Recurrent Neural Networks 11-785 / Fall 2018 / Recitation 7 Raphaël Olivier #### Recap: RNNs are magic - They have infinite memory - They handle all kinds of series - They're the basis of recent NLP: Translation, speech recognition, speech synthesis, etc. - Have you noticed how Google Translate suddenly became good in November 2016? #### Recap: RNNs are hard to train #### They suffer from: - Saturation - Vanishing/exploding gradients - Complex loss surfaces with tons of bad local minima - They don't like usual dropout - ... LSTMs/GRUs address some of these issues, but they're not perfect. When you use RNNs, you have to try a lot, and look up for solutions in papers. #### News: RNNs are hard to implement Or at least a bit harder than other networks. That's what this recitation is for. Today we'll create a language model, a simple example of task that uses RNNs. Make sure you have the notebook within reach. # Plan for today - Language models (HW3p1) - RNNs in Pytorch - Train a RNN - Generation with a RNN - Variable length inputs # Sequence-based tasks #### Many to one #### One to many Ex: text classification Ex : sentence generation # Sequence-based tasks #### Many to many Ex: machine translation #### Many to many Ex: POS tagging #### Language models **Goal:** predict the "probability of a sentence" P(E) i.e. how likely it is to be an actual sentence. Useful as a sub-task in many contexts. Ex: fluency assessment in machine translation Building a language model is an unsupervised task.... and also a many-to-many one. #### Language models $$P(E) = P(e_1, e_2, ..., e_M)$$ $$= \prod_{m=1}^{M} P(e_m | e_1, ..., e_{m-1})$$ We now have a sequence to predict: $$(e_1,e_2,...,e_{M-1})$$ are the inputs $(e_2,e_3,...,e_M)$ are the outputs And we can train with cross-entropy! ### Recurrent language models # Without infinite memory? Non-recurrent architectures make the n-gram assumption to be able to use finite memory : Ex n=3: $$P(e_m|e_{m-1},...,e_1) = P(e_m|e_{m-1},e_{m-2})$$ → Non-neural count-based models, MLP with finite window, etc. Recurrent networks have infinite memory so they don't need that assumption. #### RNN modules in pytorch - num_layers is the number of stacked (vertical) layers - dropout is the dropout between stacked layers The .forward() method takes an input of size $seq_length \times batch_size \times input_size$ and an optional initial hidden state (defaults to 0) of size $num_layers \times batch_size \times hidden_size$. It returns an output of same size and the final hidden state. # RNN modules in pytorch **Important:** the outputs are exactly the hidden states of the final layer. Hence if the model returns y,h: $$y[-1] == h[-1]$$ Similar classes for LSTM and GRU, **but** for LSTM, h is a tuple (hidden_state, memory_cell) #### RNN modules in pytorch Sometimes you want to have more control between the stacked layers and the time steps (for example to access the intermediate hidden states). For that you have the RNNCell module. It takes an input of size *batch_size* x *input_size* and a hidden state, and returns the next hidden state. # Other layers in a LM After the RNN module, you stack a linear layer of size hidden_size x vocabulary_size Before it, you need a word projection aka an embedding. Takes a LongTensor of arbitrary shape. #### **Training a LM** Now you need batches to feed your model. Initially, you only have one big text. #### The simplest way: - Fix a sequence length L - Concatenate all your words into one big (long) tensor of size - Divide it into N // L tensors of size L - These are your elements. Even if you train on a fixed size, the network should learn to generate text of arbitrary length. # **Evaluate your model** To evaluate how good your model is, you usually feed it with actual text from the (validation) set and look at: - The loss per word : *I* = *loss/n_words* - The perplexity: p = exp(l) It quantifies how well your model predicts that sentence. Let's try all that out! #### **Prediction** Language models are usually used in other downstream tasks. But you can use them to generate some text given a beginning. As in MLPs for classification, you want to predict the most likely element from your output distribution Generate one word is straightforward: you feed your text, get the last output (probability distribution on the vocabulary) and predict its argmax. #### Generation To generate N words, you have N*vocabulary_size possible sequences. Recall that $$P(E) = P(e_1, e_2, ..., e_M)$$ $$= \prod_{m=1}^{M} P(e_m | e_1, ..., e_{m-1})$$ To know each sentence's probability you'd need to feed all (N-1)-length beginnings \rightarrow (N-1) * vocabulary_size forward passes ! Unfeasible. → Need another way to get the most likely sequence, or at least a very likely one. # **Greedy search** Idea: if at each step you take the most likely word, the overall sentence should be likely too. It's called greedy search: - At step t, select the most likely word from your distribution over the vocabulary - Use it as input at step t+1 It's the most simple inference method (and also not the best). Let's try it out! #### Random search - At step t, sample a word from your distribution over the vocabulary - Use it as input at step t+1 Not obviously better than greedy search **but** you can apply it several times, get different results, and take the likeliest one. #### Beam search Same as greedy search **but** you keep the *n best words* at each step rather than the one best. n is the *beam size*. You store and update a list of hypothesis. When increasing n, you get rather close from the most likely sentence. Most research papers' favorite, but a bit trickier to implement. #### And that's all with LMs Are we done? # And that's all with RNNs # And that's all with RNNs Let's go back a few slides. #### **Training a LM** Now you need batches to feed your model. Initially, you only have one big text. #### The simplest way: - Fix a sequence length L - Concatenate all your words into one big (long) tensor of size - Divide it into N // L tensors of size L - These are your elements. Even if you train on a fixed size, the network should learn to generate text of arbitrary length. #### **Training a LM** Now you need batches to feed your model. Initially, you only have one big text. #### The simplest way: - Fix a sequence length L - Concatenate all your words into one big (long) tensor of size N - Divide it into N // L tensors of size L - These are your elements. Even if you train on a fixed size, the network should learn to generate text of arbitrary length. # Limits of fixed-length inputs For language models trained on one large set, creating batches is rather easy. For language models trained on several large texts (ex: WSJ articles), you can get fixed-length sequences from separate texts too. But for supervised NLP tasks, that's never how it works. # Limits of fixed-length inputs In Machine Translation, Speech recognition, etc. you have pairs of sequences. ex : I like apples \rightarrow J'aime les pommes You need to keep these sequences as is to learn something. We're not dealing with any of these specific applications today but to learn RNNs you need to learn how to deal with variable length inputs. In this recitation, we'll stick with language models anyway. Your dataset is now a list of N sequences of different lengths. A tensor has fixed dimensions. How do you feed that in batches to your RNN? #### Idea #1 Use batches of size 1. **Advantages**: the simplest, and you can still do minibatch optimization by accumulating the gradients over several examples **Problems**: It's really, really slow. Conclusion: you may start with that for your prototype, but do better when you begin actual training. #### Idea #2 Look for sequences of same size and do batches with them Advantages: Normally fast, not too complex **Problems**: Usually you can't do it: in many applications pairs of sequences have different lengths, and finding many several pairs with same length elements is unreasonable. Conclusion: if you can, consider doing it. Idea #3 Look for sequences of close sizes and pad Advantages: You can find them **Problems**: Usually no "natural" way to pad, so your loss will be noisy Conclusion: don't do it #### Idea #4 Pad and remove noisy elements before computing the loss (ex: with a mask) **Advantages**: Simultaneously quite fast, doable, and Pytorch provides a *pad_sequence* method to help you. **Problems**: You still lose time applying the RNN on zeros. With just one big sequence you may get an unexpected CUDA error. Implementation prone to bugs, hard to track and debug. Conclusion: one of the recommended methods, but be careful. #### Idea #5 Build something up with several tensors for different time steps **Advantages**: Faster than all of the previous ones **Problems**: If you can implement that without bugs and mistakes, honestly you're a god. Conclusion: don't. Unless.... #### Idea #5b Use **packed sequences** (it's idea #5 but some gods at facebook did most of the godly work for you) **Advantages**: Doable and the fastest. RNN modules are optimized for it. Pytorch provides methods to help you. **Problems**: At some point you pad, so unexpected CUDA errors can still happen. Harder to implement and debug than #4 because of sorting. Network has to be changed. Conclusion: recommended, but be extra careful. #### Pad and pack sequences ``` import torch.nn.utils.rnn as rnn x1 = torch.rand(1,2) x2 = torch.rand(4,2) x3 = torch.rand(3,2) padded = rnn.pad sequence([x1,x2,x3], batch first=False) padded tensor([[[0.3097, 0.1797], [0.6480, 0.8418], [0.6333, 0.9508]], [[0.0000, 0.0000], [0.7329, 0.6177], [0.4506, 0.2960]], [[0.0000, 0.0000], [0.4260, 0.0718], [0.4125, 0.8680]], [[0.0000, 0.0000], [0.3733, 0.6269], [0.0000, 0.0000]]]) ``` #### Pad and pack sequences ``` x1 = torch.rand(1,2) x2 = torch.rand(4,2) x3 = torch.rand(3,2) packed = rnn.pack_sequence([x1,x2,x3]) type(packed) ``` ValueError: 'lengths' array has to be sorted in decreasing order ``` x1 = torch.rand(1,2) x2 = torch.rand(4,2) x3 = torch.rand(3,2) packed = rnn.pack_sequence([x2,x3,x1]) type(packed) ``` torch.nn.utils.rnn.PackedSequence ### Pad and pack sequences You can go from padded to packed and packed to padded, but need to track the lengths ``` padded2 = rnn.pad_sequence([x2,x3,x1]) lens = [len(x) for x in [x2,x3,x1]] packed2 = rnn.pack_padded_sequence(padded2,lens) print(type(packed2)) padded3,lens2 = rnn.pad_packed_sequence(packed2) print(padded3.equal(padded2)) <class 'torch.nn.utils.rnn.PackedSequence'> True ``` # Packed sequences and RNNs A PackedSequence can be fed into RNN modules, but nothing else. ``` model = nn.RNN(input size=2,hidden size=3) packed output, hidden state = model(packed) padded output, lens = rnn.pad packed sequence(packed output) output list = [padded output[:lens[i],i] for i in range(3)] output list [tensor([[-0.3548, 0.5536, -0.2994], [-0.3248, 0.5481, -0.1642], [-0.4053, 0.6779, -0.1642], [-0.3501, 0.6754, -0.2385]], grad fn=<SelectBackward>), tensor([[-0.3761, 0.5722, -0.4507], [-0.5109, 0.6319, -0.3484], [-0.4333, 0.6192, -0.1229]], grad fn=<SelectBackward>), tensor([[-0.3209, 0.5255, -0.4195]], grad fn=<SelectBackward>)] ``` Packed sequences are on the same device as the padded sequence. Let's try this out in a language model! #### **Next** Sequence-to-sequence with RNNs: CTC (HW3p2) (Rec. 8) Encoder-decoder and attention (HW4) (Rec. 9) Questions?