! MachineLearning For SignalProwssing. Group

Training Neural Networks:
Optimization

Intro to Deep Learning, Fall 2018

Quick Recap

* Gradient descent, Backprop

Quick Recap: Training a network

Total loss

Sum over all

training instances

Divergence between desired output and
actual output of net for a given intput X

N

Output of net in
response to input X
Desired output
/ in response to input X

L(W) ==) div(f(X;W),D(X))

XX

W = arg mmi/n L(W)

* Define a total “loss” over all training instances

— Quantifies the difference between desired output and the actual
output, as a function of weights

* Find the weights that minimize the loss

Quick Recap: Training networks by
gradient descent

1
L(W) = N—XZ div(f (X; W), D(X))
X

1
Vo L(W) = N—Xz V div(f(X; W), D(X))

Solved through
radient descent as

W = argmmi/n L(W)| 1 > W, =W,_; —nV,L(W)T

The gradient of the total loss is the average of the gradients of the
loss for the individual instances

The total gradient can be plugged into gradient descent update to
learn the network

Quick Recap: Training networks by

gradient descent
_ 1 x| Computed using
YW= Z backpropagation

1
Vo L(W) = N—XZ V div(f(X; W), D(X))

Solved through
radient descent as

W = argmmi/n L(W)| 1 > W, =W,_; —nV,L(W)T

The gradient of the total loss is the average of the gradients of the
loss for the individual instances

The total gradient can be plugged into gradient descent update to
learn the network

Quick recap of backprop: forward pass

X

X

* Forward pass: Compute output and all intermediate variables in the
network, for the input X

Quick recap of backprop: forward pass

X

Z,4

Z1 = W1X+b1
* Forward pass: Compute output and all intermediate
variables in the network, for the input X

Quick recap of backprop: forward pass

* Forward pass: Compute output and all intermediate
variables in the network, for the input X

Quick recap of backprop: forward pass

* Forward pass: Compute output and all intermediate
variables in the network, for the input X

Quick recap of backprop: forward pass

V2 = [2(z2)
* Forward pass: Compute output and all intermediate
variables in the network, for the input X

Quick recap of backprop: forward pass

: Zy = Wyyn—1 + by

* Forward pass: Compute output and all intermediate
variables in the network, for the input X

11

Quick recap of backprop: forward pass

* Forward pass: Compute output and all intermediate
variables in the network, for the input X

12

The Forward Pass

* Setyy, =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr_1 + by
Vi = fr(Z)
* Output:
Y =yy

Quick Recap: Backprop. Forward pass

w,,b,) v e

x A

- s

Ely| —biv
o= o

@)

s Q

* Forward pass: Compute output and all intermediate
variables in the network, for the input X

 Compute the divergence w.r.t. desired output

14

Quick Recap: Backpropagation

— Div

Div(Y,d) «— o

* Now work your way backward through the net to
compute the derivative w.r.t each intermediate
variable and each weight/bias 15

Backprop

— Div

First compute the gradient of the divergence w.r.t.Y.
The actual gradient depends on the divergence function.

Backprop

X Zy V1

VZNDiv — VyDivjy(ZN)

Chain rule (vector format; note order of multiplication)

17

The backward pass

VWNDi’U — yN_lvaDiv
VbNDiU = ‘7ZNDiU

Backprop

— Div

X Zy V1

V,,_,Div =V, Div Wy 7,

Chain rule (vector format; note order of multiplication)
19

The backward pass

— Div

V. YN—1DiU]YN—1(ZN—1) ﬂ

v P =1, |
The Jacobian will be a diagonal \7ZN_1Dlv
matrix for scalar activations

Chain rule (vector format; note order of multiplication) -

— Div

v = Div
Zy_1 = Wy_1Yn—2 + by4
’ —_— - 21

The backward pass

The backward pass

The backward pass

V., Div =V, Div], (Z;)

The backward pass

— Div

Vw,Div = xV, Div In some problems we will also want to compute
. . the derivative w.r.t. the input
Vp,Div =V, Div P

25

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute Vy Div = VyDiv

* For layer k =N downto 1:

— Recursion:
V. Div ="V, Div], (z)
V., Div =V, Div Wy,
— Gradient computation:
Vw, Div = y_1V, Div

kaDiv - VZkDiU

26

Neural network training algorithm

* Initialize all weights and biases (W,,b,,W,,b,, ..., Wy, by)
* Do:

— Err=0
— Forall k, initialize VwkErr = (), kaErr =0
— Forallt = 1:T

* Forward pass: Compute
— Output Y(X;)
— Divergence Div(Y,, d;)
— Err += Div(Y,, d;)

* Backward pass: For all kK compute:
- Vkaiv(Yt, dt); kaDl'V(Yt, dt)
— Vw Err += Vy Div(Y, d,); Vy Err += 1, Div(Y,, d;)

— For all k, update:
n T n T
Wk = Wk — ;(VwkET'T) ; bk = bk — ;(VwkETT')
 Until Err has converged

27

Quick Recap

* Gradient descent, Backprop

* The issues with backprop and gradient descent

— 1. Minimizes a loss which relates to classification
accuracy, but is not actually classification accuracy

* The divergence is a continuous valued proxy to
classification error

* Minimizing the loss is expected to, but not guaranteed to
minimize classification error

— 2. Simply minimizing the loss is hard enough..

Quick recap: Problem with gradient descent

L(W) L(W) W M

v
v

L(W) L(W)

v
v

Wl WZ W2

. Wk = Wk—l — nVWL(W)T o _
e A step size that assures fast convergence for a given eccentricity can resultin

divergence at a higher eccentricity

.. Orresultin extremely slow convergence at lower eccentricity 29

Quick recap: Problem with gradient
descent

\ L(W) : ~\ T Zewny
151 15 f 1
Wl 0r Wl on _
5t 5t |
-20 . .

20
20 -10 0 10 20

* Thelossis a functlon of many weights (and biases)
— Has different eccentricities w.r.t different weights

* A fixed step size for all weights in the network can result in
the convergence of one weight, while causing a divergence
of another

30

Quick Recap

* Gradient descent, Backprop
* The issues with backprop and gradient descent

e Momentum methods..

A A

L(W) \ L(W)

v

1441
: : W2
Increase stepsize because Decrease stepsize because : :
previous updates consistently previous updates kept Step_5|ze shrinks along w2
moved weight right changing direction but increases along w1l

e |deally: Have component-specific step size
— Too many independent parameters (maintain a step size for every weight/bias)
* Adaptive solution: Start with a common step size

— Shrink step size in directions where the weight oscillates

— Expand step size in directions where the weight moves consistently in one direction
32

Quick recap: Momentum methods

Momentum Nestorov

AW ®) = pAW k=1 — ni, Err(W *-1))

W(k) — W(k—l) + ﬁAW(k_l)

extend

AW = BAW *=D — p7, Err (W(k))

extend

w® = wk-1D L AW &

e Momentum: Retain gradient value, but smooth out
gradients by maintaining a running average

— Cancels out steps in directions where the weight value oscillates
— Adaptively increases step size in directions of consistent change

33

Recap

Neural networks are universal approximators

We must train them to approximate any

function

Networks are trained to minimize total “error”

on a training set
— We do so through empirical risk minimization
We use variants of gradient descent to do so

— Gradients are computed through backpropagation

Recap

* Vanilla gradient descent may be too slow or unstable

e Better convergence can be obtained through

— Second order methods that normalize the variation across
dimensions

— Adaptive or decaying learning rates that can improve
convergence

— Methods like Rprop that decouple the dimensions can
improve convergence

— Momentum methods which emphasize directions of
steady improvement and deemphasize unstable directions

Moving on: Topics for the day

Incremental updates
Revisiting “trend” algorithms
Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations

Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms
Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations

The training formulation

> _n
el g

. .

3 .
G .
* *
. .
« .

.
o*
-

.

.
.

..........

output (y)

* Given input output pairs at a number of
locations, estimate the entire function

L4

Gradient descent

...
.
~
e.. JReEs
REETTTL A

' \h_al

L LLLE
.
.

.
.
.
®

PELLER]
Leet 9.,

Start with an initial function

v

39

Gradient descent

A

...... 9.,
........
- . - .*
| LT ‘ '..’ /’ \\ ““
' \
,/ R \
L3
,,/ . “‘0
- -
U4 .'. “‘
U4 Ya, -\
’ \
T.. © .
&” Ss=” S
~ -——
/’ ~N~ /” -~~~..
-~
h--__—f
4 4 L4 \ 4 @ >

e Start with an initial function

e Adjustits value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

40

Gradient descent

e Start with an initial function

e Adjustits value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

41

Gradient descent

e Start with an initial function

e Adjustits value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

42

Gradient descent

e Start with an initial function

e Adjustits value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points

43

Effect of number of samples

A

* Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points

— We must process all training points before making a single
adjustment

— “Batch” update

44

Alternative: Incremental update

A

Ty
wut®
.®
.
.
.
.
.®
.
o*
.

- * L
- -I-....:
-

Alternative: adjust the function at one training point at a time
— Keep adjustments small

45

Alternative: Incremental update

A
o
™,
..
.
‘e

.

.
.

.........

1

v

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

46

Alternative: Incremental update

A
............. '..
......
b . = .®
| STt ‘ ,’4 \\\ ““
g 'L
.
C
*
4,. \ “’
.... -\‘
‘N», \\\
o San-”’ AN

,/ N~~ ”¢ ~~~’,‘..‘0
-~ P
—————
4 4 L4 \ 4 @ >

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

Alternative: Incremental update

A

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

48

Alternative: Incremental update

A

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

— Eventually, when we have processed all the training points, we will
have adjusted the entire function

* With greater overall adjustmentthan we would if we made a single “Batch”
update

49

Incremental Update: Stochastic
Gradient Descent

Given (X{,d,), (X,,d5),..., X7, d7)
nitialize all weights Wy, W,, ..., Wy
DO:

—Forallt = 1:T

* For every layer k:

— Compute Vi, Div(Y,, d;)
— Update
Wk — Wk - T’VWkDiv(Yt' dt)

Until E7r has converged

50

Caveats: order of presentation

* If we loop through the samples in the same

order, we may get cyclic behavior

51

Caveats: order of presentation

I :>

* If we loop through the samples in the same

order, we may get cyclic behavior

* We must go through them randomly

52

Caveats: order of presentation

A
//”——

* If we loop through the samples in the same
order, we may get cyclic behavior

53

Caveats: order of presentation

_____ .._________)_,4’._____

* If we loop through the samples in the same
order, we may get cyclic behavior

54

Caveats: order of presentation

* If we loop through the samples in the same
order, we may get cyclic behavior

55

Caveats: order of presentation

* |f we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior

56

An explanation that’s sometimes
given

* Look at an extreme example

57

The expected behavior of the gradient

dE(WDO w®, . wEy 1

k)
dwi, j T

dDiv(Y (X)), dz WO, w®@, . wi)

(k)
dwi,].

SIS

' SO
\ IR 0%
e NIRRT
R R oS \
R

* The individual training instance contribute different directions to the

overall gradient

— The final gradient points is the average of individual gradients

— It points towards the net direction

58

Extreme example

* Extreme instance of data clotting: all the
training instances are exactly the same

The expected behavior of the gradient

dE 1 Z dDiv(Y (X;), d;) dDiv(Y(X;), d;)

GRE k) - (k)
dwl.’j T ; dWl.J. dwl.’j

R anaav sy ee ey
N \\\\\\\“‘:\‘\\’ 0K, 'l/” T
e SIS XA A btrrral’ls
L) R &?‘lll/,,//,//l»/.’ y
: ; ,l,v"//[/;ll/,/,,
1100/}

N AT AP
! AR R
N NSNS

* The individual training instance contribute identical
directions to the overall gradient

— The final gradient points is simply the gradient for an individual

instance
60

Batch vs SGD

e Batch gradient descent operates over T training instances
to get a single update

e SGD gets T updates for the same computation

Clumpy data..

* Also holds if all the data are not identical, but
are tightly clumped together

62

Clumpy data..

* As data getincreasingly diverse, the benefits of incremental
updates decrease, but do not entirely vanish

63

Returning to our storyline

Caveats: learning rate

output (y)

Input (=X)
* Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances

— Correcting the function for individual instances will lead to
never-ending, non-convergent updates

— We must shrink the learning rate with iterations to prevent this

e Correction for individual instances with the eventual miniscule
learning rates will not modify the function

Incremental Update: Stochastic

Gradient Descent

Given (X, d), (X,,d,),..., (X, d7)
Initialize all weights W, W,,, ..., Wy, j =0
Do:
— Randomly permute (X, d,), (X5, d5),..., (X7, d7)
— Forallt = 1:T

cj=j+1

* For every layer k:

— Compute Vy, Div(Y,, d;)

— Update
Wk — Wk — T]] VWkDiv(Ytl dt)

Until E7r has converged

66

Incremental Update: Stochastic

Gradient Descent
* Given (X;,d;), (X3,d3),..., (X7, d7)
* Initialize all weights W, W,, ..., Wy; j=0
* Do:

— Randomly permute (X3, dq), (X3, d3),..., (X7, dr)
— Forallt = 1:T T

Randomize input order

* Forevery layer k: Learning rate reduces with |

— Compute Vy,, Div(Y,, d;)
— Update /

W, = W, —@VWkDiv(Yt, d,)
* Until Err has converged

67

Stochastic Gradient Descent

* The iterations can make multiple passes over
the data

* Asingle pass through the entire training data
is called an “epoch”

— An epoch over a training set with T samples
results in T updates of parameters

Story so far

* In any gradient descent optimization problem,
presenting training instances incrementally
can be more effective than presenting them
all at once

— Provided training instances are provided in
random order

— “Stochastic Gradient Descent”

* This also holds for training neural networks

When does SGD work

* SGD converges “almost surely” to a global or local minimum for most
functions

— Sufficient condition: step sizes follow the following conditions

Zﬂk:w
k

* Eventually the entire parameter space can be searched
2,k <e
K

— The fastest converging series that satisfies both above requirements is

1

oc_
Nk i

* This is the optimal rate of shrinking the step size for strongly convex functions

* The steps shrink

— More generally, the learning rates are heuristically determined
e |Ifthelossis convex, SGD converges to the optimal solution
* Fornon-convexlosses SGD converges to a local minimum

SGD convergence

We will define convergence in terms of the number of iterations taken to
get within € of the optimal solution

- [fW®) —fw)
— Note: f(W) here is the error on the entire training data, although SGD itself
updates after every training instance

<€

Using the optimal learning rate 1/k, for strongly convex functions,

1
|W®—W*<ﬂW®—W*

— Strongly convex = Can be placed inside a quadratic bowl, touching at any point

. , : 1
— Giving us the iterations to € convergence as O (E)

For generically convex (but not strongly convex) function, various proofs
1, : 1
report an € convergence of —= using a learning rate of —.
P g = g g e

Batch gradient convergence

In contrast, using the batch update method, for strongly
convex functions,

|lw® —w+

< cklw©® —w+

— Giving us the iterations to € convergence as O (log (1))

€
For generic convex functions, iterationsto € convergence
: 1
is O (—)
€

Batch gradients converge “faster”
— But SGD performs T updates for every batch update

SGD Convergence: Loss value

If:
* fis A-strongly convex, and

e at step t we have a noisy estimate of the
subgradient g, with E[||g:||?] < G* for all t,

* and we use step size ; = 1/,,

Then forany T > 1:

17G*(1 + log(T
BIF(wr) — fw)] < o 08T

SGD Convergence

 We can bound the expected difference between the
loss over our data using the optimal weights w* and

the weights w at any single iterationto O (logT(T)) for
log(T)
VT

strongly convex loss or 0 () for convex loss

* Averaging schemes can improve the boundto O (%)

and O (\/if)

* Smoothness of the loss is not required

74

SGD Convergence and weight
averaging

Polynomial Decay Averaging:
+ 1 + 1
Wty=<1 4)v—vtyl+y Wi
t+y t+y
With y some small positive constant, e.g. y = 3

Achieves O (%) (strongly convex) and O (\/LT)

(convex) convergence

SGD example

K=10
0.04 T — r —T g —T T T T — T

SlGD K:MlB:'?:lnS -—— 1
Batch K-Means

0.035 |-
0.03 |-

0.025 |

0.02 |-

0.015 |

0.01 |]

Error from Best K-Means Objective Function Value

0.005 |]

0 | | 1
0.0001 0.00M 0.01 0.1 1 10 100 1000
Training CPU secs

 Asimpler problem: K-means
 Note: SGD converges slower

* Also note the rather large variation between runs
— Lets try to understand these results..

Recall: Modelling a function

Y =f(X; W) gX)

AN
N

* Tolearn a network f(X; W) to model a function g(X) we

minimize the expected divergence

W= argminf div(f(X; W),g(X))P(X)dX
w X

= argmin E[div(F(X; W), g(X))]
w

77

