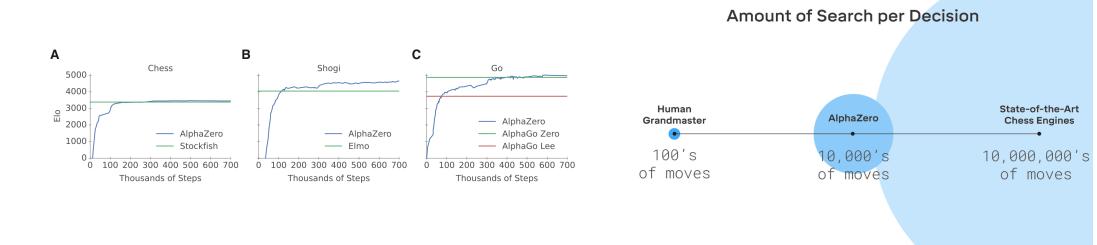
Reinforcement Learning

Tony Qin

Figures and equations from David Silver, https://www.davidsilver.uk/teaching/

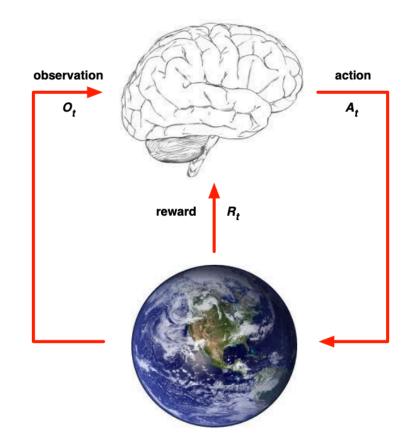
Reinforcement Learning Applications



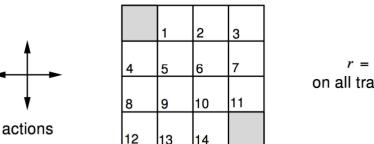
A general reinforcement learning algorithm that masters chess, shogi and Go through self-play, https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go Playing Atari with Deep Reinforcement Learning, https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

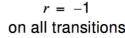
Agent and Environment

- Agent sees an observation O_t and reward R_t
- Agent takes an action A_t
- Environment responds to action A_t
- Environment emits observation O_{t+1} and reward R_{t+1}

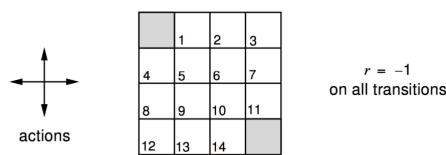


- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{sst}^{a} = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

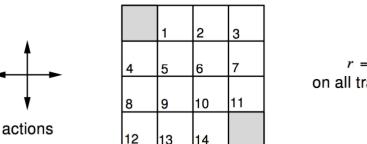


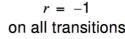


- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$



- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{sst}^{a} = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

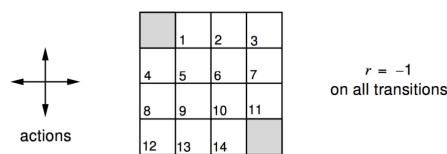




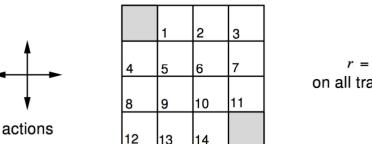
- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

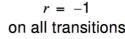
r = -1on all transitions

- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$



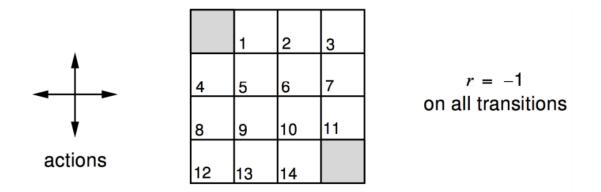
- S: set of finite states
- A: set of finite actions
- *P*: transition probability function
 - $P_{sst}^{a} = P(S_{t+1} = s' | S_t = s, A_t = a)$
- R: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

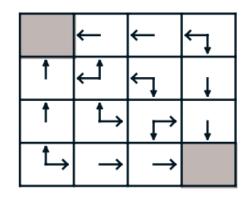




Value Functions

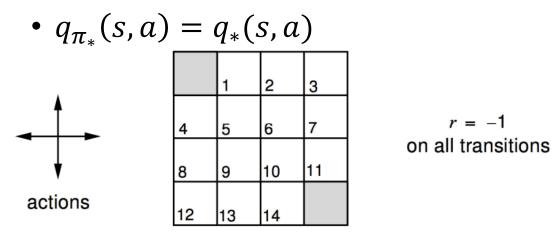
- Policy: $\pi(a|s) = \mathbb{P}(A_t = a \mid S_t = s)$
- Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- State-value function: $v_{\pi}(s) = \mathbb{E}(G_t | S_t = s)$
- Action-value function: $q_{\pi}(s, a) = \mathbb{E}(G_t \mid S_t = s, A_t = a)$

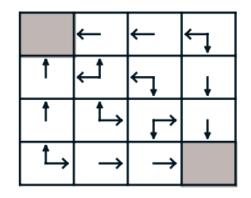




Optimal Value Functions

- There exists some optimal policy π^*
 - $v_{\pi}(s) \ge v_{\pi'}(s), \forall s$
- Optimal state-value function $v_*(s) = \max_{\pi} v_{\pi}(s)$
 - $v_{\pi_*}(s) = v_*(s)$
- Optimal action-value function $q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$





Bellman Expectation Equation

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

Remember:

$$v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s)$$

						_
g				0	0	
				0	0	
				0	0	
				0	0	
	Prob	olem	-		v	1

	0	0	0	-1	-
	0	0	-1	-1	
	0	0	-1	-1	
	0	0	-1	-1	
V	1			V	2

-3

-4

-4

-4

0

-1

-2

-3

-1

-2

-3

-4

V₆

-1

-1

-1

-1

-1

-1

-1

-1

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

V₃

-3

-4

-5

-6

Value Iteration -1 -2 -3 0 -1 -2 0 $v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$ -2 -1 -3 -3 -1 -2 -3 -2 -3 -2 -3 -3 -3 -4 -3 -3 -3 -3 -3 -4 -4 V_4 V_5 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \rightarrow v_*$

-2	-3	0	-1	-2
-3	-4	-1	-2	-3
-4	-5	-2	-3	-4
-5	-5	-3	-4	-5
			v	7

Converges to v_*

Bellman Expectation Equation

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\mathsf{R}_{t+1} + \gamma \mathsf{v}_{\pi}(\mathsf{S}_{t+1}) \mid \mathsf{S}_{t} = s \right]$$

Remember:

$$v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s)$$

g				0	0	
				0	0	
				0	0	
				0	0	(
	Prob	olem	-		v	1

0	0	0	-1	
0	0	-1	-1	
0	0	-1	-1	
0	0	-1	-1	
			v	2

0

-1

-2

-3

-1

-2

-3

-4

-1

-1

-1

-1

-2

-3

-4

-5

 V_6

-1

-1

-1

-1

-3

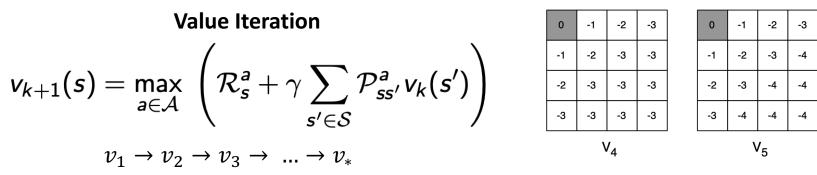
-4

-5

-5

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

V₃



0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6
	V	7	

Converges to v_*

Bellman Expectation Equation

$$\mathbf{v}_{\pi}(\mathbf{s}) = \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1}) \mid S_t = \mathbf{s}
ight]$$

Remember:

 $v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s)$

Value Iteration

 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \rightarrow v_*$

Converges to v_*

g				0	0	
				0	0	
				0	0	
				0	0	
	Prob	olem	-		v	1

0	0	0	-1
0	0	-1	-1
0	0	-1	-1
0	0	-1	-1

-1

-1

-1

-1

 V_2

-1

-1

-1

-1

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

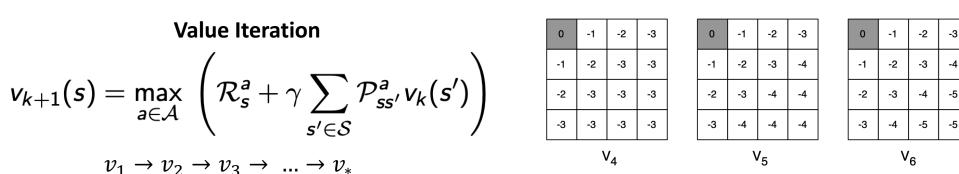
V₃

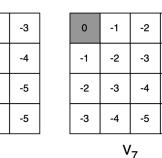
-3

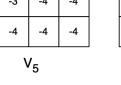
-4

-5

-6







Bellman Expectation Equation

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\mathsf{R}_{t+1} + \gamma \mathsf{v}_{\pi}(\mathsf{S}_{t+1}) \mid \mathsf{S}_{t} = s \right]$$

Remember:

$$v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s)$$

g				0	0	
				0	0	
				0	0	
				0	0	
	Proh	lem			v	

0	0	0	-1		
0	0	-1	-1		
0	0	-1	-1		
0	0	-1	-1		
, 1		V ₂			

-1

-1

-1

-1

-2

-3

-4

-5

 V_6

-1

-2

-3

-4

-1

-1

-1

-1

-3

-4

-5

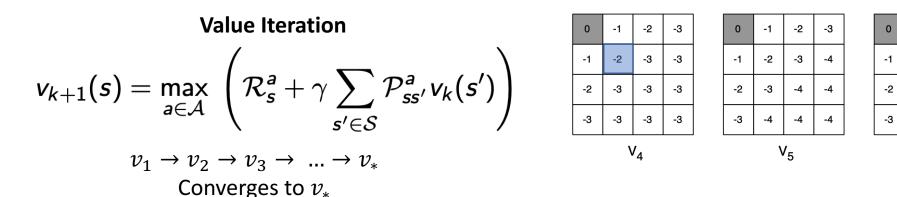
-5

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

V₃

Problem

v₁



0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

V₇

SARSA

- Model free: don't know transition and reward function
- Can't use value iteration
- $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') Q(S,A))$

Q Learning

- Off policy: learn from episodes generated with a different policy
- $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma \max_{a'} Q(S',a') Q(S,A))$

Value Function Approximation

- The previous methods are resource intensive
 - Storing values requires O(|S|) memory
- Intractable for problems with large state spaces
 - Go: 10¹⁷⁰ states
 - Robotics: continuous state space
- Use neural networks to approximate value functions
 - $\hat{v}(s,\theta) \approx v_{\pi}(s)$
 - $\hat{q}(s, a, \theta) \approx q_{\pi}(s, a)$

Deep Q-Networks (DQN)

• Store $(s_t, a_t, r_{t+1}, s_{t+1})$ tuples in replay memory D

• L =
$$\mathbb{E}_{s,a,r,s' \sim D} \left(R + \gamma \max_{a'} Q(s',a',\theta) - Q(s,a,\theta) \right)$$

- Sample batch of transitions from memory
- Used in famous paper to play Atari games

Deep Q-Networks (DQN)

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to equation 3 end for end for

Conclusion

- Check out https://www.davidsilver.uk/teaching/
- Key papers in RL: <u>https://spinningup.openai.com/en/latest/spinningup/keypapers.html</u>
- Have a good winter break