
Deep Learning
Sequence to Sequence models:

Connectionist Temporal
Classification

1

Sequence-to-sequence modelling
• Problem:

– A sequence ଵ ே goes in
– A different sequence ଵ ெ comes out

• E.g.
– Speech recognition: Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes
out

– Dialog : User statement goes in, system response comes out
– Question answering : Question comes in, answer goes out

• In general
– No synchrony between and .

2

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

3

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Can you check if your computer is plugged in?”

4

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

Case 1: Order-aligned but not time
synchronous

• The input and output sequences happen in the same
order
– Although they may not be time synchronous, they can be

“aligned” against one another
– E.g. Speech recognition

• The input speech can be aligned to the phoneme sequence output

Time

X(t)

Y(t)

t=0

h-1

5

Problems

• How do we perform inference on such a
model
– How to output time-asynchronous sequences

• How do we train such models

6

Problems

• How do we perform inference on such a
model
– How to output time-asynchronous sequences

• How do we train such models

7

The inference problem

• Objective: Given a sequence of inputs,
asynchronously output a sequence of symbols
– “Decoding”

଴ ଵ ଶ

/B/

ସ ହ ଺

/F/

଻ ଼ ଽ

/IY/

ଷ

8

/IY/

Recap: Inference

• How do we know when to output symbols
– In fact, the network produces outputs at every

time
– Which of these are the real outputs?

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/

9

/F/ /IY//IY/

The actual output of the network

• At each time the network outputs a probability for
each output symbol given all inputs until that time
– E.g.

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

10

Overall objective

• Find most likely symbol sequence given inputs

బ
ᇲ

಼షభ
ᇲ

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

11

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

Finding the best output

• Option 1: Simply select the most probable
symbol at each time

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

12

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

Finding the best output

• Option 1: Simply select the most probable symbol at each
time
– Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

13

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ/G/

/F/

/IY/

/D/

Simple pseudocode

• Assuming is already
computed using the underlying RNN

n = 1
best(1)= argmaxi(y(1,i))
for t = 1:T

best(t)= argmaxi(y(t,i))
if (best(t) != best(t-1))

out(n) = best(t-1)
time(n) = t-1
n = n+1

14

The actual output of the network

• Option 1: Simply select the most probable symbol at each
time
– Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

15

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

Greedy Decoding: Recap

• This is in fact a suboptimal decode that actually finds the most likely
time-synchronous output sequence
– Which is not necessarily the most likely order-synchronous sequence
– We will return to this topic later 16

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

The sequence-to-sequence problem

• How do we know when to output symbols
– In fact, the network produces outputs at every time
– Which of these are the real outputs

• How do we train these models?

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/

17

/F/ /IY//IY/

Recap: Training with alignment

• Training data: input sequence + output sequence
– Output sequence length <= input sequence length

• Given the alignment of the output to the input
– The phoneme /B/ ends at X2, /AH/ at X6, /T/ at X9

଴ ଵ ଶ

/B/

ସ ହ ଺

/AH/

଻ ଼ ଽ

/T/

ଷ

18

Recap: Characterizing an alignment

19

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /AH/ /T/

• Given only the order-synchronous sequence and its time stamps
– ଴ ଴ ଵ ଵ ௄ିଵ ௄ିଵ

– E.g. ଴ ଵ ଶ

• Repeat symbols to convert it to a time-synchronous sequence
– ଴ ଵ ேିଵ ଴ ଴ ଴ ଵ ଵ ଵ ௄ିଵ

– E.g. ଴ ଵ ଽ

Recap: Characterizing an alignment

• Given only the order-synchronous sequence and its time stamps
– ଴ ଴ ଵ ଵ ௄ିଵ ௄ିଵ

– E.g. ଴ ଵ ଶ

• Repeat symbols to convert it to a time-synchronous sequence
– ଴ ଵ ேିଵ ଴ ଴ ଴ ଵ ଵ ଵ ௄ିଵ

– E.g. ଴ ଵ ଽ

20

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /AH/ /T//B//B//B/ /AH//AH//AH/ /T/

Recap: Characterizing an alignment

• Given only the order-synchronous sequence and its time stamps
– 𝑆଴ 𝑇଴ , 𝑆ଵ 𝑇ଵ , … , 𝑆௄ିଵ 𝑇௄ିଵ

– E.g. 𝑆଴ =/𝐵/ 3 , 𝑆ଵ =/𝐵/ 7 , 𝑆ଶ =/𝑇/ 9 ,

• Repeat symbols to convert it to a time-synchronous sequence
– 𝑠଴ = 𝑆଴, 𝑠ଵ = 𝑆଴, … , 𝑆

బ்
= 𝑆଴, 𝑠

బ்ାଵ = 𝑆ଵ, … , 𝑠
భ்

= 𝑆ଵ, 𝑠
భ்ାଵ = 𝑆ଶ, … , 𝑠ேିଵ = 𝑆௄ିଵ

– E.g. 𝑠଴, 𝑠ଵ, … , 𝑠ଽ =/𝐵//𝐵//𝐵//𝐵//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝑇//𝑇/

• For our purpose an alignment of ଴ ௄ିଵ to an input of length N has the form
– 𝒔𝟎, 𝒔𝟏, … , 𝒔𝑵ି𝟏 = 𝑺𝟎, 𝑺𝟎, … , 𝑺𝟎, 𝑺𝟏, 𝑺𝟏, … , 𝑺𝟏, 𝑺𝟐, … , 𝑺𝑲ି𝟏 (of length 𝑵)

• Any sequence of this kind of length that contracts (by eliminating repetitions) to
଴ ௄ିଵ is a candidate alignment of ଴ ௄ିଵ

21

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /AH/ /T//B//B//B/ /AH//AH//AH/ /T/

• Given the order-aligned output sequence with
timing

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

22

/IY/

Div

ସ

Recap: Training with alignment

• Given the order aligned output sequence with timing
– Convert it to a time-synchronous alignment by repeating symbols

• Compute the divergence from the time-aligned sequence

௧ ௧

௧

௧

௧

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

DivDivDivDivDivDivDiv

23

/IY/

ସ

௧ ௧

௧

௧

௧

• The gradient w.r.t the -th output vector ௧

௒೟
௧

– Zeros except at the component corresponding to the target aligned to that
time

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

DivDivDivDivDivDivDiv

24

/IY/

ସ

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Problem: Alignment not provided

• Only the sequence of output symbols is provided for the
training data
– But no indication of which one occurs where

• How do we compute the divergence?
– And how do we compute its gradient w.r.t. ௧

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

25

/F/

Recap: Training without alignment

• We know how to train if the alignment is
provided

• Problem: Alignment is not provided

• Solution:
1. Guess the alignment
2. Consider all possible alignments

26

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Solution 1: Guess the alignment

• Initialize: Assign an initial alignment
– Either randomly, based on some heuristic, or any other rationale

• Iterate:
– Train the network using the current alignment
– Reestimate the alignment for each training instance

• Using the Viterbi algorithm

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

27

/B/ /B/ /IY/ /IY/ /IY/ /F/ /F/ /F/ /F/ /IY/

28

Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

Recap: Estimating the alignment: Step 1
/B/ ଴

஻
ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/F/

Recap: Viterbi algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝐵𝑃 𝑡, 𝑙 =
𝑙 − 1 ∶ 𝑖𝑓 𝐵𝑠𝑐𝑟 𝑡 − 1, 𝑙 − 1 > 𝐵𝑠𝑐𝑟 𝑡 − 1, 𝑙 𝑙 − 1;

𝑙 ∶ 𝑒𝑙𝑠𝑒

• 𝐵𝑠𝑐𝑟(𝑡, 𝑙) = 𝐵𝑠𝑐𝑟(𝐵𝑃(𝑡, 𝑙)) × 𝑦௧
ௌ ௟

29

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Recap: Viterbi algorithm

•

• for

30

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

VITERBI
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#Now run the Viterbi algorithm
First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = -infty
for t = 2:T

BP(t,1) = 1;
Bscr(t,1) = Bscr(t-1,1)*s(t,1)
for i = 1:min(t,N)

BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)

Backtrace
AlignedSymbol(T) = N
for t = T downto 2

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

31Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

First, at t = 1
BP(1,1) = -1
Bscr(1,1) = y(1,S(1))
Bscr(1,2:N) = -infty
for t = 2:T

BP(t,1) = 1;
Bscr(t,1) = Bscr(t-1,1)*y(t,S(1))
for i = 2:min(t,N)

BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,S(i))

Backtrace
AlignedSymbol(T) = N
for t = T downto 2

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

32Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Without explicit construction of output table

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Recap: Iterative Estimate and Training

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

33

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/ /IY/

Decode to obtain
alignments

Train model with
given alignments

Initialize
alignments

The “decode” and “train” steps may be combined into a single “decode, find alignment,
compute derivatives” step for SGD and mini-batch updates

Iterative update: Problem

• Approach heavily dependent on initial
alignment

• Prone to poor local optima

• Alternate solution: Do not commit to an
alignment during any pass..

34

Recap: Training without alignment

• We know how to train if the alignment is
provided

• Problem: Alignment is not provided

• Solution:
1. Guess the alignment
2. Consider all possible alignments

35

• We commit to the single “best” estimated alignment
– The most likely alignment

௧
௕௘௦௧௣௔௧௛

௧

– This can be way off, particularly in early iterations, or if the model is poorly initialized

• Alternate view: there is a probability distribution over alignments
– Selecting a single alignment is the same as drawing a single sample from this

distribution
– Selecting the most likely alignment is the same as deterministically always drawing

the most probable value from the distribution 36

The reason for suboptimality

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• We commit to the single “best” estimated alignment
– The most likely alignment

௧
௕௘௦௧௣௔௧௛

௧

– This can be way off, particularly in early iterations, or if the model is poorly initialized

• Alternate view: there is a probability distribution over alignments of the target Symbol
sequence (to the input)
– Selecting a single alignment is the same as drawing a single sample from it
– Selecting the most likely alignment is the same as deterministically always drawing the most probable

value from the distribution

37

The reason for suboptimality

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• Instead of only selecting the most likely alignment, use the
statistical expectation over all possible alignments

– Use the entire distribution of alignments
– This will mitigate the issue of suboptimal selection of alignment

38

Averaging over all alignments

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧

௧

• Using the linearity of expectation

௧

௧

– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧ 39

The expectation over all alignments

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧

௧

• Using the linearity of expectation

௧

௧

– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧ 40

The expectation over all alignments

t 0 1 2 3 4 5 6 7 8

The probability of aligning the specific symbol s at time t,
given that unaligned sequence and given the
input sequence
We need to be able to compute this

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• is the total probability of all valid paths in
the graph for target sequence that go through the symbol

(the th symbol in the sequence) at time

• We will compute this using the “forward-backward”
algorithm

41

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• can be decomposed as

• Where is a symbol that can follow in a
sequence
– Here it is either or

42

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• can be decomposed as

• Where is a symbol that can follow in a sequence
– Here it is either ௥ or ௥ାଵ (red blocks in figure)
– The equation literally says that after the blue block, either of the two

red arrows may be followed

43

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• can be decomposed as

• Where is a symbol that can follow in a
sequence
– Here it is either ௥ or ௥ାଵ (red blocks in figure)
– The equation literally says that after the blue block, either of the

two red arrows may be followed
44

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• ௧ ௥ can be decomposed as

௧ ௥ ଴ ௥ ௄ିଵ ௧ ௥

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ

• Using Bayes Rule

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ ଴ ௥ ௧ ௥

• The probability of the subgraph in the blue outline, times the conditional
probability of the red-encircled subgraph, given the blue subgraph

45

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• ௧ ௥ can be decomposed as

௧ ௥ ଴ ௥ ௄ିଵ ௧ ௥

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ

• Using Bayes Rule

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ ଴ ௥ ௧ ௥

• For a recurrent network without feedback from the output we can make the
conditional independence assumption:

௧ ௥ ଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ

46

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Assuming past output symbols do not directly feed back into the net

Conditional independence

• Dependency graph: Input sequence ଴ ଵ ேିଵ governs hidden
variables ଴ ଵ ேିଵ

• Hidden variables govern output predictions ଴, ଵ, ேିଵ individually
• ଴, ଵ, ேିଵ are conditionally independent given

• Since is deterministically derived from , ଴, ଵ, ேିଵ are also
conditionally independent given
– This wouldn’t be true if the relation between and were not deterministic or

if is unknown, or if the s at any time went back into the net as inputs
47

଴ ଵ ேିଵ ଴ ଵ ேିଵ

଴

ଵ

ேିଵ

• We will call the first term the forward probability
• We will call the second term the backward probability

48

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• We will call the first term the forward probability
• We will call the second term the backward probability

49

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• The is the total probability of the subgraph
shown
– The total probability of all paths leading to the

alignment of to time
50

Computing : Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴ ௥ ௧ ௥

ଷ
ூ௒

ଷ
ூ௒

௧
ௌ(௥)

௤:ௌ೜∈௣௥௘ௗ(ௌೝ)

51

Computing : Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
஻

ଵ
஻

ଶ
஻

ଷ
ூ௒

଴
஻

ଵ
஻

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

• Where ௥ is any symbol that is permitted to come before an ௥ and may include ௥

• is its row index, and can take values and in this example

𝛼 𝑡, 𝑟 = 𝑃 𝑆଴. . 𝑆௥, 𝑠௧ = 𝑆௥|𝐗

𝛼 3, 𝐼𝑌 = 𝛼 2, 𝐵 𝑦ଷ
ூ௒ + 𝛼 2, 𝐼𝑌 𝑦ଷ

ூ௒

𝛼 𝑡, 𝑟 = ෍ 𝛼(𝑡 − 1, 𝑞) 𝑌௧
ௌ(௥)

௤:ௌ೜∈௣௥௘ௗ(ௌೝ)

52

Computing : Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
஻

ଵ
஻

ଶ
஻

ଷ
ூ௒

଴
஻

ଵ
஻

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

• Where ௥ is any symbol that is permitted to come before an ௥ and may include ௥

• is its row index, and can take values and in this example

• The is the total probability of the subgraph
shown

53

Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

54

Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

• for

௧
ௌ ଴

for

௧
ௌ ௟

55

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝛼(𝑡, 𝑙) = (𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1)𝑦௧
ௌ ௟

56

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝛼(𝑡, 𝑙) = (𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1)𝑦௧
ௌ ௟

57

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝛼(𝑡, 𝑙) = (𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1)𝑦௧
ௌ ௟

58

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝛼(𝑡, 𝑙) = (𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1)𝑦௧
ௌ ௟

59

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

଴
ௌ ଴

• for

௧
ௌ ଴

for

• 𝛼(𝑡, 𝑙) = (𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1)𝑦௧
ௌ ௟

60

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

In practice..

• The recursion

will generally underflow

• Instead we can do it in the log domain

– This can be computed entirely without underflow

61

Forward algorithm: Alternate
statement

• The algorithm can also be stated as follows which separates the graph probability
from the observation probability. This is needed to compute derivatives

• Initialization:

଴
ௌ ௥

• for
𝛼ො(𝑡, 0) = 𝛼(𝑡 − 1,0)

for 𝑙 = 1 … 𝐾 − 1

• 𝛼ො(𝑡, 𝑙) = 𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1

௧
ௌ ௥

62

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• The probability of the entire symbol sequence is the
alpha at the bottom right node

63

The final forward probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

SIMPLE FORWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The forward recursion
First, at t = 1
alpha(1,1) = s(1,1)
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*s(t,1)
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= s(t,i)

64

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,S(1))
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,S(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= y(t,S(i))

65

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

• We will call the first term the forward probability
• We will call the second term the backward probability

66

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

We have seen how to compute this

• We will call the first term the forward probability
• We will call the second term the backward probability

67

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

We have seen how to compute this

• We will call the first term the forward probability
• We will call the second term the backward probability

68

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Lets look at this

• is the probability of the exposed subgraph,
not including the orange shaded box

69

Bacward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

70

Backward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

ହ
ி

଺
ி

଻
ி

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ி

ହ
ி

଺
ி

଻
ி

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

ହ
ி

଺
ி

଻
ி

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ி

ହ
ி

଺
ி

଻
ி

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

73

Backward algorithm

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

74

Backward algorithm

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

೜

೜ ೝ

• The is the total probability of the subgraph shown

• The terms at any time are defined recursively in
terms of the terms at the next time

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

75

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

76

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

77

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

78

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

79

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

SIMPLE BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,1:N-1) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*s(t+1,N)
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*s(t+1,i) + beta(t+1,i+1))*s(t+1,i+1)

80

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,1:N-1) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*y(t+1,S(N))
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*y(t+1,S(i)) + beta(t+1,i+1))*y(t+1,S(i+1))

81

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

• Some implementations of the backward algorithm will
use the above formula

• Note that here the probability of the observation at t is
also factored into beta

• It will have to be unfactored later (we’ll see how)
82

Alternate Backward algorithm

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

ଷ
ூ௒

• We will call the first term the forward probability

• We will call the second term the backward probability

83

The joint probability

We now can compute this

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• We will call the first term the forward probability
• We will call the second term the backward probability

84

The joint probability

Backward algoForward algo

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• The posterior is given by

ೝ
ᇲ

The posterior probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• Let the posterior be represented
by

The posterior probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

COMPUTING POSTERIORS
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

87Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

௧ ௥

• The posterior is given by

௥ᇱ

• We can also write this using the modified beta formula as (you will see this in papers)

௧
ௌ(௥)

௧
ௌ(௥)௥ᇱ

The posterior probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output Yt of the net at any time:

௒೟
௧
ଵ

௧
ଶ

௧
௅

– Components will be non-zero only for symbols that occur in the training instance
89

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
90

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
91

The expected divergence

Must compute these terms
from here

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
92

The expected divergence

Must compute these terms
from here

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
93

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
94

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
95

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instancee
96

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

The approximation is exact if we think of this as a maximum-likelihood estimate

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t any particular output of the network must sum over
all instances of that symbol in the target sequence

– E.g. the derivative w.r.t 𝑦௧
ூ௒ will sum over both rows representing /IY/ in the above figure 97

Derivative of the expected divergence

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

COMPUTING DERIVATIVES

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 # Initialize all derivatives at time t to 0
for i = 1:N

dy(t,S(i)) -= gamma(t,i) / y(t,S(i))

98Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for
Seq2Seq case 1

• Problem: Given input and output sequences
without alignment, train models

99

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/F/

Overall training procedure for
Seq2Seq case 1

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network

100

Overall Training: Forward pass

101

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

/B/ ଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/F/

102

Overall training: Backward pass

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

• Step 4: Construct the graph representing the specific
symbol sequence in the instance. This may require having
multiple rows of nodes with the same symbol scores

• Foreach training instance:
– Step 5: Perform the forward backward algorithm

to compute and at each time, for
each row of nodes in the graph. Compute .

– Step 6: Compute derivative of divergence
೟

for each
103

Overall training: Backward pass

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence

೟
for each

೟

• Step 7: Backpropagate
೟
೗ and aggregate derivatives

over minibatch and update parameters

104

Story so far: CTC models
• Sequence-to-sequence networks which irregularly output symbols can be

“decoded” by Viterbi decoding
– Which assumes that a symbol is output at each time and merges adjacent

symbols

• They require alignment of the output to the symbol sequence for training
– This alignment is generally not given

• Training can be performed by iteratively estimating the alignment by
Viterbi-decoding and time-synchronous training

• Alternately, it can be performed by optimizing the expected error over all
possible alignments
– Posterior probabilities for the expectation can be computed using the forward

backward algorithm

105

A key decoding problem

• Consider a problem where the output symbols
are characters

• We have a decode: R R R E E E E D

• Is this the compressed symbol sequence RED
or REED?

106

We’ve seen this before

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

107

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

• /G/ /F/ /F/ /IY/ /D/ or /G/ /F/ /IY/ /D/ ?

A key decoding problem
• We have a decode: R R R E E E E E D
• Is this the symbol sequence RED or REED?

• Solution: Introduce an explicit extra symbol which serves to separate
discrete versions of a symbol
– A “blank” (represented by “-”)
– RRR---EE---DDD = RED
– RR-E--EED = REED
– RR-R---EE---D-DD = RREDD
– R-R-R---E-EDD-DDDD-D = RRREEDDD

• The next symbol at the end of a sequence of blanks is always a new character
• When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra
blank symbol
– Which too must be trained

108

A key decoding problem
• We have a decode: R R R E E E E E D
• Is this the symbol sequence RED or REED?

• Solution: Introduce an explicit extra symbol which serves to separate
discrete versions of a symbol
– A “blank” (represented by “-”)
– RRR---EE---DDD = RED
– RR-E--EED = REED
– RR-R---EE---D-DD = RREDD
– R-R-R---E-EDD-DDDD-D = RRREEDDD

• The next symbol at the end of a sequence of blanks is always a new character
• When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra
blank symbol
– Which too must be trained

109

The modified forward output

110

• Note the extra “blank” at the output

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

111

• Note the extra “blank” at the output

/B/ /IY/ /F/ /IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

112

• Note the extra “blank” at the output

/B/ /IY/ /F/ /IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

113

• Note the extra “blank” at the output

/B/ /IY/ /F/ /F/ /IY/

114

Composing the graph for training

• The original method without blanks

• Changing the example to /B/ /IY/ /IY/ /F/ from /B/ /IY/ /F/ /IY/
for illustration

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/IY/

/F/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/IY/

/B/

/IY/

115

Composing the graph for training

• With blanks
• Note: a row of blanks between any two symbols
• Also blanks at the very beginning and the very end

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

/F/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/

/B/

/F/

/IY/

116

Composing the graph for training

• Add edges such that all paths from initial node(s) to final
node(s) unambiguously represent the target symbol sequence

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/

/B/

/F/

/IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

117

Composing the graph for training

• The first and last column are allowed to also end at initial and
final blanks

/IY/

/B/

/F/

/IY/

଺
ହ

118

Composing the graph for training

• The first and last column are allowed to also end at initial and
final blanks

• Skips are permitted across a blank, but only if the symbols on
either side are different
• Because a blank is mandatory between repetitions of a symbol but not

required between distinct symbols

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place
#Also keep track of whether an extended symbol Sext(j) is allowed to connect
#directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext,skipconnect] = extendedsequencewithblanks(S)
j = 1
for i = 1:N

Sext(j) = ‘b’ # blank
skipconnect(j) = 0
j = j+1

Sext(j) = S(i)
if (i > 1 && S(i) != S(i-1))

skipconnect(j) = 1
else

skipconnect(j) = 0
j = j+1

end
Sext(j) = ‘b’
skipconnect(j) = 0

return Sext, skipconnect

119Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

MODIFIED VITERBI ALIGNMENT WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # length of extended sequence

Viterbi starts here
BP(1,1) = -1
Bscr(1,1) = y(1,Sext(1)) # Blank
Bscr(1,2) = y(1,Sext(2))
Bscr(1,2:N) = -infty
for t = 2:T

BP(t,1) = BP(t-1,1);
Bscr(t,1) = Bscr(t-1,1)*y(t,Sext(1))
for i = 1:N

if skipconnect(i)
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1), Bscr(t-1,i-2)

else
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1))

Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,Sext(i))

Backtrace
AlignedSymbol(T) = Bscr(T,N) > Bscr(T,N-1) ? N, N-1;
for t = T downto 1

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

120Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Without explicit construction of output table

Example of using blanks for alignment: Viterbi alignment with blanks

Modified Forward Algorithm

• Initialization:
–

121

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Modified Forward Algorithm

• Iteration:

௧
ௌ(௥)

• If 𝑆 𝑟 = " − " or 𝑆 𝑟 = 𝑆 𝑟 − 2

௧
ௌ(௥)

• Otherwise 122

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

𝛼 𝑡, 𝑟 = ෍ 𝛼(𝑡 − 1, 𝑞) 𝑌௧
ௌ(௥)

௤:ௌ೜∈௣௥௘ௗ(ௌೝ)

Modified Forward Algorithm

• Iteration:

௧
ௌ(௥)

• If 𝑆 𝑟 = " − " or 𝑆 𝑟 = 𝑆 𝑟 − 2

௧
ௌ(௥)

• Otherwise 123

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

FORWARD ALGORITHM (with blanks)

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,Sext(1)) #This is the blank
alpha(1,2) = y(1,Sext(2))
alpha(1,3:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,Sext(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i))
if (skipconnect(i))

alpha(t,i) += alpha(t-1,i-2)
alpha(t,i) *= y(t,Sext(i))

124

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Modified Backward Algorithm

• Initialization:

125

/IY/

/B/

/F/

/IY/

଼
ଶ

଼
ହ

଼
ହ

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Modified Backward Algorithm

• Iteration:

௧ାଵ
ௌ(௥)

௧ାଵ
ௌ(௥ାଵ)

• If 𝑆 𝑟 = " − " or 𝑆 𝑟 = 𝑆 𝑟 + 2

௧ାଵ
ௌ(௥)

௧ାଵ
ௌ(௥ାଵ)

௧ାଵ
ௌ(௥ାଶ)

• Otherwise
126

/IY/

/B/

/F/

/IY/

଼
ଶ

଼
ହ

଼
ହ

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

𝛽 𝑡, 𝑟 = ෍ 𝛽 𝑡 + 1, 𝑞 𝑦௧ାଵ

ௌ೜

௤:ௌ೜∈௦௨௖௖(ௌೝ)

BACKWARD ALGORITHM WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,N-1) = 1
beta(T,1:N-2) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*y(t+1,Sext(N))
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*y(t+1,Sext(i)) + beta(t+1,i+1))*y(t+1,Sext(i+1))
if (i<N-2 && skipconnect(i+2))

beta(t,i) += beta(t+1,i+2)*y(t+1,Sext(i+2))

127

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

The rest of the computation

• Posteriors and derivatives are computed
exactly as before

• But using the extended graphs with blanks

128

COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

129Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 #Initialize all derivatives at time t to 0
for i = 1:N

dy(t,Sext(i)) -= gamma(t,i) / y(t,Sext(i))

130Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for
Seq2Seq with blanks

• Problem: Given input and output sequences
without alignment, train models

131

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/F/

Overall training procedure

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network
– Include a “blank” symbol in vocabulary

132

Overall Training: Forward pass

133

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time, including blanks

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

134

Overall training: Backward pass

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

• Step 4: Construct the graph representing the specific
symbol sequence in the instance. Use appropriate
connections if blanks are included

• Foreach training instance:
– Step 5: Perform the forward backward algorithm to compute

and at each time, for each row of nodes in the
graph using the modified forward-backward equations. Compute a
posteriori probabilities from them

– Step 6: Compute derivative of divergence ௒೟
for each ௧

135

Overall training: Backward pass

Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence

೟
for each

೟

• Step 7: Backpropagate
೟
೗ and aggregate derivatives

over minibatch and update parameters

136

CTC: Connectionist Temporal
Classification

• The overall framework we saw is referred to as
CTC

• Applies to models that output order-aligned,
but time-asynchronous outputs

137

Returning to an old problem:
Decoding

• The greedy decode computes its output by finding the most likely symbol at each time and merging
repetitions in the sequence

• This is in fact a suboptimal decode that actually finds the most likely time-synchronous output
sequence
– Which is not necessarily the most likely order-synchronous sequence 138

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

Greedy decodes are suboptimal

• Consider the following candidate decodes
– R R – E E D (RED, 0.7)
– R R – – E D (RED, 0.68)
– R R E E E D (RED, 0.69)
– T T E E E D (TED, 0.71)
– T T – E E D (TED, 0.3)
– T T – – E D (TED, 0.29)

• A greedy decode picks the most likely output: TED
• A decode that considers the sum of all alignments of

the same final output will select RED
• Which is more reasonable?

139

Greedy decodes are suboptimal
• Consider the following candidate decodes

– R R – E E D (RED, 0.7)
– R R – – E D (RED, 0.68)
– R R E E E D (RED, 0.69)
– T T E E E D (TED, 0.71)
– T T – E E D (TED, 0.3)
– T T – – E D (TED, 0.29)

• A greedy decode picks the most likely output: TED
• A decode that considers the sum of all alignments of the

same final output will select RED
• Which is more reasonable?
• And yet, remarkably, greedy decoding can be surprisingly

effective, when using decoding with blanks
140

What a CTC system outputs

• Ref: Graves
• Symbol outputs peak at the ends of the sounds

– Typical output: - - R - - - E - - -D
– Model output naturally eliminates alignment ambiguities

• But this is still suboptimal.. 141

Actual objective of decoding

• Want to find most likely order-aligned symbol sequence
– R E D

– What greedy decode finds: most likely time synchronous
symbol sequence
• – /R/ /R/ – – /EH//EH//D/

• Which must be compressed

• Find the order-aligned symbol sequence ,
given an input , that is most likely

142

• The probability of the entire symbol sequence is the
alpha at the bottom right node

143

Recall: The forward probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Actual decoding objective

• Find the most likely (asynchronous) symbol sequence

• Unfortunately, explicit computation of this will require
evaluate of an exponential number of symbol
sequences

• Solution: Organize all possible symbol sequences as a
(semi)tree

144

Hypothesis semi-tree

• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
• Every symbol connects to every symbol other than itself

– It also connects to a blank, which connects to every symbol including itself
• The simple structure repeats recursively
• Each node represents a unique (partial) symbol sequence! 145

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

Highlighted boxes represent
possible symbols for first frame

The decoding graph for the tree

• Graph with more than 2 symbols will be similar
but much more cluttered and complicated

146

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

଴ ଵ ଶ ଷ ସ

The decoding graph for the tree

• The figure to the left is the tree, drawn in a vertical line
• The graph is just the tree unrolled over time

– For a vocabulary of V symbols, every node connects out to V other
nodes at the next time

• Every node in the graph represents a unique symbol sequence

147

The decoding graph for the tree

• The forward score at the final time represents the full forward
score for a unique symbol sequence (including sequences terminating in
blanks)

• Select the symbol sequence with the largest alpha at the final time
– Some sequences may have two alphas, one for the sequence itself, one for the

sequence followed by a blank
– Add the alphas before selecting the most likely 148

𝛼(𝑆ଶ𝑆ଶ)

𝛼(𝑆ଶ𝑆ଵ)

𝛼(𝑆ଶ−)

𝛼(𝑆ଵ𝑆ଶ)

𝛼(𝑆ଵ𝑆ଵ)

𝛼(𝑆ଵ−)

𝛼(𝑆ଶ)

𝛼(𝑆ଵ)

𝛼(−)

Recall: Forward Algorithm

•

149

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
௕

଼
ி

The decoding graph for the tree

• The forward score at the final time represents the full forward
score for a unique symbol sequence (including sequences terminating in
blanks)

• Select the symbol sequence with the largest alpha
– Sequences may two alphas, one for the sequence itself, one for the sequence

followed by a blank
– Add the alphas before selecting the most likely 150

𝛼(𝑆ଶ𝑆ଶ)

𝛼(𝑆ଶ𝑆ଵ)

𝛼(𝑆ଶ−)

𝛼(𝑆ଵ𝑆ଶ)

𝛼(𝑆ଵ𝑆ଵ)

𝛼(𝑆ଵ−)

𝛼(𝑆ଶ)

𝛼(𝑆ଵ)

𝛼(−)

CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage

due to pruning 151

Beamsearch Pseudocode Notes

• Retaining separate lists of paths and pathscores for paths
terminating in blanks, and those terminating in valid symbols
– Since blanks are special
– Do not explicitly represent blanks in the partial decode strings

• Pseudocode takes liberties (particularly w.r.t null strings)
– I.e. you must be careful if you convert this to code

• Key
– PathScore : array of scores for paths ending with symbols
– BlankPathScore : array of scores for paths ending with blanks
– SymbolSet : A list of symbols not including the blank

152

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

153

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

154

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

155

x
x

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

156

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

157

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [], InitialPathScore = []
First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank

path = c
InitialPathScore[path] = y[c] # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

158

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
UpdatedPathsWithTerminalBlank = {}
UpdatedBlankPathScore = []
First work on paths with terminal blanks
#(This represents transitions along horizontal trellis edges for blanks)
for path in PathsWithTerminalBlank:

Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank
simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
else

UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end
end

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

159

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:

for c in SymbolSet: # SymbolSet does not include blanks
newpath = path + c # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end
end

Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:

Extend the path with every symbol other than blank
for c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]
else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = PathScore[path] * y[c]

end
end

end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore

160

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []
PrunedPathScore = []
First gather all the relevant scores
i = 1
for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]
i++

end
for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths
sort(scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScore[p]

end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScore[p]

end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

161

BEAM SEARCH: Merging final paths

Note : not using global variable here

function MergeIdenticalPaths(PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from
PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank

if p in MergedPaths
FinalPathScore[p] += BlankPathScore[p]

else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore[p]

end
end

return MergedPaths, FinalPathScore

162

Story so far: CTC models
• Sequence-to-sequence networks which irregularly produce output

symbols can be trained by
– Iteratively aligning the target output to the input and time-synchronous

training
– Optimizing the expected error over all possible alignments: CTC training

• Distinct repetition of symbols can be disambiguated from repetitions
representing the extended output of a single symbol by the introduction
of blanks

• Decoding the models can be performed by
– Best-path decoding, i.e. Viterbi decoding
– Optimal CTC decoding based on the application of the forward algorithm to a

tree-structured representation of all possible output strings

163

CTC caveats
• The “blank” structure (with concurrent modifications to the

forward-backward equations) is only one way to deal with
the problem of repeating symbols

• Possible variants:
– Symbols partitioned into two or more sequential subunits

• No blanks are required, since subunits must be visited in order

– Symbol-specific blanks
• Doubles the “vocabulary”

– CTC can use bidirectional recurrent nets
• And frequently does

– Other variants possible..

164

Most common CTC applications

• Speech recognition
– Speech in, phoneme sequence out
– Speech in, character sequence (spelling out)

• Handwriting recognition

165

Speech recognition using Recurrent
Nets

• Recurrent neural networks (with LSTMs) can be
used to perform speech recognition
– Input: Sequences of audio feature vectors
– Output: Phonetic label of each vector

Time

ଵ

X(t)

t=0

ଶ ଷ ସ ହ ଺ ଻

166

Speech recognition using Recurrent
Nets

• Alternative: Directly output phoneme,
character or word sequence

Time

ଵ

X(t)

t=0

ଶ

167

Next up: Attention models

168

CNN-LSTM-DNN for speech recognition

• Ensembles of RNN/LSTM, DNN, & Conv
Nets (CNN) :

• T. Sainath, O. Vinyals, A. Senior, H. Sak.
“Convolutional, Long Short-Term Memory,
Fully Connected Deep Neural Networks,”
ICASSP 2015.

169

Translating Videos to Natural Language Using Deep
Recurrent Neural Networks

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015.

170

171

Not explained

• Can be combined with CNNs
– Lower-layer CNNs to extract features for RNN

• Can be used in tracking
– Incremental prediction

172

