
Training Neural Networks: 
Optimization

Intro to Deep Learning, Fall 2018

1



Quick Recap

• Gradient descent, Backprop

2



Quick Recap: Training a network

• Define a total “loss” over all training instances

– Quantifies the difference between desired output and the actual 
output, as a function of weights

• Find the weights that minimize the loss

Total loss

Sum over all
training instances

Divergence between desired output and 
actual output of net for a given intput 𝑋

Output of net in 
response to input 𝑋

Desired output
in response to input 𝑋

𝑊 = argmin
𝑊

𝐿(𝑊)

3



Quick Recap: Training networks by 
gradient descent

• The gradient of the total loss is the average of the gradients of the 
loss for the individual instances

• The total gradient can be plugged into gradient descent update to 
learn the network

𝑊 = argmin
𝑊

𝐿(𝑊)

Solved through
gradient descent as

𝑊𝑘 =𝑊𝑘−1 − 𝜂𝛻𝑤𝐿 𝑊 𝑇

4



Quick Recap: Training networks by 
gradient descent

• The gradient of the total loss is the average of the gradients of the 
loss for the individual instances

• The total gradient can be plugged into gradient descent update to 
learn the network

𝑊 = argmin
𝑊

𝐿(𝑊)

Solved through
gradient descent as

𝑊𝑘 =𝑊𝑘−1 − 𝜂𝛻𝑤𝐿 𝑊 𝑇

Computed using
backpropagation

5



Quick recap of backprop: forward pass

6

𝐱

𝐱

• Forward pass: Compute output and all intermediate variables in the 
network, for the input 𝑋



7

𝐳𝟏 = 𝐖𝟏𝐱 + 𝐛1

𝐱
𝐳𝟏𝐖1 , 𝐛1

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 

variables in the network, for the input 𝑋



8

𝐲1 = 𝒇1 𝐳1

𝐱
𝐳𝟏 𝐲𝟏𝐖1 , 𝐛1

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 
variables in the network, for the input 𝑋



9

𝐳2 =𝐖2𝐲1 + 𝐛2

𝐱
𝐳𝟏 𝐲𝟏 𝐳𝟐𝐖1 , 𝐛1 𝐖2 , 𝐛2

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 

variables in the network, for the input 𝑋



10

𝐱
𝐲𝟏 𝐳𝟐𝐖1 , 𝐛1 𝐖2 , 𝐛2

𝐲𝟐

𝐲2 = 𝒇2 𝐳2

𝐳𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 
variables in the network, for the input 𝑋



11

𝐱
𝐲𝟏𝐖1 , 𝐛1 𝐖2 , 𝐛2

𝐲𝟐 𝐲𝑁−1

𝐳N

𝐖𝑁 , 𝐛𝑁

𝐳𝑁 = 𝐖N𝐲𝑁−1 + 𝐛𝑁

𝐳𝟐𝐳𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 

variables in the network, for the input 𝑋



12

𝐱
𝐲𝟏𝐖1 , 𝐛1

𝐲𝟐 𝐲𝑁−1

𝐳N

𝐖𝑁 , 𝐛𝑁

𝒀 = 𝒇𝑁 𝐳𝑁

𝐘

𝐳𝟐𝐳𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate 

variables in the network, for the input 𝑋

So
ft

m
ax



The Forward Pass

• Set 𝐲0 = 𝐱

• For layer k = 1 to N:

– Recursion:
𝐳𝑘 = 𝐖𝑘𝐲𝑘−1 +𝐛𝑘

𝐲𝑘 = 𝒇𝑘 𝐳𝑘

• Output:
𝐘 = 𝐲𝑁

13



𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

Quick Recap: Backprop. Forward pass

• Forward pass: Compute output and all intermediate 

variables in the network, for the input 𝑋

• Compute the divergence w.r.t. desired output

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐱 𝐲𝟏 𝐳𝑁−1

𝐳N

𝐳𝟏 𝐲𝑁−1𝐳𝑁−2 𝐲𝑁−2

14



𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

Quick Recap: Backpropagation

• Now work your way backward through the net to 
compute the derivative w.r.t each intermediate 
variable and each weight/bias

𝐱 𝐲𝟏 𝐳𝑁−1

𝐳N

𝐳𝟏 𝐲𝑁−1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

15



Backprop
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻Y𝐷iv

First compute the gradient of the divergence w.r.t. Y.  
The actual gradient depends on the divergence function.

𝐱 𝐲𝟏 𝐳𝑁−1

𝐳N

𝐳𝟏 𝐲𝑁−1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

16



𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐳𝑁𝐷𝑖𝑣

𝛻𝐳𝑁𝐷𝑖𝑣 = 𝛻Y𝐷𝑖𝑣 𝐽𝐘 𝐳𝑁

Backprop

𝐱 𝐲𝟏 𝐳𝑁−1

𝐳N

𝐳𝟏 𝐲𝑁−1

Chain rule (vector format;  note order of multiplication)

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

17



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐖𝑁
𝐷𝑖𝑣 = 𝐲𝑁−1𝛻𝐳𝑁𝐷𝑖𝑣

𝛻𝐛𝑁𝐷𝑖𝑣 = 𝛻𝐳𝑁𝐷𝑖𝑣

𝐳𝑁

𝐱 𝐲𝟏 𝐳𝑁−1𝐳𝟏

𝐳𝑁 = 𝐖N𝐲𝑁−1 + 𝐛𝑁

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

18



𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐲𝑁−1
𝐷𝑖𝑣𝛻𝐲𝑁−1

𝐷𝑖𝑣 = 𝛻𝐳𝑁𝐷𝑖𝑣 𝐖𝑁

𝐳𝑁

Backprop

𝐱 𝐲𝟏 𝐳𝑁−1𝐳𝟏

Chain rule (vector format;  note order of multiplication)

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

19



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐳𝑁−1𝐷𝑖𝑣
𝛻𝐳𝑁−1𝐷𝑖𝑣 = 𝛻𝐲𝑁−1

𝐷𝑖𝑣 𝐽𝐲𝑁−1
𝐳𝑁−1

𝐳𝑁

𝐲𝑁−1

The Jacobian will be a diagonal 
matrix for scalar activations

Chain rule (vector format;  note order of multiplication)

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐲𝑁−2

20



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝐳𝑁

𝛻𝐖𝑁−1
𝐷𝑖𝑣 = 𝐲𝑁−2𝛻𝐳𝑁−1𝐷𝑖𝑣

𝛻𝐛𝑁−1𝐷𝑖𝑣 = 𝛻𝐳𝑁−1𝐷𝑖𝑣

𝐲𝑁−1𝐳𝑁−1

𝐖𝑁−1 , 𝐛𝑁−1

𝐳𝑁−1 =𝐖𝑁−1𝐲𝑁−2 + 𝐛𝑁−1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

21



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐲𝑁−2
𝐷𝑖𝑣

𝛻𝐲𝑁−2𝐷𝑖𝑣 = 𝛻𝐳𝑁−1𝐷𝑖𝑣 𝐖𝑁−1

𝐳𝑁

𝐲𝑁−1𝐳𝑁−1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

22



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐳𝑁−2𝐷𝑖𝑣

𝛻𝐳𝑁−2𝐷𝑖𝑣 = 𝛻𝐲𝑁−2
𝐷𝑖𝑣 𝐽𝐲𝑁−2

𝐳𝑁−2

𝐳𝑁

𝐲𝑁−1𝐳𝑁−1𝐲𝑁−2

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

23



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝛻𝐳1𝐷𝑖𝑣 = 𝛻𝐲1𝐷𝑖𝑣 𝐽𝐲1 𝐳1

𝐳𝑁

𝐲𝑁−1𝐳𝑁−1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

𝐳𝑁−2 𝐲𝑁−2

24



The backward pass
𝐖1 , 𝐛1

𝐖𝑁 , 𝐛𝑁

𝐘

𝐖𝑁−1 , 𝐛𝑁−1 𝐝

𝐷𝑖𝑣

𝐳𝑁

𝐲𝑁−1𝐳𝑁−1

𝛻𝐖1
𝐷𝑖𝑣 = 𝐱𝛻𝐳1𝐷𝑖𝑣

𝛻𝐛1𝐷𝑖𝑣 = 𝛻𝐳1𝐷𝑖𝑣

In some problems we will also want to compute
the derivative w.r.t. the input

𝐳1

𝐷
𝑖𝑣
(𝑌
,𝑑
)

So
ft

m
ax

25



The Backward Pass

• Set 𝐲𝑁 = 𝑌, 𝐲0 = 𝐱

• Initialize:  Compute 𝛻𝐲𝑁𝐷𝑖𝑣 = 𝛻𝑌𝐷𝑖𝑣

• For layer k = N downto 1:
– Recursion:

𝛻𝐳𝑘𝐷𝑖𝑣 = 𝛻𝐲𝑘𝐷𝑖𝑣 𝐽𝐲𝑘 𝐳𝑘
𝛻𝐲𝑘−1𝐷𝑖𝑣 = 𝛻𝐳𝑘𝐷𝑖𝑣𝐖𝑘

– Gradient computation:
𝛻𝐖𝑘

𝐷𝑖𝑣 = 𝐲𝑘−1𝛻𝐳𝑘𝐷𝑖𝑣

𝛻𝐛𝑘𝐷𝑖𝑣 = 𝛻𝐳𝑘𝐷𝑖𝑣

26



Neural network training algorithm
• Initialize all weights and biases 𝐖1, 𝐛1,𝐖2, 𝐛2, … ,𝐖𝑁 , 𝐛𝑁

• Do:

– 𝐸𝑟𝑟 = 0

– For all 𝑘,  initialize 𝛻𝐖𝑘
𝐸𝑟𝑟 = 0, 𝛻𝐛𝑘𝐸𝑟𝑟 = 0

– For all 𝑡 = 1:𝑇
• Forward pass : Compute 

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐖𝑘

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);  𝛻𝐛𝑘𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖𝑘
𝐸𝑟𝑟 += 𝛻𝐖𝑘

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);   𝛻𝐛𝑘𝐸𝑟𝑟 += 𝛻𝐛𝑘𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all 𝑘, update:

𝐖𝑘 = 𝐖𝑘 −
𝜂

𝑇
𝛻𝐖𝑘

𝐸𝑟𝑟
𝑇

;        𝐛𝑘 = 𝐛𝑘 −
𝜂

𝑇
𝛻𝐖𝑘

𝐸𝑟𝑟
𝑇

• Until 𝐸𝑟𝑟 has converged

27



Quick Recap

• Gradient descent, Backprop

• The issues with backprop and gradient descent

– 1. Minimizes a loss which relates to classification 
accuracy, but is not actually classification accuracy

• The divergence is a continuous valued proxy to 
classification error

• Minimizing the loss is expected to, but not guaranteed to 
minimize classification error

– 2. Simply minimizing the loss is hard enough..

28



Quick recap: Problem with gradient descent

• A step size that assures fast convergence for a given eccentricity can result in 
divergence at a higher eccentricity

• .. Or result in extremely slow convergence at lower eccentricity 

𝑤1 𝑤2

𝐿(𝑊) 𝐿(𝑊)

𝑤2

𝑤1

𝑤1 𝑤2

𝐿(𝑊) 𝐿(𝑊)

𝑤2

𝑤1

𝑊𝑘 = 𝑊𝑘−1 − 𝜂𝛻𝑤𝐿 𝑊 𝑇

29



Quick recap: Problem with gradient 
descent

• The loss is a function of many weights (and biases)

– Has different eccentricities w.r.t different weights

• A fixed step size for all weights in the network can result in 
the convergence of one weight, while causing a divergence 
of another

𝑤2

𝑤1

𝑤2

𝑤1

𝐿(𝑊) 𝐿(𝑊)

30



Quick Recap

• Gradient descent, Backprop

• The issues with backprop and gradient descent

• Momentum methods..

31



Momentum methods: principle

• Ideally:  Have component-specific step size

– Too many independent parameters (maintain a step size for every weight/bias)

• Adaptive solution: Start with a common step size

– Shrink step size in directions where the weight oscillates

– Expand step size in directions where the weight moves consistently in one direction

𝑤1

𝐿(𝑊)

Increase stepsize because 
previous updates consistently 
moved weight right

𝑤2

𝐿(𝑊)

Decrease stepsize because 
previous updates kept
changing direction

𝑤2

𝑤1

Stepsize shrinks along w2
but increases along w1

k=1

k=2

k=3

𝑊𝑘 = 𝑊𝑘−1 − 𝜂𝛻𝑤𝐿 𝑊 𝑇

32



Quick recap: Momentum methods

• Momentum: Retain gradient value, but smooth out 
gradients by maintaining a running average

– Cancels out steps in directions where the weight value oscillates

– Adaptively increases step size in directions of consistent change

∆𝑊 (𝑘) = 𝛽∆𝑊 (𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊 (𝑘−1)

Momentum Nestorov

𝑊𝑒𝑥𝑡𝑒𝑛𝑑
(𝑘)

= 𝑊 (𝑘−1) + 𝛽∆𝑊 (𝑘−1)

∆𝑊 (𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊𝑒𝑥𝑡𝑒𝑛𝑑
(𝑘)

𝑊 (𝑘) = 𝑊(𝑘−1) + ∆𝑊 (𝑘)

33



Recap

• Neural networks are universal approximators

• We must train them to approximate any 

function

• Networks are trained to minimize total “error” 

on a training set

– We do so through empirical risk minimization

• We use variants of gradient descent to do so

– Gradients are computed through backpropagation

34



Recap

• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through

– Second order methods that normalize the variation across 

dimensions

– Adaptive or decaying learning rates that can improve 

convergence

– Methods like Rprop that decouple the dimensions can 

improve convergence

– Momentum methods which emphasize directions of 

steady improvement and deemphasize unstable directions

35



Moving on: Topics for the day

• Incremental updates

• Revisiting “trend” algorithms

• Generalization

• Tricks of the trade

– Divergences..

– Activations

– Normalizations

36



Moving on: Topics for the day

• Incremental updates

• Revisiting “trend” algorithms

• Generalization

• Tricks of the trade

– Divergences..

– Activations

– Normalizations

37



The training formulation

• Given input output pairs at a number of 
locations, estimate the entire function

Input (X)

output (y)

38



Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required 
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the 
training points

39



Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required 
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the 
training points

40



Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required 
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the 
training points

41



Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required 
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the 
training points

42



Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required 
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the 
training points

43



Effect of number of samples

• Problem with conventional gradient descent: we try to 
simultaneously adjust the function at all training points

– We must process all training points before making a single 
adjustment

– “Batch” update

44



Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will 
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch” 
update

45



Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will 
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch” 
update

46



Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will 
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch” 
update

47



Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will 
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch” 
update

48



Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will 
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch” 
update

49



Incremental Update: Stochastic 
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇

• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾

• Do:

– For all 𝑡 = 1:𝑇

• For every layer 𝑘:

– Compute  𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 − 𝜂𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
50



Caveats: order of presentation

• If we loop through the samples in the same 

order, we may get cyclic behavior

51



Caveats: order of presentation

• If we loop through the samples in the same 

order, we may get cyclic behavior

• We must go through them randomly

52



Caveats: order of presentation

• If we loop through the samples in the same 

order, we may get cyclic behavior

53



Caveats: order of presentation

• If we loop through the samples in the same 

order, we may get cyclic behavior

54



Caveats: order of presentation

• If we loop through the samples in the same 

order, we may get cyclic behavior

55



Caveats: order of presentation

• If we loop through the samples in the same order, 

we may get cyclic behavior

• We must go through them randomly to get more 

convergent behavior
56



An explanation that’s sometimes 
given

• Look at an extreme example

57



The expected behavior of the gradient

• The individual training instance contribute different directions to the 
overall gradient

– The final gradient points is the average of individual gradients

– It points towards the net direction
58

𝑑𝐸(𝑾(1) ,𝑾(2) , … ,𝑾 𝐾 )

𝒅𝑤
𝑖 ,𝑗

(𝑘) =
𝟏

𝑻


𝒊

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊;𝑾
(1) ,𝑾(2) , … ,𝑾(𝐾))

𝒅𝑤
𝑖 ,𝑗

(𝑘)



Extreme example

• Extreme instance of data clotting:  all the 

training instances are exactly the same

59

𝑋1 = 𝑋2 = ⋯ = 𝑋𝑇



The expected behavior of the gradient

• The individual training instance contribute identical 
directions to the overall gradient

– The final gradient points is simply the gradient for an individual 
instance

60

𝑑𝑬

𝒅𝑤
𝑖 ,𝑗

(𝑘)
=
𝟏

𝑻


𝒊

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤
𝑖 ,𝑗

(𝑘)
=
𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤
𝑖,𝑗

(𝑘)



Batch vs SGD

• Batch gradient descent operates over T training instances 
to get a single update

• SGD gets T updates for the same computation
61

𝑋1 = 𝑋2 = ⋯ = 𝑋𝑇



Clumpy data..

• Also holds if all the data are not identical, but 

are tightly clumped together
62

𝑋1 ≈ 𝑋2 ≈ ⋯ ≈ 𝑋𝑇



Clumpy data..

• As data get increasingly diverse, the benefits of incremental 
updates decrease, but do not entirely vanish

63



Returning to our storyline

64



Caveats: learning rate

• Except in the case of a perfect fit, even an optimal overall 
fit will look incorrect to individual instances

– Correcting the function for individual instances will lead to 
never-ending, non-convergent updates

– We must shrink the learning rate with iterations to prevent this

• Correction for individual instances with the eventual miniscule 
learning rates will not modify the function

Input (X)

output (y)

65



Incremental Update: Stochastic 
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾;   𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For all 𝑡 = 1: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer 𝑘:

– Compute  𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 −𝜂𝑗𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
66



Incremental Update: Stochastic 
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾;   𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For all 𝑡 = 1: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer 𝑘:

– Compute  𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 −𝜂𝑗𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
67

Randomize input order

Learning rate reduces with j



Stochastic Gradient Descent

• The iterations can make multiple passes over 
the data

• A single pass through the entire training data 
is called an “epoch”

– An epoch over a training set with 𝑇 samples 
results in 𝑇 updates of parameters

68



Story so far

• In any gradient descent optimization problem, 
presenting training instances incrementally 
can be more effective than presenting them 
all at once

– Provided training instances are provided in 
random order

– “Stochastic Gradient Descent”

• This also holds for training neural networks

69



When does SGD work

• SGD converges “almost surely” to a global or local minimum for most 
functions

– Sufficient condition: step sizes follow the following conditions



𝑘

𝜂𝑘 = ∞

• Eventually the entire parameter space can be searched



𝑘

𝜂𝑘
2 < ∞

• The steps shrink

– The fastest converging series that satisfies both above requirements is 

𝜂𝑘 ∝
1

𝑘
• This is the optimal rate of shrinking the step size for strongly convex functions

– More generally, the learning rates are heuristically determined 

• If the loss is convex, SGD converges to the optimal solution

• For non-convex losses SGD converges to a local minimum
70



SGD convergence

• We will define convergence in terms of the number of iterations taken to 
get within 𝜖 of the optimal solution

– 𝑓 𝑊 (𝑘) − 𝑓 𝑊∗ < 𝜖

– Note: 𝑓 𝑊 here is the error on the entire training data, although SGD itself 
updates after every training instance

• Using the optimal learning rate 1/𝑘, for strongly convex functions, 

– Strongly convex → Can be placed inside a quadratic bowl, touching at any point

– Giving us the iterations to 𝜖 convergence as 𝑂
1

𝜖

• For generically convex (but not strongly convex) function, various proofs 

report an 𝜖 convergence of  
1

𝑘
using a learning rate of 

1

𝑘
.

71



Batch gradient convergence

• In contrast, using the batch update method, for strongly 
convex functions, 

𝑊(𝑘) −𝑊∗ < 𝑐𝑘 𝑊(0) −𝑊∗

– Giving us the iterations to 𝜖 convergence as 𝑂 𝑙𝑜𝑔
1

𝜖

• For generic convex functions, iterations to 𝜖 convergence 

is 𝑂
1

𝜖

• Batch gradients converge “faster”

– But SGD performs 𝑇 updates for every batch update
72



SGD Convergence: Loss value

If:

• 𝑓 is 𝜆-strongly convex, and 

• at step 𝑡 we have a noisy estimate of the 
subgradient ො𝑔𝑡 with 𝔼 ො𝑔𝑡

2 ≤ 𝐺2 for all 𝑡, 

• and we use step size 𝜂𝑡 = Τ1 𝜆𝑡

Then for any 𝑇 > 1:

73



SGD Convergence

• We can bound the expected difference between the 
loss over our data using the optimal weights 𝑤∗ and 

the weights 𝑤𝑇 at any single iteration to 𝒪
log(𝑇)

𝑇
for 

strongly convex loss or 𝒪
log(𝑇)

𝑇
for convex loss

• Averaging schemes can improve the bound to 𝒪
1

𝑇

and 𝒪
1

𝑇

• Smoothness of the loss is not required

74



SGD Convergence and weight 
averaging

Polynomial Decay Averaging:

With 𝛾 some small positive constant, e.g. 𝛾 = 3

Achieves (strongly convex) and 

(convex) convergence

75



SGD example

• A simpler problem: K-means

• Note: SGD converges slower

• Also note the rather large variation between runs

– Lets try to understand these results.. 76



Recall: Modelling a function

• To learn a network 𝑓 𝑋;𝑾 to model a function 𝑔(𝑋) we 
minimize the expected divergence

= argmin
𝑊

𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
77

𝑌 = 𝑓(𝑋;𝑾) 𝑔(𝑋)


