
Neural Networks
Learning the network: Part 2

11-785, Fall 2020
Lecture 4

1

Recap: Universal approximators

• Neural networks are universal approximators
– Can approximate any function

• Provided they have sufficient architecture

– We have to determine the weights and biases to
make them model the function

2

Recap: Approach

• Define a divergence between the actual output and desired
output of the network
– Must be differentiable: can quantify how much a miniscule change of

changes

• Make all neuronal activations differentiable
– Differentiable: can quantify how much a miniscule change of changes

• Differentiability – enables us to determine if a small change in any
parameter of the network is increasing or decreasing
– Will let us optimize the network 3

Recap: The expected divergence

• Minimize the expected “divergence” between
the output of the net and the desired function
over the input space

4

Recap: Emipirical Risk Minimization

• Problem: Computing the expected divergence requires
knowledge of at all which we will not have

• Solution: Approximate it by the average divergence over a large number of
“training” samples drawn from

௜ ௜

௜

• Estimate the parameters to minimize this “loss” instead

ௐ
5

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

6

• A CRASH COURSE ON FUNCTION
OPTIMIZATION

7

A brief note on derivatives..

• A derivative of a function at any point tells us how
much a minute increment to the argument of the
function will increment the value of the function
 For any expressed as a multiplier to a tiny

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any
smooth, continuous function is locally linear at any point 8

derivative

• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as ௗ௬

ௗ௫

 Or alternately (and more reasonably) as

9

Scalar function of scalar argument

• Giving us that is a row vector: ଵ ஽

ଵ ଵ ଶ ଶ ஽ ஽

• The partial derivative ௜ gives us how increments when only ௜ is
incremented

• Often represented as డ௬

డ௫೔

ଵ
ଵ

ଶ
ଶ

஽
஽

10

Multivariate scalar function:
Scalar function of vector argument

Note: is now a vector

ଵ

஽

• Where

o You may be more familiar with the term “gradient” which
is actually defined as the transpose of the derivative

11

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this
symbol for vector and
matrix derivatives

Caveat about following slides

• The following slides speak of optimizing a
function w.r.t a variable “x”

• This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights “w”

• To reiterate – “x” in the slides represents the
variable that we’re optimizing a function over
and not the input to a neural network

• Do not get confused!

12

The problem of optimization

• General problem of
optimization: find
the value of x where
f(x) is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

13

Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum?
14

x

f(x)

Turning Points

15

• Both maxima and minima have zero derivative

• Both are turning points

0

+
+

+

0

+
+

+

+

+

+

0

- - -

- ----- - -

Derivatives of a curve

16

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)

Derivative of the derivative of the
curve

17

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and
+ve at minima!

xf(x)

f ’(x)
f ’’(x)

Solution: Finding the minimum or
maximum of a function

• Find the value at which = 0: Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

18

x

f(x)

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables

19

Critical points

Derivative is 0

maximum

minimum

Inflection point

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables..

20

ଶ

ଶ

maximum

minimum

Inflection point

negative

positive

zero

What about functions of multiple
variables?

• The optimum point is still “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

21

A brief note on derivatives of
multivariate functions

22

The Gradient of a scalar function

• The derivative of a scalar function of a
multi-variate input is a multiplicative factor that gives
us the change in for tiny variations in

– The gradient is the transpose of the derivative 23

Gradients of scalar functions with
multivariate inputs

• Consider

• Relation:

24

This is a vector inner product. To understand its behavior lets
consider a well-known property of inner products

A well-known vector property

• The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned
– i.e. when

25

Properties of Gradient

•

• For an increment of any given length is max if
is aligned with T

– The function f(X) increases most rapidly if the input increment
is exactly in the direction of ௑

T

• The gradient is the direction of fastest increase in f(X) 26

௑

௑ vs angle of

Blue arrow
is

௑

Gradient

27

Gradient
vector ௑

𝑇

Gradient

28

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest

Gradient

29

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest
௑

𝑇

Moving in this
direction decreases

fastest

Gradient

30

Gradient here
is 0

Gradient here
is 0

Properties of Gradient: 2

• The gradient vector ௑
𝑇 is perpendicular to the level curve

31

The Hessian
• The Hessian of a function is

given by the second derivative

32




























































2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

1
2

..

.....

.....

..

..

:),...,(

nnn

n

n

n

x

f

xx

f

xx

f

xx

f

x

f

xx

f
xx

f

xx

f

x

f

xxfX

Returning to direct optimization…

33

Finding the minimum of a scalar
function of a multivariate input

• The optimum point is a turning point – the
gradient will be 0

34

Unconstrained Minimization of
function (Multivariate)

1. Solve for the where the derivative (or gradient)
equals to zero

2. Compute the Hessian Matrix at the candidate
solution and verify that
– Hessian is positive definite (eigenvalues positive) -> to

identify local minima

– Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

35

0)( XfX

Closed Form Solutions are not always
available

• Often it is not possible to simply solve
– The function to minimize/maximize may have an

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it

iteratively until the correct value is obtained
36

X

f(X)

Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal
– Update the guess towards a (hopefully) “better” value of
– Stop when no longer decreases

• Problems:
– Which direction to step in
– How big must the steps be

37

f(X)

X
x0 x1 x2 x3

x4

x5
଴

ଵ

ଶ

The Approach of Gradient Descent

• Iterative solution:
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A negative derivative moving right decreases error
– A positive derivative moving left decreases error

– Shift point in this direction
38

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• If ᇱ ௞ is positive:
𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?39

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• Identical to previous algorithm
40

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• is the “step size”
41

Gradient descent/ascent (multivariate)

• The gradient descent/ascent method to find the
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the

gradient

– To find a minimum move exactly opposite the
direction of the gradient

• Many solutions for step size
42

Gradient descent convergence criteria

• The gradient descent algorithm converges
when one of the following criteria is satisfied

• Or

43

f (xk+1)- f (xk) <e1

2)(e< k
x xf

Overall Gradient Descent Algorithm

• Initialize:




• do





• while

44

Convergence of Gradient Descent
• For appropriate step

size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

• For non-convex
functions it will find a
local minimum or an
inflection point

45

• Returning to our problem..

46

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

47

Preliminaries

• Before we proceed: the problem setup

48

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

49

What are these input-output pairs?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

50

What are these input-output pairs?

What is f() and
what are its
parameters W?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

51

What are these input-output pairs?

What is f() and
what are its
parameters W?

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

52

What is f() and
what are its
parameters W?

What is f()? Typical network

• Multi-layer perceptron

• A directed network with a set of inputs and
outputs
– No loops

53

Input
units Output

units

Hidden units

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A continuous activation function applied to an affine

combination of the inputs

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 54

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A continuous activation function applied to an affine

combination of the input

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 55

We will assume this
unless otherwise
specified

Parameters are weights
௜ and bias

Activations and their derivatives

• Some popular activation functions and their
derivatives 56

ଶ

[*]

Vector Activations

• We can also have neurons that have multiple coupled
outputs

– Function operates on set of inputs to produce set of
outputs

– Modifying a single parameter in will affect all outputs 57

Input
Layer Output

Layer

Hidden Layers

Vector activation example: Softmax

• Example: Softmax vector activation

58

ଵ

ଶ

ଷ

௞

s
o
f
t
m
a
x

ଵ

ଶ

௟

ଵ

ଶ

௟

Parameters are
weights
and bias

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
59

zx y

೗೔

Parameters are
weights
and bias

Typical network

• In a layered network, each layer of
perceptrons can be viewed as a single vector
activation

60

Input
Layer Output

Layer

Hidden Layers

Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as ௜
(௞)

– Input to network: ௜
(଴)

௜

– Output of network: ௜ ௜
(ே)

• We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as ௜௝

(௞)

– The bias to the jth unit of the k-th layer is ௝
(௞)

61

ଵ

஽

ଵ
(ଵ)

ଵ
(ଶ)

ଵ

௅

௜௝
(ଵ)

௜௝
(ଶ)

௜௝
(ଷ)

௜௝
(ସ)

ଵ
(ଷ)

௝
(ଵ)

௝
(ଶ)

௝
(ଷ)

௝
(ସ)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

62

What is f() and
what are its
parameters W?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

63

What are these input-output pairs?

Input, target output, and actual output:
Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ௡ ௡ଵ ௡ଶ ௡஽
ୃ is the nth input vector

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth desired output

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth vector of actual outputs of the network

– Function of input ௡ and network parameters

• We will sometimes drop the first subscript when referring to a specific
instance

64

ଵ

஽

ଵ

௅

Representing the input

• Vectors of numbers
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
65

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the
desired output
• d = [d1 d2 .. dL] (vector of real values)

66

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

67

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

• Is differentiable 68

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭

Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired
output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two outputs, one representing the desired output, the other
representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

• The output explicitly becomes a 2-output softmax

69

Multi-class output: One-hot
representations

• Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat,
or a flower

• We can represent this set as the following vector, with the classes arranged in a
chosen order:

[cat dog camel hat flower]T

• For inputs of each of the five classes the desired output is:
cat: [1 0 0 0 0] T

dog: [0 1 0 0 0] T

camel: [0 0 1 0 0] T

hat: [0 0 0 1 0] T

flower: [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output with four
zeros and a single 1 at the position of that class

• This is a one hot vector

70

Multi-class networks

• For a multi-class classifier with N classes, the one-hot
representation will have N binary target outputs
– The desired output is an N-dimensional binary vector

• The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

71

Input
Layer Output

Layer

Hidden Layers

Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class
classifier nets

௜ ௝௜
(௡)

௝
(௡ିଵ)

௝

௜
௜

௝௝

• This can be viewed as the probability ௜
72

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Inputs and outputs:
Typical Problem Statement

• We are given a number of “training” data instances

• E.g. images of digits, along with information about
which digit the image represents

• Tasks:
– Binary recognition: Is this a “2” or not

– Multi-class recognition: Which digit is this?
73

Typical Problem statement:
binary classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

74

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Input: vector of
pixel values

Output: sigmoid

Typical Problem statement:
multiclass classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

75

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Input: vector of
pixel values

Output: Class prob

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

76

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

77

What is the
divergence div()?
Note: For Loss(W) to be differentiable
w.r.t W, div() must be differentiable

Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
௜ ௜

ଶ

௜

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

௜
௜ ௜

௒ ଵ ଵ ଶ ଶ
78

L2 Div()

d1d2 d3 d4

Div

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL)
divergence between the probability distribution and the ideal output
probability is popular

– Minimum when 𝑑 = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

79

KL Div

KL vs L2

• Both KL and L2 have a minimum when is the target value of
• KL rises much more steeply away from

– Encouraging faster convergence of gradient descent

• The derivative of KL is not equal to 0 at the minimum
– It is 0 for L2, though

80

d=0 d=1

𝐾𝐿 𝑌, 𝑑 = −𝑑𝑙𝑜𝑔𝑌 − 1 − 𝑑 log (1 − 𝑌)𝐿2 𝑌, 𝑑 = (𝑦 − 𝑑)ଶ

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL)
divergence between the probability distribution and the ideal output
probability is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

81

KL Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = − log 𝑦௖

௜

– Note ∑ 𝑑௜ log 𝑑௜௜ = 0 for one-hot 𝑑 ⇒ 𝐷𝑖𝑣 𝑌, 𝑑 = − ∑ 𝑑௜ log 𝑦௜௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 82

KL Div()

d1d2 d3 d4

Div

The slope is negative
w.r.t. ௖

Indicates increasing ௖

will reduce divergence

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = − ෍ 𝑑௜ log 𝑦௜ = − log 𝑦௖

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 83

KL Div()

d1d2 d3 d4

Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

The slope is negative
w.r.t. ௖

Indicates increasing ௖

will reduce divergence

KL divergence vs cross entropy
• KL divergence between and :

௜ ௜

௜

௜ ௜

௜

• Cross-entropy between and :

௜ ௜

௜

• The cross entropy is merely the KL - entropy of

௜ ௜

௜

• The that minimizes cross-entropy will minimize the KL divergence
– since 𝑑 is the desired output and does not depend on the network, 𝐻(𝑑) does not depend on

the net
– In fact, for one-hot 𝑑, 𝐻 𝑑 = 0 (and KL = Xent)

• We will generally minimize to the cross-entropy loss rather than the KL divergence
– The Xent is not a divergence, and although it attains its minimum when 𝑦 = 𝑑, its minimum

value is not 0
84

“Label smoothing”

• It is sometimes useful to set the target output to
with the value in the -th position (for class) and elsewhere for
some small
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

85

KL Div()

d1d2 d3 d4

Div

“Label smoothing”

• It is sometimes useful to set the target output to
with the value in the -th position (for class) and elsewhere for
some small
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

86

KL Div()

d1d2 d3 d4

Div

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, no?)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

87

ALL TERMS HAVE BEEN DEFINED

Story so far
• Neural nets are universal approximators

• Neural networks are trained to approximate functions by adjusting their
parameters to minimize the average divergence between their actual output and
the desired output at a set of “training instances”
– Input-output samples from the function to be learned
– The average divergence is the “Loss” to be minimized

• To train them, several terms must be defined
– The network itself
– The manner in which inputs are represented as numbers
– The manner in which outputs are represented as numbers

• As numeric vectors for real predictions
• As one-hot vectors for classification functions

– The divergence function that computes the error between actual and desired outputs
• L2 divergence for real-valued predictions
• KL divergence for classifiers

88

Problem Setup
• Given a training set of input-output pairs

• The divergence on the ith instance is
–

• The loss

• Minimize w.r.t
89

Recap: Gradient Descent Algorithm

• Initialize:
–

–

• do
–
–

• while

90

To minimize any function L(W) w.r.t W

Recap: Gradient Descent Algorithm

• In order to minimize w.r.t.
• Initialize:

–

–

• do
– For every component

• ௜
௞ାଵ

௜
௞ ௞ డ௅

డௐ೔

–

• while
91

Explicitly stating it by component

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights and biases
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ௜,௝
(௞)

௜,௝
(௞) ௗ௅௢௦

ௗ௪
೔,ೕ
(ೖ)

• Until has converged
92

Total training Loss:

Assuming the bias is also
represented as a weight

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer for all update:

• ௜,௝
(௞)

௜,௝
(௞) ௗ௅௢௦௦

ௗ௪
೔,ೕ
(ೖ)

• Until has converged
93

Total training Loss:

Assuming the bias is also
represented as a weight

The derivative

• Computing the derivative

94

Total derivative:

Total training Loss:

Training by gradient descent

• Initialize all weights ௜௝
(௞)

• Do:

– For all , initialize ௗ௅௢௦

ௗ௪
೔,ೕ
(ೖ)

– For all
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

–
ௗ௅௢௦

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

– For every layer for all :

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤௜,௝
(௞)

• Until has converged
95

The derivative

• So we must first figure out how to compute the
derivative of divergences of individual training
inputs

96

Total derivative:

Total training Loss:

Calculus Refresher: Basic rules of
calculus

97

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

Both by the
definition

௫

Calculus Refresher: Chain rule

98

Check – we can confirm that :

For any nested function

Calculus Refresher: Distributed Chain
rule

99

Check:

భ

భ

మ

మ

ಾ

ಾ

భ

భ

మ

మ

ಾ

ಾ

Let

Calculus Refresher: Distributed Chain
rule

100

Check:

భ

భ

మ

మ

ಾ

ಾ

భ

భ

మ

మ

ಾ

ಾ

Distributed Chain Rule: Influence
Diagram

• affects through each of

101

ଵ

ଶ

ெ

ଵ

ଶ

ெ

Distributed Chain Rule: Influence
Diagram

• Small perturbations in cause small
perturbations in each of each of
which individually additively perturbs 102

ଵ

ଶ

ெ

ଵ
ଵ

ெ
ெ

ଵ

ଶ

ெ

Returning to our problem

• How to compute

103

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons

and inputs

104

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the weighted sum of inputs from the
activation

105

+

+

+

+

+

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights shown

• Lets label the other variables too…
106

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Computing the derivative for a single
input

107

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଶ
(ଵ)

ଶ
(ଶ)

Div

1

1

2

2

3

Computing the derivative for a single
input

108

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଶ
(ଵ)

ଶ
(ଶ)

Div

1

1

2

2

3

What is: 𝒅𝑫𝒊𝒗(𝒀,𝒅)

𝒅௪
೔,ೕ
(ೖ)

Computing the gradient

• Note: computation of the derivative
೔,ೕ
(ೖ) requires

intermediate and final output values of the network in
response to the input 109

The “forward pass”

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

110

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming ଴௝
(௞)

௝
(௞) and ଴

(௞) -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

Setting ௜
(଴)

௜ for notational convenience

1

111

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

112

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

1

113

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

௝
(ଵ)

ଵ ௝
(ଵ)

1

114

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

115

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

116

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

௝
(ଷ)

௜௝
(ଷ)

௜
(ଶ)

௜

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

117

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

௝
(ଷ)

௜௝
(ଷ)

௜
(ଶ)

௜
௝
(ଷ)

ଷ ௝
(ଷ)

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

118

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ே)

௜௝
(ே)

௜
(ேିଵ)

௜
௝
(ேିଵ)

ேିଵ ௝
(ேିଵ) (ே)

ே
(ே)

1

119

Forward Computation

ITERATE FOR k = 1:N for j = 1:layer-width

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

120

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)஽ೖషభ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
121

Dk is the size of the kth layer

Computing derivatives

We have computed all these intermediate values in the
forward computation

We must remember them – we will need them to compute
the derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1
ேିଶ

ேିଶ

ேିଶ

ேିଶ

122

Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

123

Computing derivatives

We then compute ௒(ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

124

Computing derivatives

We then compute ௒(ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine
combination z(N) using the chain rule

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

125

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

126

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute ௒(ಿషభ) the derivative of the
divergence w.r.t. the output of the N-1th layer

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

127

Computing derivatives

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

128

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

129

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

130

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

131

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

132

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

133

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

134

Backward Gradient Computation

• Lets actually see the math..

135

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

136

Computing derivatives

The derivative w.r.t the actual output of the
final layer of the network is simply the derivative
w.r.t to the output of the network

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

137

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

138

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

139

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

ேିଶ

ேିଶ

ேିଶ

ேିଶ

140

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

Computed in forward
pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

141

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

142

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

143

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

144

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே) Just computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

145

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

146

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

Computed in forward pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

147

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵଵ
(ே) ଵ

(ேିଵ)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

148

Computing derivatives

௜௝
(ே) ௜

(ேିଵ)

௝
(ே)

For the bias term ଴
(ேିଵ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

149

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

150

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

151

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே)

ଵ௝
(ே)

Because

௝
(ே)

ଵ௝
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

152

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ଵ
(ேିଵ) ଵ௝

(ே)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

153

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

௜
(ேିଵ) ௜௝

(ே)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

154

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜
(ேିଵ) ேିଵ

ᇱ
௜
(ேିଵ)

௜
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

155

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜௝
(ேିଵ) ௜

(ேିଶ)

௝
(ேିଵ)

For the bias term ଴
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

156

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜
(ேିଶ) ௜௝

(ேିଵ)

௝ ௝
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

157

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜
(ேିଶ) ேିଶ

ᇱ
௜
(ேିଶ)

௜
(ேିଶ)

158

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ) ௜௝

(ଶ)

௝ ௝
(ଶ)

159

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

௜
(ଵ) ଵ

ᇱ
௜
(ଵ)

௜
(ଵ)

160

y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

௜௝
(ଵ) ௜

(଴)

௝
(ଵ)

161

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞) ௞

ᇱ
௜
(௞)

௜
(௞)

௜
(௞) ௜௝

(௞ାଵ)

௝ ௝
(௞ାଵ)

௜௝
(௞ାଵ) ௜

(௞)

௝
(௞ାଵ)

Div(Y,d)

௜
(ே)

௜

Figure assumes, but does not show
the “1” bias nodes

௜
(ே) ௞

ᇱ
௜
(ே)

௜
(ே) 162

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬
೔
(ಿ) =

డ஽௜௩(௒,ௗ)

డ௬೔

•
డ஽௜௩

డ௭
೔
(ಿ) =

డ஽௜௩

డ௬
೔
(ಿ) 𝑓ே

ᇱ 𝑧௜
(ே)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ) =

డ஽௜௩

డ௬
೔
(ೖ) 𝑓௞

ᇱ 𝑧௜
(௞)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) = 𝑦௝

(௞) డ஽

డ௭
೔
(ೖశభ) for 𝑗 = 1 … 𝐷௞

–
డ஽௜௩

డ௪
ೕ೔
(భ) ௝

(଴) డ஽௜௩

డ௭
೔
(భ) for ଴

163

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬
೔
(ಿ) =

డ஽௜௩(௒,ௗ)

డ௬೔

•
డ஽௜௩

డ௭
೔
(ಿ) =

డ஽௜௩

డ௬
೔
(ಿ) 𝑓ே

ᇱ 𝑧௜
(ே)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ) =

డ஽௜

డ௬
೔
(ೖ) 𝑓௞

ᇱ 𝑧௜
(௞)

•
డ஽௜

డ௪
ೕ೔
(ೖశభ) = 𝑦௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for 𝑗 = 1 … 𝐷௞

–
డ஽௜௩

డ௪
ೕ೔
(భ) ௝

(଴) డ஽௜௩

డ௭
೔
(భ) for ଴

164

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Backward Pass
• Output layer (N) :

– For ே

• ௜
(ே) డ஽௜௩

డ௬೔

• ௜
(ே)

௜
(ே)

ே
ᇱ

௜
(ே)

• For layer
– For ௞

• ௜
(௞)

௜௝
(௞ାଵ)

௝ ௝
(௞ାଵ)

• ௜
(௞)

௜
(௞)

௞
ᇱ

௜
(௞)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞)
௜
(௞ାଵ)for ௞

–
డ஽௜௩

డ௪
ೕ೔
(భ) ௝

(଴)
௜
(ଵ)for ଴

165

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Using notation డ஽௜௩(௒,ௗ)

డ௬
etc (overdot represents derivative of w.r.t variable)

For comparison: the forward pass
again

• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
166

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect

computation of other neurons in the same (or previous) layers
2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Will not discuss all of these in class, but explained in slides
– Will appear in quiz. Please read the slides

167

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

168

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

169

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

170

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

The number of outputs

171

z(k) y(k)

• Note: The number of outputs (y(k)) need not be the
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

172

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
173

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector

activations:
డ௬ೕ

(ೖ)

డ௭
೔
(ೖ)

Example Vector Activation: Softmax

174

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

Div

Example Vector Activation: Softmax

175

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝Div

Example Vector Activation: Softmax

176

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

Div

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 177

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

௜
(௞)

௝
(௞) ௜

(௞)
௜௝ ௝

(௞)

௝

Div

Backward Pass for softmax output
layer

• Output layer (N) :
– For ே

•
డ஽௜௩

డ௬
೔
(ಿ) =

డ஽௜௩(௒,ௗ)

డ௬೔

•
డ஽௜௩

డ௭
೔
(ಿ) = ∑

డ஽௜௩(௒,ௗ)

డ௬
ೕ
(ಿ) 𝑦௜

(ே)
𝛿௜௝ − 𝑦௝

(ே)
௝

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ) = 𝑓௞

ᇱ 𝑧௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) = 𝑦௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for 𝑗 = 1 … 𝐷௞

–
డ஽௜௩

డ௪
ೕ೔
(భ) ௝

(଴) డ஽௜௩

డ௭
೔
(భ) for ଴

178

z(N)
y(N)

KL Div

d

Div

so
ft

m
ax

Special cases

• Examples of vector activations and other
special cases on slides
– Please look up
– Will appear in quiz!

179

Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax),

etc.
180

z(k)y(k-1) y(k)

Special Case 2: Multiplicative
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far

• Seen in networks such as LSTMs, GRUs, attention models,
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()(-- k
l

k
j

k
i yyo

181

Backpropagation: Multiplicative
Networks

• Some types of networks have multiplicative
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward:
)1()1()(-- k

l
k
j

k
i yyo

Backward:

)(
)1(

)()1(

)(

)1(k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div













 -

--)(
)1(

)1(k
i

k
jk

l o

Div
y

y

Div






 -

-

௜
(௞) ௜௝

(௞ାଵ)

௝ ௝
(௞ାଵ)

182

Multiplicative combination as a case
of vector activations

• A layer of multiplicative combination is a special case of vector activation
183

z(k)y(k-1) y(k)

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
184

z(k)y(k-1) y(k)

೗೔
(ೖ)

ೕ೔
(ೖ)

೗೔
(ೖ)

Y, Div

Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௝
(௞)

For k = N…1
For i = 1:layer width

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௜
(௞ିଵ) ௜௝

(௞)

௝ ௝
(௞)

௜௝
(௞) ௜

(௞ିଵ)

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

If layer has vector activation Else if activation is scalar

185

Special Case : Non-differentiable
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g. The “max” function

• Must use “subgradients” where available
– Or “secants” 186

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y

௝
௝

z2

z3

z4

The subgradient

• A subgradient of a function at a point ଴ is any vector such that

଴
்

଴

– Any direction such that moving in that direction increases the function

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to increase
• If the function is differentiable at ଴, the subgradient is the gradient

– The gradient is not always the subgradient though
187

Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the

same as the gradient
– Typically, will use the equation given

188

Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

189

z1

y

௝
௝

z2

zN

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 190

ೕ

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬
೔
(ಿ) =

డ஽௜௩(௒,ௗ)

డ௬೔

•
డ஽௜

డ௭
೔
(ಿ) =

డ஽௜௩

డ௬
೔
(ಿ)

డ௬೔
(ಿ)

డ௭
೔
(ಿ) 𝑂𝑅 ∑

డ஽௜௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭
೔
(ಿ)௝ (vector activation)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜

డ௭
೔
(ೖ) =

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ) 𝑂𝑅 ∑

డ஽௜௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭
೔
(ೖ)௝ (vector activation)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) = 𝑦௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for 𝑗 = 1 … 𝐷௞

–
డ஽௜௩

డ௪
ೕ೔
(భ) ௝

(଴) డ஽௜௩

డ௭
೔
(భ) for ଴

191

These may be subgradients

T

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation.

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–
192

Training by BackProp
• Initialize weights ௞ for all layers
• Do: (Gradient descent iterations)

– Initialize ; For all , initialize ௗ௅௢௦௦

ௗ௪
೔,ೕ
(ೖ)

– For all (Iterate over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– Compute
ௗ௅௢௦௦

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– For all update:

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤௜,௝
(௞)

• Until has converged 193

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector
operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector
terms
– This is what is actually used in any real system

194

Vector formulation

• Arrange all inputs to the network in a vector
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix ௞

– Similarly with biases
19

5

ଵ

ଶ

஽

ଵଵ
(ଵ)

஽భ஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting 𝟎):

19
6

ଵ

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

ଶ

஽

ଵଵ
(ଵ)

஽஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖశభ

(௞)

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 ௞ 𝒌

The forward pass: Evaluating the
network

197

𝟎

The forward pass

198

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

199

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

200

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

201

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

202

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

The Complete computation

𝟐𝟏

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The forward pass

203

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output
204

The Forward Pass
• Set

• Recursion through layers:
– For layer k = 1 to N:

• Output:

205

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The divergence for any is also a nested function

206

Calculus recap 2: The Jacobian

207

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

Jacobians can describe the derivatives
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 208

z y

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

209

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
210

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
211

Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

212

Check

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

213

Check

Note the order: The derivative of the outer function comes first

Special Case

• Scalar functions of Affine functions

214

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a the transposed gradient
(for scalar) or a Jacobian (for vector) 215

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the derivative of the divergence w.r.t. .
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative 216

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

Already computed New term
217

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

Already computed New term
218

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

Already computed New term
219

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

Already computed New term
220

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே

221

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

Already computed New term
222

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

223

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

224

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

225

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

226

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

227

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

228

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

229

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

230

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N :
– Forward recursion step:

• Output:

231

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all # Loop through training instances
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖௞ାଵ

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳௞

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕) = 𝐲௞ିଵ𝛻𝐳ೖ

𝐷𝑖𝑣; 𝛻𝐛ೖ
𝑫𝒊𝒗 𝒀𝒕, 𝒅𝒕 = 𝛻𝐳ೖ

𝐷𝑖𝑣

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖௞ = 𝐖௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

; 𝐛௞ = 𝐛௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

• Until has converged
232

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

–

–

• Use KL divergence
• Backpropagation to learn network parameters 233

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 234

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Y1 Y2 Y3 Y4 Y0

Story so far

• Neural networks must be trained to minimize the average
divergence between the output of the network and the desired
output over a set of training instances, with respect to network
parameters.

• Minimization is performed using gradient descent

• Gradients (derivatives) of the divergence (for any individual
instance) w.r.t. network parameters can be computed using
backpropagation
– Which requires a “forward” pass of inference followed by a

“backward” pass of gradient computation

• The computed gradients can be incorporated into gradient descent
235

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

236

Next up

• Convergence and generalization

237

