
Topics for Today

Pre-requisite Recape
1. Language Modeling
2. Attention

HW4P2 Overview
Intro to LAS
- Listener
- Speller
- Attention

Implementation High-Level Suggestion
- Pooling
- LSTMCell
- Masking
- Sampling
- Teacher Forcing
- Inference
- Debugging



Language 
Modeling
Wiki: “A statistical language model is a 
probability distribution over sequences of 
words.”

https://en.wikipedia.org/wiki/Probability_distribution


Language Modeling
The usage of Language Model is to assign a likelihood to a sentence. 

- Intuition: 
P(high winds tonight) > P(large winds tonight) 
P(I saw a cat) > P(cat saw cat I) 

- Formulations: 
Probability of the next word

P(w) = P(w1, w2, . . . , wn)

P(w5 |w4, w3, w2, w1)

P(x1, x2, x3, . . . , xn) = P(x1)P(x2 |x1)P(x3 |x2, x1) . . . P(xn |xn−1, . . . , x1)

Probability of a sentence (or a sequence of words)

- Simple Assumptions 
1. Unigram Model 
2. Bigram Model

P(xt |xt−1, . . . , x1) = P(xt |xt−1)
P(xt |xt−1, . . . , x1) = P(xt |xt−1, xt−2)



Language Modeling in RNN

How to use RNN for language modeling?

For more details of LM, please refer to last semester’s recitation 
https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-7.pdf 
https://mediaservices.cmu.edu/media/Introduction+to+Deep+Learning+Recitation+7/1_irsncxxg/148590631

https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-7.pdf


Attention Recap From Last Recitation
 - Motivations

A typical generative architecture
Problem? The hidden state is too condensed and not informative 
Solution? Add Context using Attention.



Attention Recap From Last Recitation
 - Approach (Dot Product Attention)

Query Dimension:  
Key Dimension: 
Value Dimension: 

Attention Weights Dimension: 
Context Dimension: 

(Batch, Timedec, Dkey)
(Batch, Timeenc, Dkey)

(Batch, Timeenc, Dvalue)

(Batch, Timeenc, Timeout)
(Batch, Timedec, Dvalue)

For simplicity, I will use B for Batch, T for Time and D for the other dimension in the following recitation. 



Listen, Attend and Spell Architecture

Overview of the architecture
- Listener: Encoder 
- Speller: Decoder, also, it’s a language model. 
- Attention: Doc Product 

- Listener produces a high-level overview of the given 
utterance. 

- Then the high-level representation is fed into the 
Speller to generate a probability distribution over the 
next characters. 

- Dot Product Attention is used to add the context 
information.



Listener
- Takes as input an utterance. (B, T, D) 

- Feeds through a series of stacked pBLSTM layers to 
reduce the time resolution.
- Intuition: Each utterance is too long for the LSTM to learn 

(gradient vanishing problem) and also reduce the time 
resolution could generate better representations just like 
CNN pooling method. 

- pLSTM: Pyramid Structure. Concatenate pairs of inputs over 
the frequency dimension. (B, T, D) -> (B, T//2, D * 2) 

- 3 stacked pBLSTM follow a regular BLSTM. 

- Recommended Variation From the Paper:
- Instead of having a single output from the pBLSTM as the 

key, value, use Two separate MLP to project the hidden 
states to get a key and values. (Just like scaled dot product 
attention in the last recitation.)



Speller

- Language Model, i.e. takes in characters/words + hidden 
states, and predicts the probability over the vocabulary. 
(hw4p1) 
- Instead of unigram LM, this time LM would predict the next 

word given all previous inputs + context 
information(attention). 

- Trained using Cross-Entropy - because we have the group truth 
next char/word for each time stamp. (No alignment issue like 
what you had in HW3P2)



Attention: Connecting the Two
- Attention aims to generate a probability distribution over 

all keys. It uses the keys from the encoder and query from 
the decoder to produce a weights over all values from the 
encoder. Then weights are applied to those values to get a 
condense context representation. 

- Keys and Values are high-level representations of the 
utterances from the encoder. 
- It would the same. Like keys and values could both be 

the hidden states. 
- It could be different. Use two different MLP to project the 

original hidden states. 

- At every tilmestep in the decoder, you will be computing the attention context using the keys, values and query as follows: 
- Energy = bmm(key, query). # (B, T, D) x (B, D) —> (B, T) 
- Weight = softmax(energy)   # (B, T) 
- Context = bmm(weights, values). # (B, T) x (B, T, D) -> (B, D)



Putting It All Together
★ Decoder uses 2-layer LSTM as described in paper 
★ Decoder input at every timestep is the concatenated  

  character embedding and attention context vector 
★You can use initial context of 0’s in the first timestep when  

generating the first query 
★Could also try to learn this initial context by wrapping it in  

nn.Parameter so gradients will flow to it. However this can  
lead to bugs (and has in the past semester), so start with 0’s 

★ Outputs probabilities over the vocabulary as well as a  
  query for attention at the next time step using two distinct  
  projection/linear layers 
★ Paper suggests concatenating attention context with the  

  final hidden value for the character distribution projection as well  

- 1) train the speller using LM without attention context to make sure you have bug in your decoder. 
- Encoder could be decoupled with Decoder. Adding Encoder context should only boost your performance. Your network should 

learn even without context. 
- Trained the LM, get the weights and embeddings for each char/word. Use them to initialize your encoder-decoder architecture. 

- 2) Train End-2-End. You may take the risk of debugging a monolithic model. (based on my experience, I spent more than 1 week 
on debugging. Rewrite the whole architecture for two times.)



Handling Variable Length
★Transcripts are also of variable length 
★In hw3p2, CTCLoss internally masked using the target lengths 
★With CrossEntropyLoss we must mask manually 
★Use reduction = “none” to return a matrix where every entry is the loss w.r.t a single element 
★Mask out every value in a position that is longer than the transcript 
★Each row will be padded to the longest length, so mask out values that are in position greater  
than the true length 
★Only want loss in a position that corresponds to an actual part of the sequence 
★Include EOS token - we still need to learn when to end the sequence 
★Sum this masked loss and divide by sum of target lengths  



LSTM Cell
★LSTMCell is required in the decoder because we must access the hidden values at every timestep 
★Must use the hidden states to produce the attention query 
★Can’t use packed sequences with nn.LSTMCell 

★Loop through time steps, i.e. lengths of transcripts 
★Input at each time step has size: (B, embedding_size + context_size) 
★Input will be the concatenation of char/word embedding and attention context 

★You loop through T when you have transcripts, when you have no transcripts at inference time, set 
some max value of generated tokens (200-300 is fine for char model) 



Teacher Forcing
★A large problem between train and inference: during training, the speller is always fed true labels from the previous timestep, 
but during prediction it must use its predicted output. 
★- If you predict one wrong character, the model would have no idea how to recover and you will get bad results. 

★One solution is teacher forcing - add noise to the input symbols provided to the speller by sampling from the output 
distribution of the previous timestep some fraction of the time 
★ -  In this way the model learns to handle an input that is generated from your model, instead of the gold standard 
★ -  Becomes resilient to false predictions 
★Increase teacher forcing rate   -> generate more phonologically correct sentence;
★Lower the teacher forcing rate -> generate more syntactically correct sentence; 

Sampling
★Teacher forcing and generation require sampling the output probability distribution 
★Method #1: Greedy
★Simple to implement but is powerful enough
★Method #2: Gumbel Noise
★Add some randomness to the prediction.
★Reparameterization trick to simulate a draw from a categorical distribution
★Read more here https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html 
★Use torch.nn.functional.gumble_softmax 



Inference
★Greedy is simple but will not get the best results 
★Beam Search: 
★Requires modifying the forward function of the Speller to expand each of K best  
beams at every timestep 
★Best results but the most tricky to implement 

★Random Search: 
★For each utterance, generate a large number of predicted outputs with some  
randomness and score each prediction to select the best one 
★Score by feeding the predicted sequences back through the network as targets for  
the corresponding utterance and compute the loss. Pick the original generated  
sequence that received the smallest loss. 
★Almost as good as beam search, simpler to implement, but much much slower 



Utilities
★Plotting attention weights 
★Will provide code.
★Plot attention over time for a random utterance 
★Attention should traverse the utterance, forming a diagonal 
★Should start to form a diagonal after 2-3 epochs 

★Plotting gradient flow 
★Will provide code.
★Check that speller correctly passes gradients back to listener 
★Can also inspect the weights to identify if they are changing but this gets tedious 
★Use gradient clipping.

★Check that normalized attention weights sums to 1 
★Check that binary masks sum to intended lengths 
★Transposing and reshaping are different 
★Be careful you don’t make a silly mistake in the pBLSTMs 

Only the IDL guys could see this secrete message https://github.com/pytorch/examples


