
Reinforcement	Learning
Tony	Qin

Figures	and	equations	from	David	Silver,	https://www.davidsilver.uk/teaching/



Reinforcement	Learning	Applications

A	general	reinforcement	learning	algorithm	that	masters	chess,	shogi	and	Go	through	self-play,	https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
Playing	Atari	with	Deep	Reinforcement	Learning,	https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf



Agent	and	Environment

• Agent	sees	an	observation	𝑂" and	
reward	𝑅"
• Agent	takes	an	action	𝐴"
• Environment	responds	to	action	𝐴"
• Environment	emits	observation	
𝑂"%& and	reward	𝑅"%&



Markov	Decision	Process	(MDP)

• 𝑆: set	of	finite	states
• 𝐴:	set	of	finite	actions
• 𝑃: transition	probability	function
• 𝑃3345 = 𝑃 𝑆"%& = 𝑠4 𝑆" = 𝑠, 𝐴" = 𝑎)

• 𝑅: reward	function
• 𝑅35 = 𝐸 𝑅"%&	 𝑆" = 𝑠, 𝐴" = 𝑎)

• 𝛾: discount	factor	in	[0, 1]
• Return:	𝐺" = 𝑅"%& + 𝛾𝑅"%C +	… = ∑ 𝛾F𝑅"%F%&G
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Value	Functions

• Policy:	𝜋 𝑎 𝑠 = ℙ 𝐴" = 𝑎	 	𝑆" = 𝑠)
• Return:	𝐺" = 𝑅"%& + 𝛾𝑅"%C +	… = ∑ 𝛾F𝑅"%F%&G

FHI
• State-value	function:	𝑣M 𝑠 = 	𝔼 𝐺"	 	𝑆" = 𝑠)
• Action-value	function:	𝑞M 𝑠, 𝑎 = 𝔼 𝐺"	 	𝑆" = 𝑠, 𝐴" = 𝑎)



Optimal	Value	Functions

• There	exists	some	optimal	policy	𝜋∗
• 𝑣M 𝑠 ≥ 𝑣MR 𝑠 , ∀𝑠

• Optimal	state-value	function	𝑣∗ 𝑠 = 	max
M
𝑣M(𝑠)

• 𝑣M∗ 𝑠 = 𝑣∗(𝑠)

• Optimal	action-value	function	𝑞∗ 𝑠, 𝑎 = 	max
M
𝑞M(𝑠, 𝑎)

• 𝑞M∗ 𝑠, 𝑎 = 𝑞∗(𝑠, 𝑎)



Value	Iteration

𝑣& → 𝑣C → 𝑣X → 	… → 𝑣∗
Converges	to	𝑣∗

Bellman	Expectation	Equation

Remember:
𝑣M 𝑠 = 	𝔼 𝐺"	 	𝑆" = 𝑠) = 	𝔼 𝑅"%& + 𝛾𝑅"%C +	… 𝑆" = 𝑠)
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SARSA

• Model	free:	don’t	know	transition	and	reward	function
• Can’t	use	value	iteration
• 𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝑅 + 𝛾𝑄 𝑆4, 𝐴4 − 𝑄 𝑆, 𝐴 )



Q	Learning

• Off	policy:	learn	from	episodes	generated	with	a	different	policy
• 𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝑅 + 𝛾max

54
𝑄 𝑆4, 𝑎4 − 𝑄(𝑆, 𝐴))



Value	Function	Approximation

• The	previous	methods	are	resource	intensive
• Storing	values	requires	𝑂(|𝑆|)	memory

• Intractable	for	problems	with	large	state	spaces
• Go:	10&^I states
• Robotics:	continuous	state	space

• Use	neural	networks	to	approximate	value	functions
• 𝑣_ 𝑠, 𝜃 ≈ 𝑣M 𝑠
• 𝑞_ 𝑠, 𝑎, 𝜃 ≈ 𝑞M(𝑠, 𝑎)



Deep	Q-Networks	(DQN)

• Store	 𝑠", 𝑎", 𝑟"%&, 𝑠"%& tuples	in	replay	memory	𝐷

• L = 	𝔼3,5,e,3R	~	g 𝑅 + 𝛾max
5R

𝑄 𝑠4, 𝑎4, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃

• Sample	batch	of	transitions	from	memory
• Used	in	famous	paper	to	play	Atari	games

Playing	Atari	with	Deep	Reinforcement	Learning,	https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf



Deep	Q-Networks	(DQN)

Playing	Atari	with	Deep	Reinforcement	Learning,	https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf



Conclusion

• Check	out	https://www.davidsilver.uk/teaching/
• Key	papers	in	RL:	
https://spinningup.openai.com/en/latest/spinningup/keypapers.html
• Have	a	good	winter	break


