div}(Y_t, d_t); \nabla_{b_k} Err += \nabla_{b_k} \text{Div}(Y_t, d_t)$

 – For all k, update:

 $$W_k = W_k - \frac{\eta}{T} (\nabla_{W_k} Err)^T; \quad b_k = b_k - \frac{\eta}{T} (\nabla_{W_k} Err)^T$$

• Until Err has converged
Overall setup of a typical problem

- Provide training input-output pairs
- Provide network architecture
- Define divergence
- Backpropagation to learn network parameters
Onward
Onward

• Does backprop always work?
• Convergence of gradient descent
 – Rates, restrictions,
 – Hessians
 – Acceleration and Nestorov
 – Alternate approaches
• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad
Does backprop do the right thing?

• Is backprop always right?
 – Assuming it actually find the global minimum of the divergence function?
Does backprop do the right thing?

• **Is backprop always right?**
 – Assuming it actually find the global minimum of the divergence function?

• In classification problems, the classification error is a non-differentiable function of weights

• The divergence function minimized is only a *proxy* for classification error

• Minimizing divergence may not minimize classification error
Backprop fails to separate where perceptron succeeds

- Brady, Raghavan, Slawny, ’89
- Simple problem, 3 training instances, single neuron
- Perceptron training rule trivially find a perfect solution
Backprop vs. Perceptron

- Back propagation using logistic function and L_2 divergence ($Div = (y - d)^2$)
- Unique minimum trivially proved to exist, Backpropagation finds it
Unique solution exists

- Let $u = f^{-1}(1 - \varepsilon)$
 - E.g. $u = f^{-1}(0.99)$ representing a 99% confidence in the class
- From the three points we get three independent equations:
 \[
 \begin{align*}
 w_x \cdot 1 + w_y \cdot 0 + b &= u \\
 w_x \cdot 0 + w_y \cdot 1 + b &= u \\
 w_x \cdot -1 + w_y \cdot 0 + b &= -u
 \end{align*}
 \]
- Unique solution $(w_x = u, w_x = u, b = 0)$ exists
 - represents a unique line regardless of the value of u
• Now add a fourth point
• t is very large (point near $-\infty$)
• Perceptron trivially finds a solution (may take t^2 iterations)
Consider backprop:

Contribution of fourth point to derivative of L_2 error:

$$div_4 = \left(1 - \varepsilon - \sigma(-w_y t + b)\right)^2$$

$$\frac{d}{dw_y} \left(\frac{div_4}{div_y}\right) = 2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b)t$$

$$\frac{d}{db} \left(\frac{div_4}{div_y}\right) = -2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b)$$

Notation:

$y = \sigma(z) =$ logistic activation

$1-$ is the actual achievable value
Notation: \(y = \sigma(z) \) = logistic activation

\[div_4 = \left(1 - \varepsilon - \sigma(-w_y t + b)\right)^2 \]

\[
\frac{d \ div_4}{d w_y} = 2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b) t \\
\frac{d \ div_4}{d b} = 2 \left(1 - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b) t
\]

• For very large positive \(t \), \(|w_y| > \varepsilon\) (where \(w = [w_x, w_y, b] \))
• \(\left(1 - \varepsilon - \sigma(-w_y t + b)\right) \to 1 \) as \(t \to \infty \)
• \(\sigma'(-w_y t + b) \to 0 \) exponentially as \(t \to \infty \)
• Therefore, for very large positive \(t \)

\[
\frac{d \ div_4}{d w_y} = \frac{d \ div_4}{d b} = 0
\]
• The fourth point at \((0, -t)\) does not change the gradient of the \(L_2\) divergence near the optimal solution for 3 points
• The optimum solution for 3 points is also a broad \textit{local} minimum (0 gradient) for the 4-point problem!
 – Will be trivially found by backprop nearly all the time
 • Although the global minimum will separate for unbounded weights
Local optimum solution found by backprop

Does not separate the points even though the points are linearly separable!
• Solution found by backprop
• Does not separate the points *even though the points are linearly separable!*
• Compare to the perceptron: *Backpropagation fails to separate where the perceptron succeeds*
Backprop fails to separate where perceptron succeeds

- Brady, Raghavan, Slawny, ’89
- Several linearly separable training examples
- Simple setup: both backprop and perceptron algorithms find solutions
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly
A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
 – Perceptron finds the linear separator,
 – For bounded w, backprop does not find a separator
 • A single additional input does not change the loss function significantly
A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
 – Perceptron finds the linear separator,
 – For bounded w, Backprop does not find a separator
 • A single additional input does not change the loss function significantly
So what is happening here?

• The perceptron may change greatly upon adding just a single new training instance
 – But it fits the training data well
 – The perceptron rule has *low bias*
 • Makes no errors if possible
 – But high variance
 • Swings wildly in response to small changes to input

• Backprop is minimally changed by new training instances
 – Prefers consistency over perfection
 – It is a *low-variance* estimator, at the potential cost of bias
Backprop fails to separate even when possible

- This is not restricted to single perceptrons
- In an MLP the lower layers “learn a representation” that enables linear separation by higher layers
 - More on this later
- Adding a few “spoilers” will not change their behavior
Backprop fails to separate even when possible

• This is not restricted to single perceptrons
• In an MLP the lower layers “learn a representation” that enables linear separation by higher layers
 – More on this later
• Adding a few “spoilers” will not change their behavior
Backpropagation

• Backpropagation will often not find a separating solution \textit{even though the solution is within the class of functions learnable by the network}.

• This is because the separating solution is not a feasible optimum for the loss function.

• One resulting benefit is that a backprop-trained neural network classifier has lower variance than an optimal classifier for the training data.
Variance and Depth

• Dark figures show desired decision boundary (2D)
 – 1000 training points, 660 hidden neurons
 – Network heavily overdesigned even for shallow nets

• Anecdotal: Variance decreases with
 – Depth
 – Data

10000 training instances
The Error Surface

• The example (and statements) earlier assumed the loss objective had a single global optimum that could be found
 – Statement about variance is assuming global optimum

• What about local optima
The Error Surface

• **Popular hypothesis:**
 – In large networks, saddle points are far more common than local minima
 • Frequency exponential in network size
 – Most local minima are equivalent
 • And close to global minimum
 – This is not true for small networks

• **Saddle point:** A point where
 – The slope is zero
 – The surface increases in some directions, but decreases in others
 • Some of the Eigenvalues of the Hessian are positive; others are negative
 – Gradient descent algorithms often get “stuck” in saddle points
The Controversial Error Surface

- **Baldi and Hornik (89),** “Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima” : An MLP with a *single* hidden layer has only saddle points and no local Minima

- **Dauphin et. al (2015),** “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization” : An exponential number of saddle points in large networks

- **Chomoranksa et. al (2015),** “The loss surface of multilayer networks” : For large networks, most local minima lie in a band and are equivalent
 - Based on analysis of spin glass models

- **Swirszc et. al. (2016),** “Local minima in training of deep networks”, In networks of finite size, trained on finite data, you *can* have horrible local minima

- Watch this space...
Story so far

• Neural nets can be trained via gradient descent that minimizes a loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it exists, and lies within the capacity of the network to model
 – The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of unpleasant saddle points
 – Which backpropagation may find
Convergence

• In the discussion so far we have assumed the training arrives at a local minimum

• Does it always converge?

• How long does it take?

• Hard to analyze for an MLP, but we can look at the problem through the lens of convex optimization
A quick tour of (convex) optimization

The streetlight effect is a type of observational bias where people only look for whatever they are searching by looking where it is easiest

“I’m searching for my keys.”
Convex Loss Functions

• A surface is “convex” if it is continuously curving upward
 – We can connect any two points above the surface without intersecting it
 – Many mathematical definitions that are equivalent

• Caveat: Neural network error surface is generally not convex
 – Streetlight effect
Convergence of gradient descent

• An iterative algorithm is said to converge to a solution if the value updates arrive at a fixed point
 – Where the gradient is 0 and further updates do not change the estimate

• The algorithm may not actually converge
 – It may jitter around the local minimum
 – It may even diverge

• Conditions for convergence?
Convergence and convergence rate

• Convergence rate: How fast the iterations arrive at the solution

• Generally quantified as

\[
R = \frac{|f(x^{(k+1)}) - f(x^*)|}{|f(x^{(k)}) - f(x^*)|}
\]

- \(x^{(k+1)}\) is the k-th iteration
- \(x^*\) is the optimal value of \(x\)

• If \(R\) is a constant (or upper bounded), the convergence is *linear*
 - In reality, its arriving at the solution exponentially fast

\[
|f(x^{(k)}) - f(x^*)| = c^k |f(x^{(0)}) - f(x^*)|
\]
Convergence for quadratic surfaces

Minimize $E = \frac{1}{2}aw^2 + bw + c$

$w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw}$

Gradient descent with fixed step size η to estimate scalar parameter w

- Gradient descent to find the optimum of a quadratic, starting from $w^{(k)}$
- Assuming fixed step size η
- What is the optimal step size η to get there fastest?
Convergence for quadratic surfaces

- Any quadratic objective can be written as
 \[E = E(w^{(k)}) + E'(w^{(k)})(w - w^{(k)}) + \frac{1}{2} E''(w^{(k)})(w - w^{(k)})^2 \]
 - Taylor expansion

- Minimizing w.r.t \(w \), we get (Newton’s method)
 \[w_{\text{min}} = w^{(k)} - E''(w^{(k)})^{-1} E'(w^{(k)}) \]

- Note:
 \[\frac{dE(w^{(k)})}{dw} = E'(w^{(k)}) \]

- Comparing to the gradient descent rule, we see that we can arrive at the optimum in a single step using the optimum step size
 \[\eta_{\text{opt}} = E''(w^{(k)})^{-1} = \alpha^{-1} \]
With non-optimal step size

\[w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw} \]

Gradient descent with fixed step size \(\eta \) to estimate scalar parameter \(w \)

- For \(\eta < \eta_{opt} \) the algorithm will converge monotonically
- For \(2\eta_{opt} > \eta > \eta_{opt} \) we have oscillating convergence
- For \(\eta > 2\eta_{opt} \) we get divergence
For generic differentiable convex objectives

- Any differentiable convex objective $E(w)$ can be approximated as

 $$E \approx E(w^{(k)}) + (w - w^{(k)}) \frac{dE(w^{(k)})}{dw} + \frac{1}{2} (w - w^{(k)})^2 \frac{d^2E(w^{(k)})}{dw^2} + \ldots$$

 — Taylor expansion

- Using the same logic as before, we get (Newton’s method)

 $$\eta_{opt} = \left(\frac{d^2E(w^{(k)})}{dw^2}\right)^{-1}$$

- We can get divergence if $\eta \geq 2\eta_{opt}$
For functions of multivariate inputs

\[E = g(\mathbf{w}), \mathbf{w} \text{ is a vector } \mathbf{w} = [w_1, w_2, \ldots, w_N] \]

- Consider a simple quadratic convex (paraboloid) function

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{w}^T \mathbf{b} + c \]

 - Since \(E^T = E \) (\(E \) is scalar), \(\mathbf{A} \) can always be made symmetric

 - For convex \(E \), \(\mathbf{A} \) is always positive definite, and has positive eigenvalues

- When \(\mathbf{A} \) is diagonal:

\[E = \frac{1}{2} \sum_i (a_{ii} w_i^2 + b_i w_i) + c \]

 - The \(w_i \)s are uncoupled

 - For convex (paraboloid) \(E \), the \(a_{ii} \) values are all positive

 - Just an sum of \(N \) independent quadratic functions
Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} w^T A w + w^T b + c = \frac{1}{2} \sum_i (a_{ii} w_i^2 + b_i w_i) + c$$

- Equal-value contours will be parallel to the axis
Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} w^T A w + w^T b + c = \frac{1}{2} \sum_i (a_{ii}w_i^2 + b_i w_i) + c$$

- Equal-value contours will be parallel to the axis
 - All “slices” parallel to an axis are shifted versions of one another

$$E = \frac{1}{2} a_{ii}w_i^2 + b_i w_i + c + C(-w_i)$$
Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} w^T A w + w^T b + c = \frac{1}{2} \sum_i (a_{ii} w_i^2 + b_i w_i) + c$$

- Equal-value contours will be parallel to the axis
 - All “slices” parallel to an axis are shifted versions of one another

$$E = \frac{1}{2} a_{ii} w_i^2 + b_i w_i + c + C(-w_i)$$
“Descents” are uncoupled

The optimum of each coordinate is not affected by the other coordinates
– I.e. we could optimize each coordinate independently

• Note: Optimal learning rate is different for the different coordinates

\[
E = \frac{1}{2} a_{11} w_1^2 + b_1 w_1 + c + C(w_1) \\
\eta_{1,\text{opt}} = a_{11}^{-1}
\]

\[
E = \frac{1}{2} a_{22} w_2^2 + b_2 w_2 + c + C(w_2) \\
\eta_{2,\text{opt}} = a_{22}^{-1}
\]
Vector update rule

\[\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_w E \]

\[w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE(w_i^{(k)})}{dw} \]

- Conventional vector update rules for gradient descent: update entire vector against direction of gradient
 - Note: Gradient is perpendicular to equal value contour
 - The same learning rate is applied to all components
Problem with vector update rule

\[w^{(k+1)} \leftarrow w^{(k)} - \eta \nabla_w E^T \]
\[w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE(w_i^{(k)})}{dw} \]
\[\eta_{i,\text{opt}} = \left(\frac{d^2E(w_i^{(k)})}{dw_i^2} \right)^{-1} = a_{ii}^{-1} \]

• The learning rate must be lower than twice the smallest optimal learning rate for any component
 \[\eta < 2 \min_i \eta_{i,\text{opt}} \]
 – Otherwise the learning will diverge
• This, however, makes the learning very slow
 – And will oscillate in all directions where \(\eta_{i,\text{opt}} \leq \eta < 2\eta_{i,\text{opt}} \)
Dependence on learning rate

- $\eta_{1,\text{opt}} = 1; \eta_{2,\text{opt}} = 0.33$
- $\eta = 2.1\eta_{2,\text{opt}}$
- $\eta = 2\eta_{2,\text{opt}}$
- $\eta = 1.5\eta_{2,\text{opt}}$
- $\eta = \eta_{2,\text{opt}}$
- $\eta = 0.75\eta_{2,\text{opt}}$
Dependence on learning rate

- $\eta_{1,opt} = 1; \eta_{2,opt} = 0.91; \quad \eta = 1.9 \eta_{2,opt}$
Convergence

• Convergence behaviors become increasingly unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i, opt}$ and the smallest $\eta_{i, opt}$
 — To ensure convergence in every direction
 — Generally infeasible

• Convergence is particularly slow if $\frac{\max_i \eta_{i, opt}}{\min_i \eta_{i, opt}}$ is large
 — The “condition” number is small
More Problems

• For quadratic (strongly) convex functions, gradient descent is exponentially fast
 – Linear convergence
 – Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow
 \[|f(w^{(k)}) - f(w^*)| \propto \frac{1}{k} |f(w^{(0)}) - f(w^*)| \]
 – And inversely proportional to learning rate
 \[|f(w^{(k)}) - f(w^*)| \leq \frac{1}{2\eta k} |w^{(0)} - w^*| \]
 – Takes \(O(1/\epsilon)\) iterations to get to within \(\epsilon\) of the solution

• An inappropriate learning rate will destroy your happiness
The reason for the problem

• The objective function has different eccentricities in different directions
 – Resulting in different optimal learning rates for different directions
 – The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two directions are coupled! Moving in one direction changes the gradient along the other

• Solution: Normalize the objective to have identical eccentricity in all directions
 – Then all of them will have identical optimal learning rates
 – Easier to find a working learning rate
Solution: Scale the axes

- Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
 - Equal-value contours are circular
 - Movement along the coordinate axes become independent

- Note: equation of a quadratic surface with circular equal-value contours can be written as

$$E = \frac{1}{2} \hat{w}^T S \hat{w} + \hat{b}^T \hat{w} + c$$
Scaling the axes

• Original equation:

\[E = \frac{1}{2} w^T A w + b^T w + c \]

• We want to find a (diagonal) scaling matrix \(S \) such that

\[
S = \begin{bmatrix}
 s_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & s_N
\end{bmatrix}, \quad \hat{w} = Sw
\]

• And

\[E = \frac{1}{2} \hat{w}^T \hat{w} + \hat{b}^T \hat{w} + c \]
Scaling the axes

• We have

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c \]

\[\mathbf{\hat{w}} = \mathbf{S} \mathbf{w} \]

\[E = \frac{1}{2} \mathbf{\hat{w}}^T \mathbf{\hat{w}} + \mathbf{\hat{b}}^T \mathbf{\hat{w}} + c \]

\[= \frac{1}{2} \mathbf{w}^T \mathbf{S}^T \mathbf{S} \mathbf{w} + \mathbf{\hat{b}}^T \mathbf{S} \mathbf{w} + c \]

• Equating linear and quadratic coefficients, we get

\[\mathbf{S}^T \mathbf{S} = \mathbf{A}, \quad \mathbf{\hat{b}}^T \mathbf{S} = \mathbf{b}^T \]

• Solving:

\[\mathbf{S} = \mathbf{A}^{0.5}, \quad \mathbf{\hat{b}} = \mathbf{A}^{-0.5} \mathbf{b} \]
Scaling the axes

• We have

\[E = \frac{1}{2} w^T A w + b^T w + c \]

\[\hat{w} = Sw \]

\[E = \frac{1}{2} \hat{w}^T \hat{w} + \hat{b}^T \hat{w} + c \]

• Solving for \(S \) we get

\[\hat{w} = A^{0.5} w, \quad \hat{b} = A^{-0.5} b \]
Scaling the axes

• We have

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c \]

\[\hat{\mathbf{w}} = \mathbf{S} \mathbf{w} \]

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]

• Solving for \(\mathbf{S} \) we get

\[\hat{\mathbf{w}} = \mathbf{A}^{0.5} \mathbf{w}, \quad \hat{\mathbf{b}} = \mathbf{A}^{-0.5} \mathbf{b} \]
The Inverse Square Root of A

- For any positive definite A, we can write $A = EE^T$
 - Eigen decomposition
 - E is an orthogonal matrix
 - Λ is a diagonal matrix of non-zero diagonal entries

- Defining $A^{0.5} = E\Lambda^{0.5}$
 - Check $(A^{0.5})^T A^{0.5} = E\Lambda E^T = A$

- Defining $A^{-0.5} = E\Lambda^{-0.5}$
 - Check: $(A^{-0.5})^T A^{-0.5} = E\Lambda^{-1}E^T = A^{-1}$
Returning to our problem

\[E = \frac{1}{2} \hat{w}^T \hat{w} + \hat{b}^T \hat{w} + c \]

- Computing the gradient, and noting that \(A^{0.5} \) is symmetric, we can relate \(\nabla_{\hat{w}} E \) and \(\nabla_w E \):

\[
\begin{align*}
\nabla_{\hat{w}} E &= \hat{w}^T + \hat{b}^T \\
&= w^T A^{0.5} + b^T A^{-0.5} \\
&= (w^T A + b^T) A^{-0.5} \\
&= \nabla_w E \cdot A^{-0.5}
\end{align*}
\]
Returning to our problem

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]

- Gradient descent rule:
 \[\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} - \eta \nabla_{\hat{\mathbf{w}}} E(\hat{\mathbf{w}}^{(k)})^T \]
 - Learning rate is now independent of direction

- Using \(\hat{\mathbf{w}} = A^{0.5} \mathbf{w} \), and \(\nabla_{\hat{\mathbf{w}}} E(\hat{\mathbf{w}})^T = A^{-0.5} \nabla_{\mathbf{w}} E(\mathbf{w})^T \)

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta A^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T \]
For non-axis-aligned quadratics..

If A is not diagonal, the contours are not axis-aligned
- Because of the cross-terms $a_{ij}w_iw_j$
- The major axes of the ellipsoids are the Eigenvalues of A, and their diameters are proportional to the Eigenvalues of A

But this does not affect the discussion
- This is merely a rotation of the space from the axis-aligned case
- The component-wise optimal learning rates along the major and minor axes of the equal-contour ellipsoids will be different, causing problems
 - The optimal rates along the axes are Inversely proportional to the eigenvalues of A
For non-axis-aligned quadratics..

- The component-wise optimal learning rates along the major and minor axes of the contour ellipsoids will differ, causing problems
 - Inversely proportional to the eigenvalues of A

- This can be fixed as before by rotating and resizing the different directions to obtain the same normalized update rule as before:

\[w^{(k+1)} = w^{(k)} - \eta A^{-1} b \]
Generic differentiable multivariate convex functions

- Taylor expansion

\[E(w) \approx E(w^{(k)}) + \nabla_w E(w^{(k)})(w - w^{(k)}) + \frac{1}{2} (w - w^{(k)})^T H_E(w^{(k)})(w - w^{(k)}) + \ldots \]
Generic differentiable *multivariate* convex functions

- Taylor expansion

\[E(w) \approx E(w^{(k)}) + \nabla_w E(w^{(k)})(w - w^{(k)}) + \frac{1}{2} (w - w^{(k)})^T H_E(w^{(k)})(w - w^{(k)}) + \cdots \]

- Note that this has the form \(\frac{1}{2} w^T A w + w^T b + c \)

- Using the same logic as before, we get the normalized update rule

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

- For a quadratic function, the optimal \(\eta \) is 1 (which is exactly Newton’s method)
 - And should not be greater than 2!
Minimization by Newton’s method \((\eta = 1)\)

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
\]

\(- \eta = 1\)
Minimization by Newton’s method ($\eta = 1$)

- Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

- $\eta = 1$
Minimization by Newton’s method \((\eta = 1)\)

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E \left(\mathbf{w}^{(k)} \right)^{-1} \nabla_w E \left(\mathbf{w}^{(k)} \right)^T
\]

\(- \eta = 1\)
Minimization by Newton’s method \((\eta = 1)\)

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
\]

\(- \eta = 1\)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

\[- \eta = 1 \]
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

\[- \eta = 1 \]
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T - \eta = 1 \]
Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

\[- \eta = 1 \]
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
\]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

- \(\eta = 1 \)
Issues: 1. The Hessian

- Normalized update rule

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

- For complex models such as neural networks, with a very large number of parameters, the Hessian \(H_E(w^{(k)}) \) is extremely difficult to compute
 - For a network with only 100,000 parameters, the Hessian will have \(10^{10} \) cross-derivative terms
 - And it's even harder to invert, since it will be enormous
Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
 - Goes away from, rather than towards the minimum
Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can *diverge*
 – Goes away from, rather than towards the minimum
 – Now requires additional checks to avoid movement in directions corresponding to –ve Eigenvalues of the Hessian
A great many approaches have been proposed in the literature to approximate the Hessian in a number of ways and improve its positive definiteness

- Boyden-Fletcher-Goldfarb-Shanno (BFGS)
 - And “low-memory” BFGS (L-BFGS)
 - Estimate Hessian from finite differences
- Levenberg-Marquardt
 - Estimate Hessian from Jacobians
 - Diagonal load it to ensure positive definiteness
- Other “Quasi-newton” methods

Hessian estimates may even be local to a set of variables

Not particularly popular anymore for large neural networks..
Issues: 2. The learning rate

- Much of the analysis we just saw was based on trying to ensure that the step size was not so large as to cause divergence within a convex region

- \(\eta < 2\eta_{opt} \)
Issues: 2. The learning rate

- For complex models such as neural networks the loss function is often not convex
 - Having $\eta > 2\eta_{opt}$ can actually help escape local optima
- However *always* having $\eta > 2\eta_{opt}$ will ensure that you never ever actually find a solution
Decaying learning rate

Note: this is actually a reduced step size

• Start with a large learning rate
 – Greater than 2 (assuming Hessian normalization)
 – Gradually reduce it with iterations
Decaying learning rate

• Typical decay schedules

 - Linear decay: $\eta_k = \frac{\eta_0}{k+1}$
 - Quadratic decay: $\eta_k = \frac{\eta_0}{(k+1)^2}$
 - Exponential decay: $\eta_k = \eta_0 e^{-\beta k}$, where $\beta > 0$

• A common approach (for nnets):

 1. Train with a fixed learning rate η until loss (or performance on a held-out data set) stagnates
 2. $\eta \leftarrow \alpha\eta$, where $\alpha < 1$ (typically 0.1)
 3. Return to step 1 and continue training from where we left off
• Gradient descent can miss obvious answers
 – And this may be a *good* thing

• Convergence issues abound
 – The error surface has many saddle points
 • Although, perhaps, not so many bad local minima
 • Gradient descent can stagnate on saddle points
 – Vanilla gradient descent may not converge, or may converge toooooo slowly
 • The optimal learning rate for one component may be too high or too low for others
Second-order methods “normalize” the variation along the components to mitigate the problem of different optimal learning rates for different components.

- But this requires computation of inverses of second-order derivative matrices.
- Computationally infeasible.
- Not stable in non-convex regions of the error surface.
- Approximate methods address these issues, but simpler solutions may be better.
Story so far: Learning rate

• Divergence-causing learning rates may not be a bad thing
 – Particularly for ugly loss functions

• Decaying learning rates provide good compromise between escaping poor local minima and convergence

• Many of the convergence issues arise because we force the same learning rate on all parameters
Let's take a step back

- Problems arise because of requiring a fixed step size across all dimensions
 - Because step are “tied” to the gradient
- Let's try releasing these requirements

\[
\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla \mathbf{w} E
\]

\[
\mathbf{w}_i^{(k+1)} = \mathbf{w}_i^{(k)} - \eta \frac{dE(\mathbf{w}_i^{(k)})}{d\mathbf{w}}
\]
Derivative-inspired algorithms

- Algorithms that use derivative information for trends, but do not follow them absolutely
 - Rprop
 - Quick prop
RProp

- Resilient propagation
- Simple algorithm, to be followed *independently* for each component
 - i.e. steps in different directions are not coupled

- At each time
 - If the derivative at the current location recommends continuing in the same direction as before (i.e. has not changed sign from earlier):
 - *increase* the step, and continue in the same direction
 - If the derivative has changed sign (i.e. we’ve overshot a minimum)
 - *reduce* the step and reverse direction
• Select an initial value \hat{w} and compute the derivative

 – Take an initial step Δw against the derivative

 • In the direction that reduces the function

 $\Delta w = \text{sign} \left(\frac{dE(\hat{w})}{dw} \right) \Delta w$

 $\hat{w} = \hat{w} - \Delta w$
• Compute the derivative in the new location
 – If the derivative has not changed sign from the previous location, increase the step size and take a longer step

\[\alpha > 1 \]

• \(\Delta w = \alpha \Delta w \)
• \(\hat{w} = \hat{w} - \Delta w \)
• Compute the derivative in the new location
 – If the derivative has not changed sign from the previous location, increase the step size and take a step

\[\alpha > 1 \]

• \(\Delta w = \alpha \Delta w \)
• \(\hat{w} = \hat{w} - \Delta w \)
• Compute the derivative in the new location
 – If the derivative has changed sign

Orange arrow shows direction of derivative, i.e. direction of increasing $E(w)$
• Compute the derivative in the new location
 – If the derivative has changed sign
 – Return to the previous location

\[\hat{w} = \hat{w} + \Delta w \]
• Compute the derivative in the new location
 – If the derivative has changed sign
 – Return to the previous location
 • $\hat{w} = \hat{w} + \Delta w$

$\beta < 1$

• Shrink the step
 • $\Delta w = \beta \Delta w$

Orange arrow shows direction of derivative, i.e. direction of increasing $E(w)$
Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - $\hat{w} = \hat{w} + \Delta w$
 - Shrink the step
 - $\Delta w = \beta \Delta w$
 - Take the smaller step forward
 - $\hat{w} = \hat{w} - \Delta w$

Orange arrow shows direction of derivative, i.e. direction of increasing $E(w)$
Rprop (simplified)

- Set $\alpha = 1.2$, $\beta = 0.5$
- For each layer l, for each i, j:
 - Initialize $w_{l,i,j}, \Delta w_{l,i,j} > 0$,
 - $\text{prevD}(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - $\Delta w_{l,i,j} = \text{sign}(\text{prevD}(l, i, j))\Delta w_{l,i,j}$
 - While not converged:
 - $w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$
 - $D(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - If $\text{sign}(\text{prevD}(l, i, j)) = \text{sign}(D(l, i, j))$:
 - $\Delta w_{l,i,j} = \min(\alpha \Delta w_{l,i,j}, \Delta_{\text{max}})$
 - $\text{prevD}(l, i, j) = D(l, i, j)$
 - else:
 - $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 - $\Delta w_{l,i,j} = \max(\beta \Delta w_{l,i,j}, \Delta_{\text{min}})$
Rprop (simplified)

- Set $\alpha = 1.2$, $\beta = 0.5$
- For each layer l, for each i, j:
 - Initialize $w_{l,i,j}, \Delta w_{l,i,j} > 0$,
 - $\text{prevD}(l,i,j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - $\Delta w_{l,i,j} = \text{sign}(\text{prevD}(l,i,j)) \Delta w_{l,i,j}$
 - While not converged:
 - $w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$
 - $D(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - If $\text{sign}(\text{prevD}(l,i,j)) = \text{sign}(D(l, i, j))$:
 - $\Delta w_{l,i,j} = \alpha \Delta w_{l,i,j}$
 - $\text{prevD}(l,i,j) = D(l, i, j)$
 - else:
 - $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 - $\Delta w_{l,i,j} = \beta \Delta w_{l,i,j}$

Obtained via backprop

Note: Different parameters updated independently
RProp

• A remarkably simple first-order algorithm, that is frequently much more efficient than gradient descent.
 – And can even be competitive against some of the more advanced second-order methods

• Only makes minimal assumptions about the loss function
 – No convexity assumption
Quickprop employs the Newton updates with two modifications

$$
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
$$

- But with two modifications
QuickProp: Modification 1

- It treats each dimension independently
- For \(i = 1: N \)
 \[
 w_i^{k+1} = w_i^k - E''(w_i^k | w_j^k, j \neq i)^{-1}E'(w_i^k | w_j^k, j \neq i)
 \]
- This eliminates the need to compute and invert expensive Hessians
QuickProp: Modification 2

- It approximates the second derivative through finite differences
- For $i = 1:N$
 \[w_i^{k+1} = w_i^k - D(w_i^k, w_i^{k-1})^{-1} E'(w_i^k | w_j^k, j \neq i) \]
- This eliminates the need to compute expensive double derivatives
QuickProp

\[w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}} \right)^{-1} E'(w^{(k)}) \]

Finite-difference approximation to double derivative obtained assuming a quadratic \(E() \)

- Updates are independent for every parameter
- For every layer \(l \), for every connection from node \(i \) in the \((l - 1)\)th layer to node \(j \) in the \(l \)th layer:

\[\Delta w^{(k)}_{l,ij} = \frac{\Delta w^{(k-1)}_{l,ij}}{Err'(w^{(k)}_{l,ij}) - Err'(w^{(k-1)}_{l,ij})} Err'(w^{(k)}_{l,ij}) \]

\[w^{(k+1)}_{l,ij} = w^{(k)}_{l,ij} - \Delta w^{(k)}_{l,ij} \]
QuickProp

\[w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}} \right)^{-1} E'(w^{(k)}) \]

Finite-difference approximation to double derivative obtained assuming a quadratic \(E() \)

- Updates are independent for every parameter
- For every layer \(l \), for every connection from node \(i \) in the \((l-1) \)th layer to node \(j \) in the \(l \)th layer:

\[\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{Err'(w_{l,ij}^{(k)}) - Err'(w_{l,ij}^{(k-1)})} Err'(w_{l,ij}^{(k)}) \]

\[w_{l,ij}^{(k+1)} = w_{l,ij}^{(k)} - \Delta w_{l,ij}^{(k)} \]

Computed using backprop
Quickprop

• Prone to some instability for non-convex objective functions

• But is still one of the fastest training algorithms for many problems
Story so far: Convergence

- Gradient descent can miss obvious answers
 - And this may be a good thing

- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions

- Second order methods can normalize the variation across dimensions, but are complex

- Adaptive or decaying learning rates can improve convergence

- Methods that decouple the dimensions can improve convergence
A closer look at the convergence problem

• With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others
A closer look at the convergence problem

- With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

- **Proposal:**
 - Keep track of oscillations
 - Emphasize steps in directions that converge smoothly
 - Shrink steps in directions that bounce around.
The momentum methods

• Maintain a running average of all past steps
 – In directions in which the convergence is smooth, the average will have a large value
 – In directions in which the estimate swings, the positive and negative swings will cancel out in the average

• Update with the running average, rather than the current gradient
The momentum method maintains a running average of all gradients until the current step

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla W \text{Err}(W^{(k-1)}) \]

\[W^{(k)} = W^{(k-1)} + \Delta W^{(k)} \]

- Typical \(\beta \) value is 0.9

The running average steps
- Get longer in directions where gradient stays in the same sign
- Become shorter in directions where the sign keeps flipping
Training by gradient descent

• Initialize all weights \(W_1, W_2, \ldots, W_K \)

• Do:
 – For all \(i, j, k \), initialize \(\nabla_{W_k} \text{Err} = 0 \)
 – For all \(t = 1: T \)
 • For every layer \(k \):
 – Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t) \)
 – Compute \(\nabla_{W_k} \text{Err} += \frac{1}{T} \nabla_{W_k} \text{Div}(Y_t, d_t) \)
 – For every layer \(k \):
 \[W_k = W_k - \eta \nabla_{W_k} \text{Err} \]

• Until \(\text{Err} \) has converged
Training with momentum

• Initialize all weights W_1, W_2, \ldots, W_K

• Do:
 – For all layers k, initialize $\nabla_{W_k} Err = 0, \Delta W_k = 0$
 – For all $t = 1: T$
 • For every layer k:
 – Compute gradient $\nabla_{W_k} Div(Y_t, d_t)$

 $\nabla_{W_k} Err += \frac{1}{T} \nabla_{W_k} Div(Y_t, d_t)$

 – For every layer k
 \[
 \Delta W_k = \beta \Delta W_k - \eta \nabla_{W_k} Err
 \]
 \[
 W_k = W_k + \Delta W_k
 \]

• Until Err has converged
Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Err}(W^{(k-1)}) \]

• At any iteration, to compute the current step:
Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Err}(W^{(k-1)}) \]

• At any iteration, to compute the current step:
 – First computes the gradient step at the current location
Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Err}(W^{(k-1)}) \]

• At any iteration, to compute the current step:
 – First computes the gradient step at the current location
 – Then adds in the scaled previous step
 • Which is actually a running average
Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Err}(W^{(k-1)}) \]

• At any iteration, to compute the current step:
 – First computes the gradient step at the current location
 – Then adds in the scaled previous step
 • Which is actually a running average
 – To get the final step
Momentum update

• Takes a step along the past running average after walking along the gradient

• The procedure can be made more optimal by reversing the order of operations.
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
 – First extend the previous step
 – Then compute the gradient step at the resultant position
 – Add the two to obtain the final step
Nestorov’s Accelerated Gradient

• Nestorov’s method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_w \text{Err}(W^{(k-1)} + \beta \Delta W^{(k-1)}) \]

\[W^{(k)} = W^{(k-1)} + \Delta W^{(k)} \]
Nestorov’s Accelerated Gradient

- Comparison with momentum (example from Hinton)
- Converges much faster
Training with Nestorov

- Initialize all weights W_1, W_2, \ldots, W_K
- Do:
 - For all layers k, initialize $\nabla_{W_k} Err = 0, \Delta W_k = 0$
 - For every layer k
 $$W_k = W_k + \beta \Delta W_k$$
 - For all $t = 1: T$
 - For every layer k
 - Compute gradient $\nabla_{W_k} \text{Div}(Y_t, d_t)$
 - $\nabla_{W_k} Err += \frac{1}{T} \nabla_{W_k} \text{Div}(Y_t, d_t)$
 - For every layer k
 $$W_k = W_k - \eta \nabla_{W_k} Err$$
 $$\Delta W_k = \beta \Delta W_k - \eta \nabla_{W_k} Err$$
- Until Err has converged
Momentum and trend-based methods..

- We will return to this topic again, very soon..
Story so far: Convergence

- Gradient descent can miss obvious answers
 - And this may be a *good* thing

- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions

- Second order methods can normalize the variation across dimensions, but are complex

- Adaptive or decaying learning rates can improve convergence

- Methods that decouple the dimensions can improve convergence

- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods
Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade
 – Divergences..
 – Activations
 – Normalizations