
11-785 / Fall 2018 / Recitation 7

Raphaël Olivier

Recurrent Neural Networks

Recap : RNNs are magic

● They have infinite memory
● They handle all kinds of series
● They’re the basis of recent NLP : Translation, speech

recognition, speech synthesis, etc.
● Have you noticed how Google Translate suddenly became

good in November 2016 ?

Recap : RNNs are hard to train

They suffer from :
● Saturation
● Vanishing/exploding gradients
● Complex loss surfaces with tons of bad local minima
● They don’t like usual dropout
● ...

LSTMs/GRUs address some of these issues, but they’re not
perfect.

When you use RNNs, you have to try a lot, and look up for
solutions in papers.

News : RNNs are hard to implement

Or at least a bit harder than other networks.

That’s what this recitation is for.

Today we’ll create a language model, a simple example of task
that uses RNNs.

Make sure you have the notebook within reach.

Plan for today

● Language models (HW3p1)
● RNNs in Pytorch
● Train a RNN
● Generation with a RNN
● Variable length inputs

Sequence-based tasks

Many to one One to many

Ex : text classification Ex : sentence generation

Sequence-based tasks

 Many to many Many to many

Ex : machine translation Ex : POS tagging

Language models

Goal : predict the “probability of a sentence” P(E)
i.e. how likely it is to be an actual sentence.

Useful as a sub-task in many contexts. Ex : fluency assessment in
machine translation

Building a language model is an unsupervised task…. and also a
many-to-many one.

Language models

We now have a sequence to predict :

 are the inputs

 are the outputs

And we can train with cross-entropy !

Recurrent language models

Without infinite memory ?

Non-recurrent architectures make the n-gram assumption to be
able to use finite memory :

Ex n=3 :

→ Non-neural count-based models, MLP with finite window, etc.

Recurrent networks have infinite memory so they don’t need that
assumption.

RNN modules in pytorch

● num_layers is the number of stacked (vertical) layers
● dropout is the dropout between stacked layers

The .forward() method takes an input of size
seq_length x batch_size x input_size
and an optional initial hidden state (defaults to 0) of size
num_layers x batch_size x hidden_size. It returns an output of
same size and the final hidden state.

RNN modules in pytorch

Important : the outputs are exactly the hidden states of the final
layer. Hence if the model returns y,h :
y[-1] == h[-1]

Similar classes for LSTM and GRU, but for LSTM, h is a tuple
(hidden_state, memory_cell)

RNN modules in pytorch

Sometimes you want to have more control between the stacked
layers and the time steps (for example to access the intermediate
hidden states).

For that you have the RNNCell module.

It takes an input of size batch_size x input_size and a hidden
state, and returns the next hidden state.

Other layers in a LM

After the RNN module, you stack a linear layer of size

hidden_size x vocabulary_size

Before it, you need a word projection aka an embedding.

Takes a LongTensor of arbitrary shape.

Training a LM

Now you need batches to feed your model. Initially, you only
have one big text.

The simplest way :
● Fix a sequence length L
● Concatenate all your words into one big (long) tensor of size

N
● Divide it into N // L tensors of size L
● These are your elements.

Even if you train on a fixed size, the network should learn to
generate text of arbitrary length.

Evaluate your model

To evaluate how good your model is, you usually feed it with
actual text from the (validation) set and look at :
● The loss per word : l = loss/n_words
● The perplexity : p = exp(l)

It quantifies how well your model predicts that sentence.

Let’s try all that out !

Prediction

Language models are usually used in other downstream tasks.
But you can use them to generate some text given a beginning.

As in MLPs for classification, you want to predict the most likely
element from your output distribution

Generate one word is straightforward : you feed your text, get
the last output (probability distribution on the vocabulary) and
predict its argmax.

Generation

To generate N words, you have N*vocabulary_size possible
sequences. Recall that

To know each sentence’s probability you’d need to feed all
(N-1)-length beginnings → (N-1) * vocabulary_size forward passes !
Unfeasible.

→ Need another way to get the most likely sequence, or at least a
very likely one.

Greedy search

Idea : if at each step you take the most likely word, the overall
sentence should be likely too.
It’s called greedy search :
● At step t, select the most likely word from your distribution

over the vocabulary
● Use it as input at step t+1

It’s the most simple inference method (and also not the best).

Let’s try it out !

Random search

● At step t, sample a word from your distribution over the
vocabulary

● Use it as input at step t+1

Not obviously better than greedy search but you can apply it
several times, get different results, and take the likeliest one.

Beam search

Same as greedy search but you keep the n best words at each step
rather than the one best. n is the beam size.

You store and update a list of hypothesis.

When increasing n, you get rather close from the most likely
sentence.

Most research papers’ favorite, but a bit trickier to implement.

And that’s all with LMs

Are we done ?

And that’s all with RNNs

Are we done ?
.
.
.
.
.
.
… Not exactly.

And that’s all with RNNs

Are we done ?
.
.
.
.
.
.
… Not exactly.

Let’s go back a few slides.

Training a LM

Now you need batches to feed your model. Initially, you only
have one big text.

The simplest way :
● Fix a sequence length L
● Concatenate all your words into one big (long) tensor of size

N
● Divide it into N // L tensors of size L
● These are your elements.

Even if you train on a fixed size, the network should learn to
generate text of arbitrary length.

Training a LM

Now you need batches to feed your model. Initially, you only have
one big text.

The simplest way :
● Fix a sequence length L
● Concatenate all your words into one big (long) tensor of size N
● Divide it into N // L tensors of size L
● These are your elements.

Even if you train on a fixed size, the network should learn to
generate text of arbitrary length.

Limits of fixed-length inputs

For language models trained on one large set, creating batches is

rather easy.

For language models trained on several large texts (ex: WSJ articles),

you can get fixed-length sequences from separate texts too.

But for supervised NLP tasks, that’s never how it works.

Limits of fixed-length inputs

In Machine Translation, Speech recognition,etc. you have pairs of

sequences.

ex : I like apples → J’aime les pommes

You need to keep these sequences as is to learn something.

We’re not dealing with any of these specific applications today but to

learn RNNs you need to learn how to deal with variable length inputs.

In this recitation, we’ll stick with language models anyway.

Variable-length inputs

Your dataset is now a list of N sequences of different lengths.

A tensor has fixed dimensions.

How do you feed that in batches to your RNN ?

Variable-length inputs

Idea #1
Use batches of size 1.

Advantages : the simplest, and you can still do minibatch
optimization by accumulating the gradients over several
examples

Problems : It’s really, really slow.

Conclusion : you may start with that for your prototype, but do
better when you begin actual training.

Variable-length inputs

Idea #2
Look for sequences of same size and do batches with them

Advantages : Normally fast, not too complex

Problems : Usually you can’t do it : in many applications pairs of
sequences have different lengths, and finding many several pairs
with same length elements is unreasonable.

Conclusion : if you can, consider doing it.

Variable-length inputs

Idea #3
Look for sequences of close sizes and pad

Advantages : You can find them

Problems : Usually no “natural” way to pad, so your loss will be
noisy

Conclusion : don’t do it

Variable-length inputs

Idea #4
Pad and remove noisy elements before computing the loss (ex:
with a mask)

Advantages : Simultaneously quite fast, doable, and Pytorch
provides a pad_sequence method to help you.

Problems : You still lose time applying the RNN on zeros. With
just one big sequence you may get an unexpected CUDA error.
Implementation prone to bugs, hard to track and debug.

Conclusion : one of the recommended methods, but be careful.

Variable-length inputs

Idea #5
Build something up with several tensors for different time steps

Advantages : Faster than all of the previous ones

Problems : If you can implement that without bugs and mistakes,
honestly you’re a god.

Conclusion : don’t. Unless….

Variable-length inputs

Idea #5b
Use packed sequences (it’s idea #5 but some gods at facebook
did most of the godly work for you)

Advantages : Doable and the fastest. RNN modules are optimized
for it. Pytorch provides methods to help you.

Problems : At some point you pad, so unexpected CUDA errors
can still happen. Harder to implement and debug than #4
because of sorting. Network has to be changed.

Conclusion : recommended, but be extra careful.

Pad and pack sequences

Pad and pack sequences

Pad and pack sequences

You can go from padded to packed and packed to padded, but
need to track the lengths

Packed sequences and RNNs

A PackedSequence can be fed into RNN modules, but nothing else.

Packed sequences are on the same device as the padded sequence.

Let’s try this out in a language model !

Next

Sequence-to-sequence with RNNs :

CTC (HW3p2) (Rec. 8)
Encoder-decoder and attention (HW4) (Rec. 9)

Questions ?

