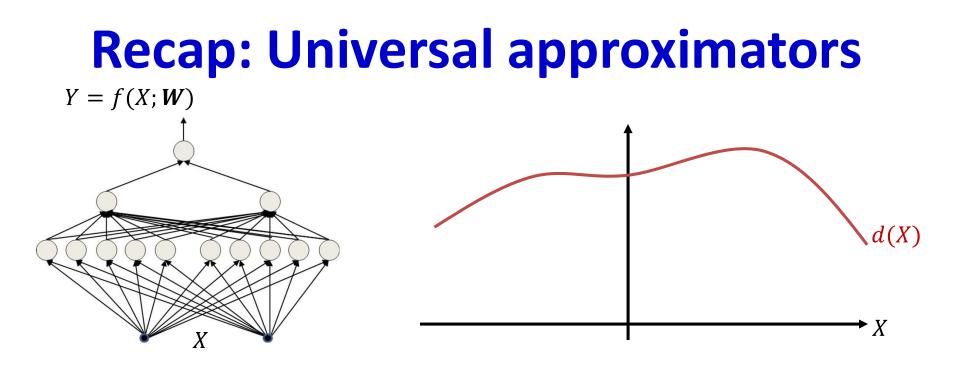
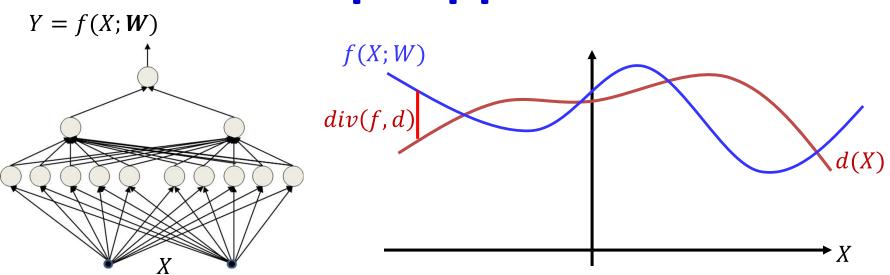
Neural Networks Learning the network: Part 2 11-785, Fall 2020 Lecture 4

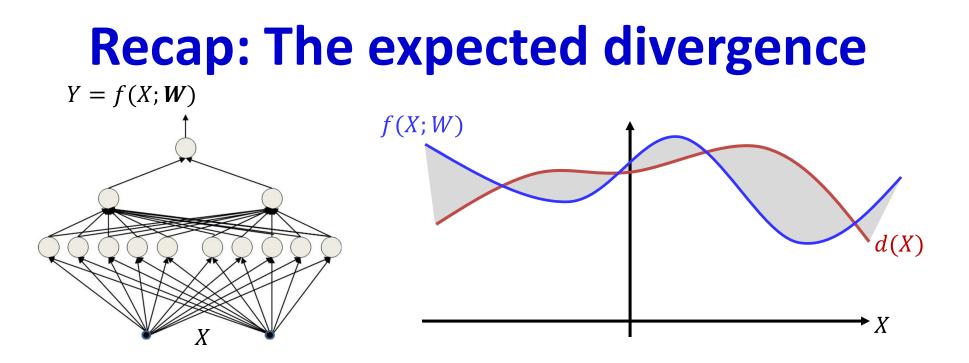


- Neural networks are universal approximators
 - Can approximate any function
 - Provided they have sufficient architecture
 - We have to determine the weights and biases to make them model the function

Recap: Approach



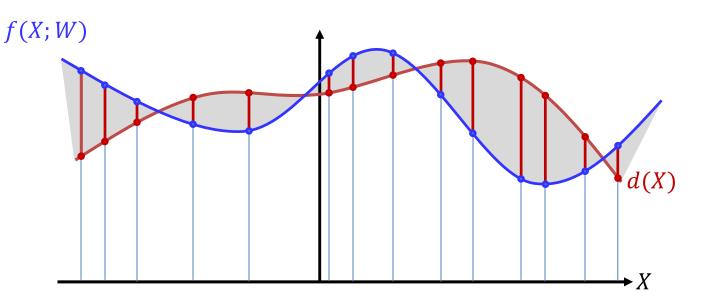
- Define a divergence div(f, d) between the actual output f and desired output d of the network
 - Must be differentiable: can quantify how much a miniscule change of f changes div(f, d)
- Make all neuronal activations $\sigma(z)$ differentiable
 - Differentiable: can quantify how much a miniscule change of z changes $\sigma(z)$
- Differentiability enables us to determine if a small change in any parameter of the network is increasing or decreasing div(f, d)
 - Will let us optimize the network



 Minimize the expected "divergence" between the output of the net and the desired function over the input space

$$\widehat{W} = \underset{W}{\operatorname{argmin}} E\left[div(f(X;W), d(X))\right]$$

Recap: Emipirical Risk Minimization



- **Problem:** Computing the expected divergence E[div(f(X; W), d(X))] requires knowledge of d(X) at all X which we will not have
- Solution: Approximate it by the *average* divergence over a large number of "training" samples (X, d(X)) drawn from P(X)

$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d(X_i))$$

• Estimate the parameters to minimize this "loss" instead

$$\widehat{W} = \underset{W}{\operatorname{argmin}} \operatorname{Loss}(W)$$

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N)$
- Minimize the following function

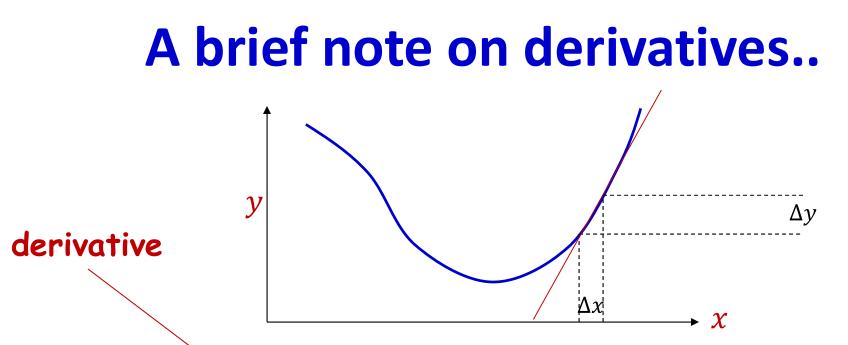
$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

• This is problem of function minimization

– An instance of optimization

• A CRASH COURSE ON FUNCTION OPTIMIZATION



- A derivative of a function at any point tells us how much a minute increment to the *argument* of the function will increment the *value* of the function
 - For any y = f(x), expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output $\Delta y = \alpha \Delta x$
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point

Scalar function of scalar argument y Δy Δy

• When x and y are scalar

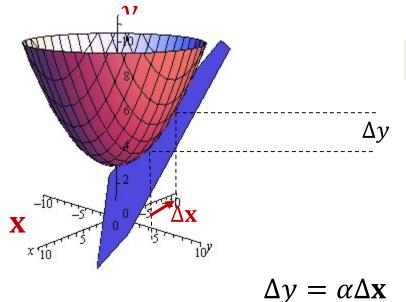
$$y = f(x)$$

Derivative:

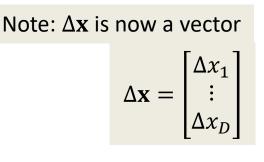
$$\Delta y = \frac{\alpha \Delta x}{\alpha \Delta x}$$

- Often represented (using somewhat inaccurate notation) as $\frac{dy}{dx}$
- Or alternately (and more reasonably) as f'(x)

Multivariate scalar function: Scalar function of *vector* argument



۲



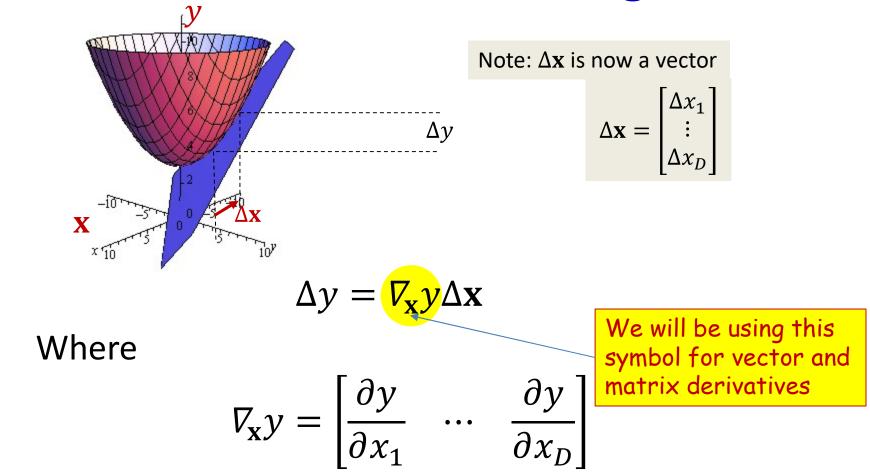
Giving us that α is a row vector: $\alpha = [\alpha_1 \quad \cdots \quad \alpha_D]$

 $\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \dots + \alpha_D \Delta x_D$

- The *partial* derivative α_i gives us how y increments when *only* x_i is incremented
- Often represented as $\frac{\partial y}{\partial x_i}$ $\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_D} \Delta x_D$

10

Multivariate scalar function: Scalar function of *vector* argument

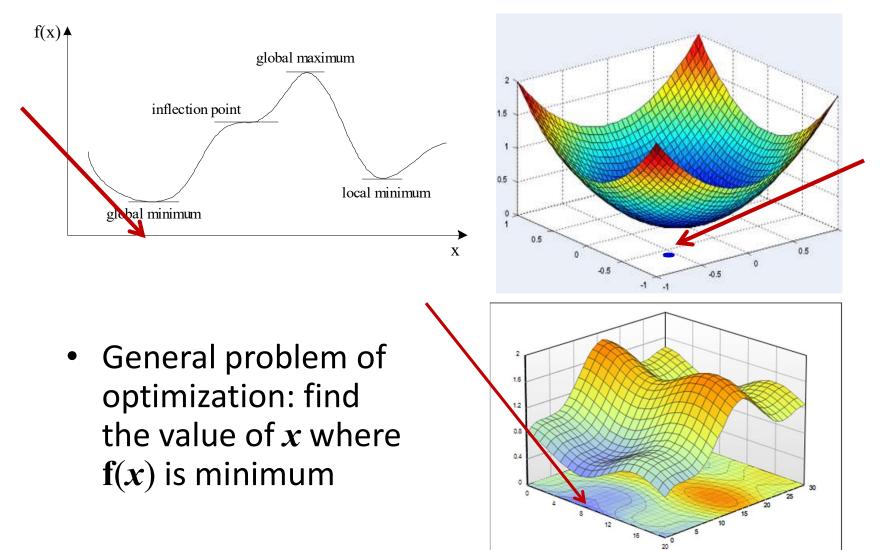


 You may be more familiar with the term "gradient" which is actually defined as the transpose of the derivative

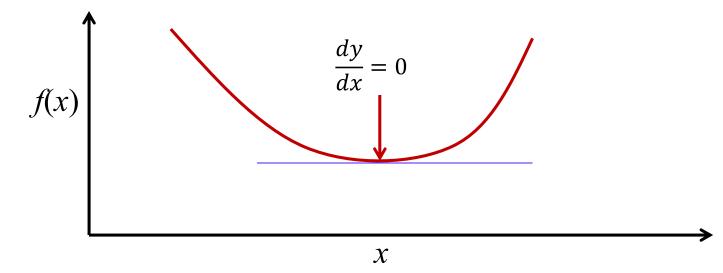
Caveat about following slides

- The following slides speak of optimizing a function w.r.t a variable "x"
- This is only mathematical notation. In our actual network optimization problem we would be optimizing w.r.t. network weights "w"
- To reiterate "x" in the slides represents the variable that we're optimizing a function over and not the input to a neural network
- Do not get confused!

The problem of optimization



Finding the minimum of a function

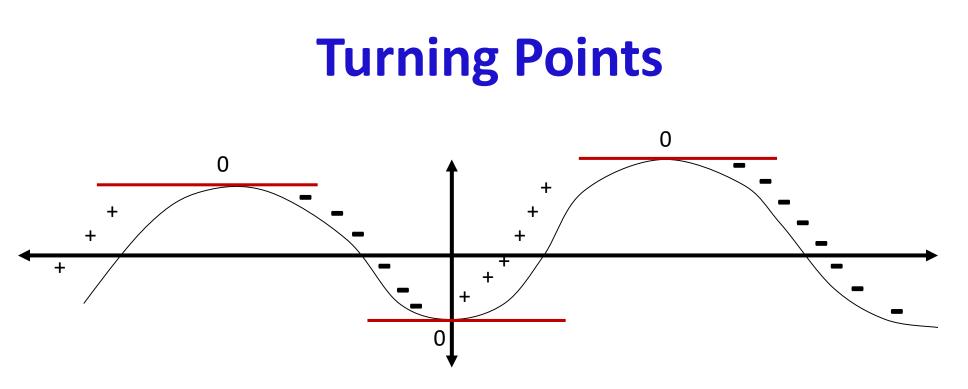


• Find the value x at which f'(x) = 0

- Solve

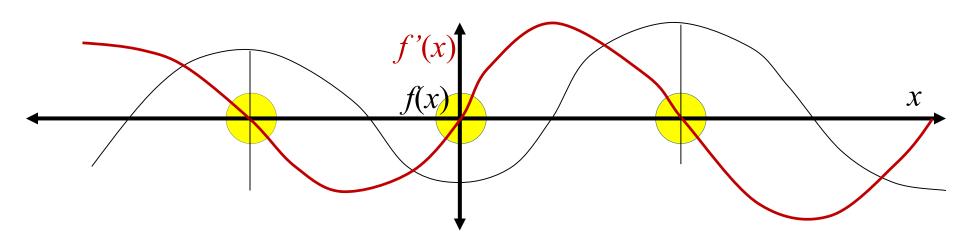
$$\frac{df(x)}{dx} = 0$$

- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?



- Both maxima and minima have zero derivative
- Both are turning points

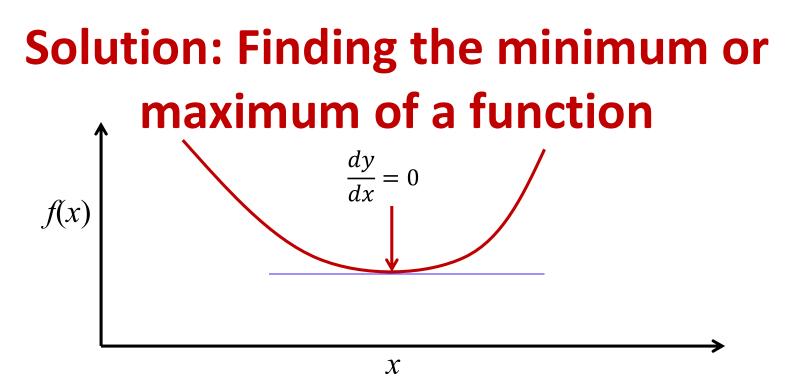
Derivatives of a curve



- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative

Derivative of the derivative of the curve f''(x) = f''(x) + f(x) + f(x

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- The second derivative f''(x) is -ve at maxima and +ve at minima!



• Find the value x at which
$$f'(x) = 0$$
: Solve

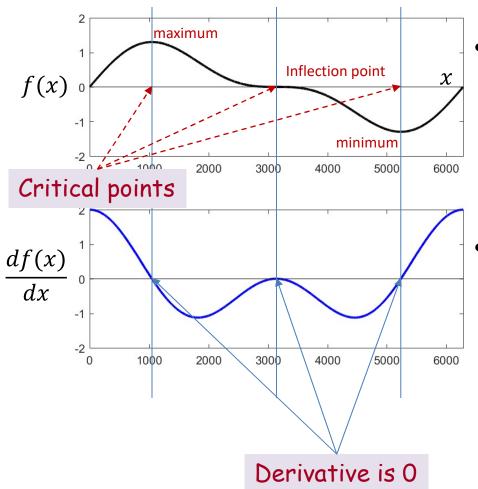
$$\frac{df(x)}{dx} = 0$$

- The solution *x*_{soln} is a *turning point*
- Check the double derivative at *x*_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

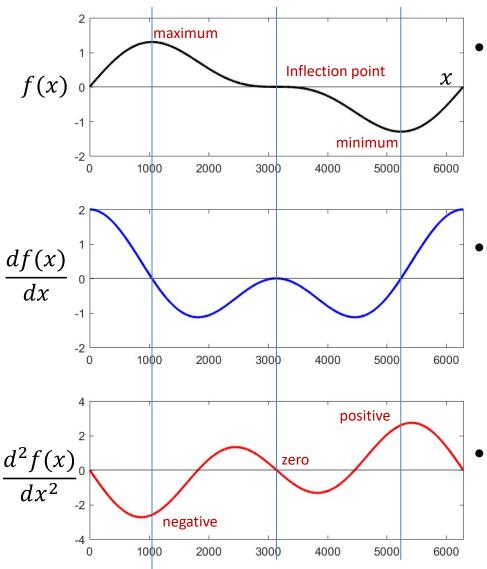
• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

A note on derivatives of functions of single variable



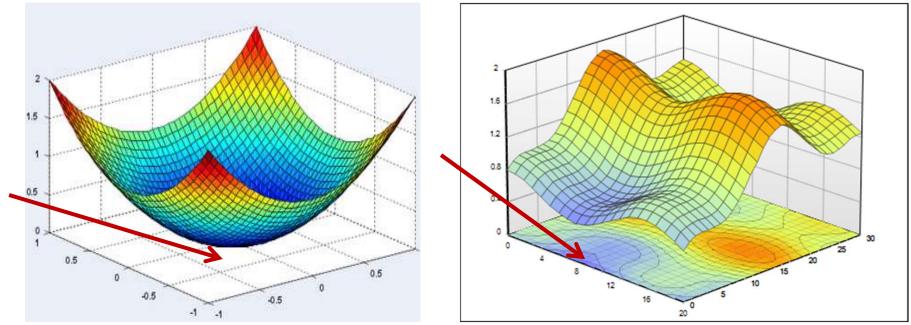
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - Positive (or 0) at minima
 - Negative (or 0) at maxima
 - Zero at inflection points

A note on derivatives of functions of single variable



- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - ≥ 0 at minima
 - ≤ 0 at maxima
 - Zero at inflection points
 - It's a little more complicated for functions of multiple variables..

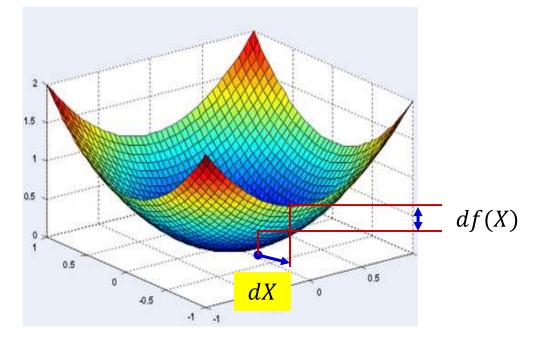
What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

A brief note on derivatives of multivariate functions

The Gradient of a scalar function

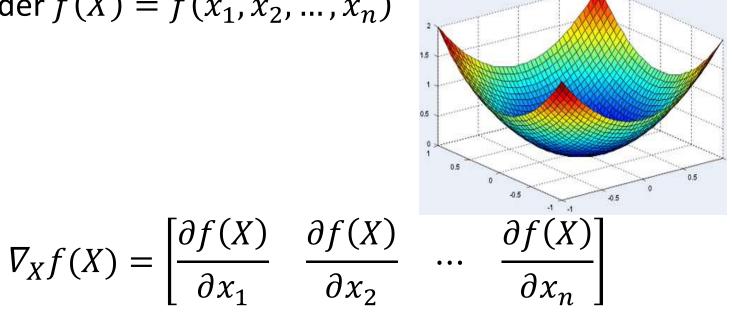


• The derivative $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X $df(X) = \nabla_X f(X) dX$

- The **gradient** is the transpose of the derivative $\nabla_X f(X)^T$ 23

Gradients of scalar functions with multivariate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$

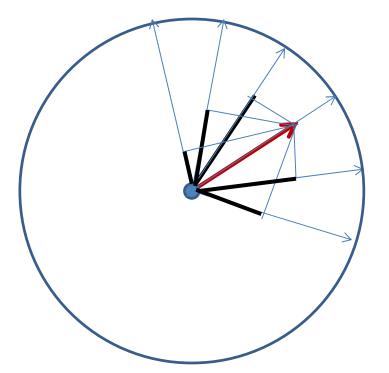


• Relation:

 $df(X) = \nabla_X f(X) dX$

This is a vector inner product. To understand its behavior lets consider a well-known property of inner products

A well-known vector property

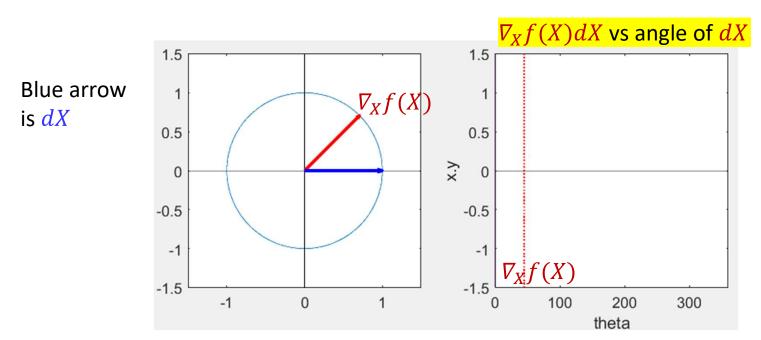


 $\mathbf{u}^{\mathrm{T}}\mathbf{v} = |\mathbf{u}||\mathbf{v}|cos\theta$

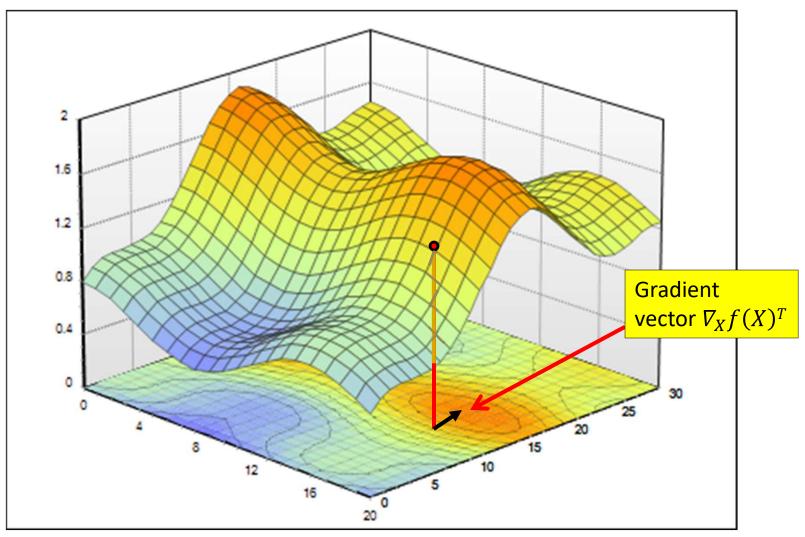
 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

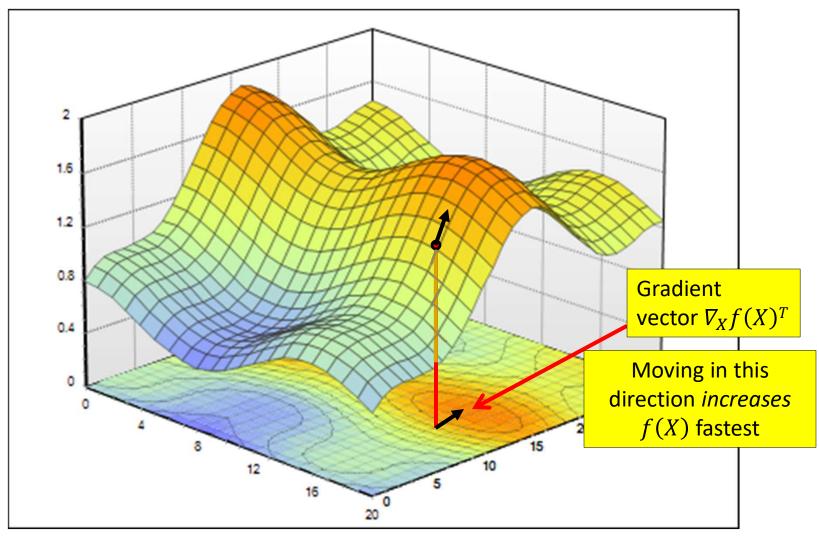
-i.e. when $\theta = 0$

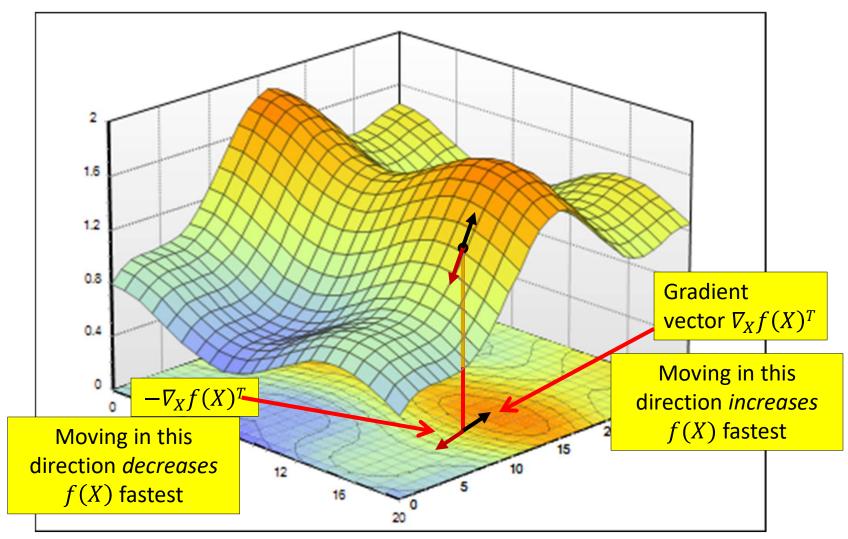
Properties of Gradient

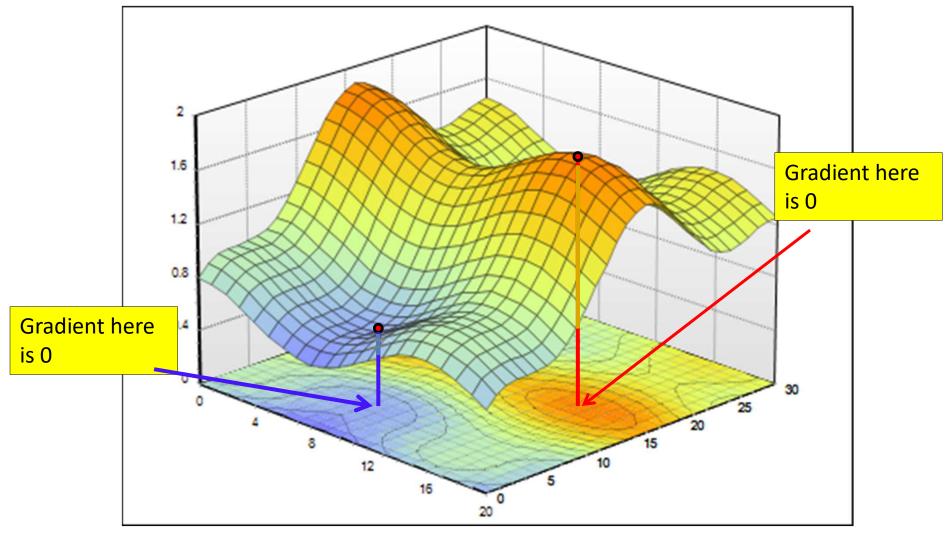


- $df(X) = \nabla_X f(X) dX$
- For an increment dX of any given length df(X) is max if dX is aligned with $\nabla_X f(X)^T$
 - The function f(X) increases most rapidly if the input increment dX is exactly in the direction of $\nabla_X f(X)^T$
- The gradient is the direction of fastest increase in f(X)

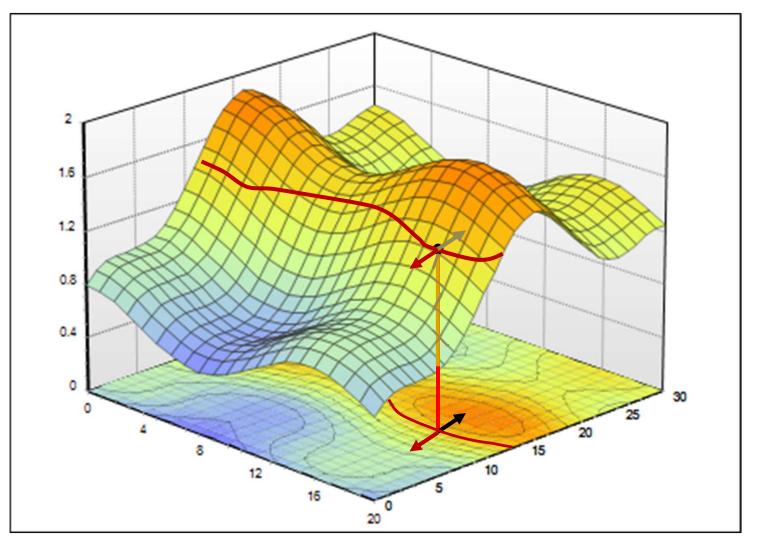








Properties of Gradient: 2



• The gradient vector $\nabla_X f(X)^T$ is perpendicular to the level curve

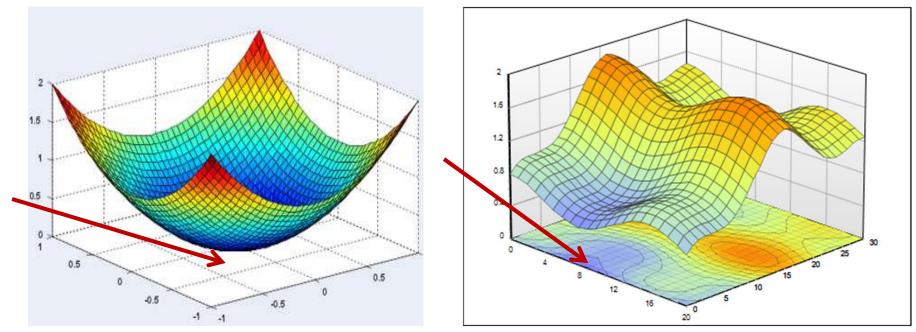
The Hessian

The Hessian of a function f (x₁, x₂, ..., x_n) is given by the second derivative

$$\nabla_{x}^{2} f(x_{1},...,x_{n}) \coloneqq \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \ddots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \ddots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \ddots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multivariate input



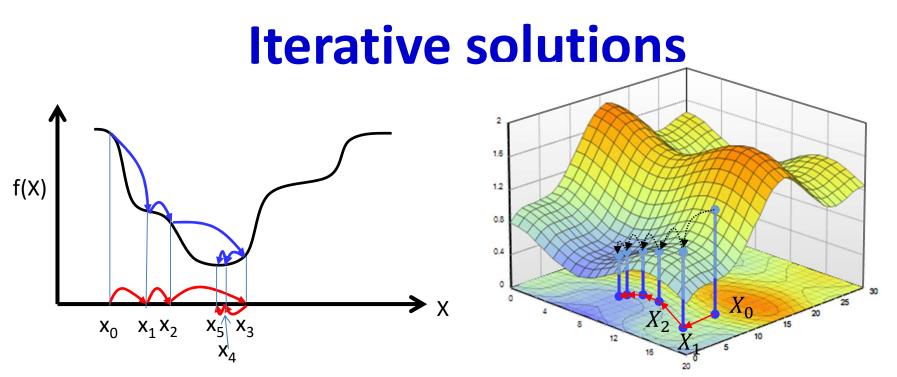
• The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the X where the derivative (or gradient) equals to zero $\nabla_{Y} f(X) = 0$

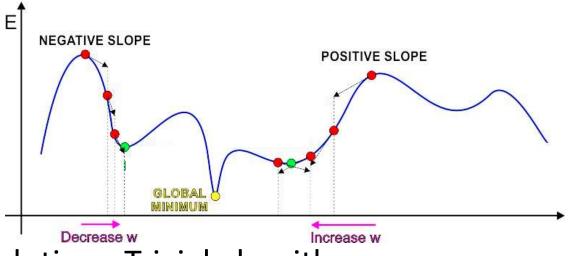
- 2. Compute the Hessian Matrix $\nabla_X^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

- Often it is not possible to simply solve $\nabla_X f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained



- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be

- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A negative derivative \rightarrow moving right decreases error
 - A positive derivative \rightarrow moving left decreases error
 - Shift point in this direction



- Iterative solution: Trivial algorithm
 - Initialize x^0

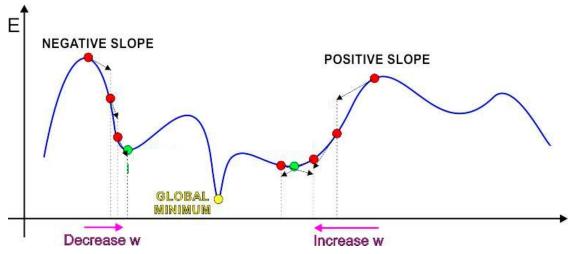
• While
$$f'(x^k) \neq 0$$

• If
$$sign(f'(x^k))$$
 is positive:
 $x^{k+1} = x^k - step$

• Else

$$x^{k+1} = x^k + step$$

– What must step be to ensure we actually get to the optimum?

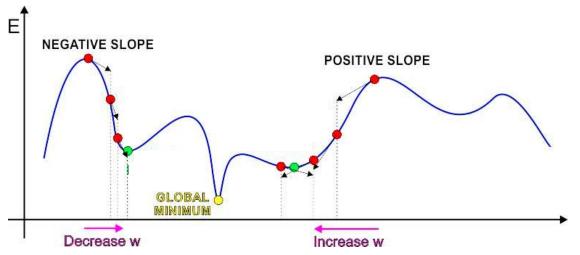


- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - sign(f'(x^k))$.step

• Identical to previous algorithm



- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - \eta^k f'(x^k)$

• η^k is the "step size"

Gradient descent/ascent (multivariate)

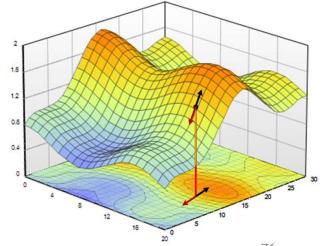
- The gradient descent/ascent method to find the minimum or maximum of a function *f* iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla_x f(x^k)^T$$

 To find a minimum move exactly opposite the direction of the gradient

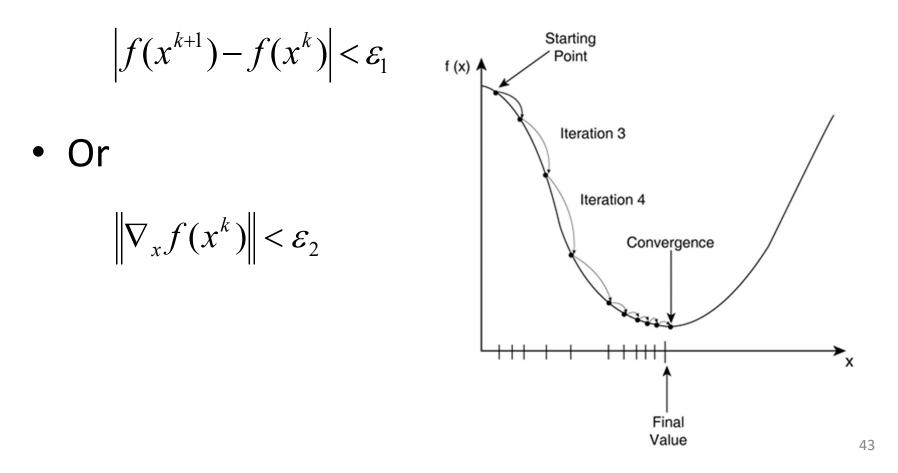
$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• Many solutions for step size η^k



Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied



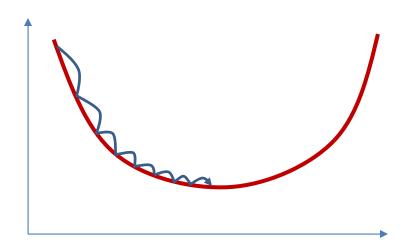
Overall Gradient Descent Algorithm

• Initialize:

• do
•
$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• $k = k + 1$
• while $|f(x^{k+1}) - f(x^k)| > \varepsilon$

Convergence of Gradient Descent



- For appropriate step size, for convex (bowlshaped) functions gradient descent will always find the minimum.
- For non-convex functions it will find a local minimum or an inflection point

• Returning to our problem..

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function $Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Preliminaries

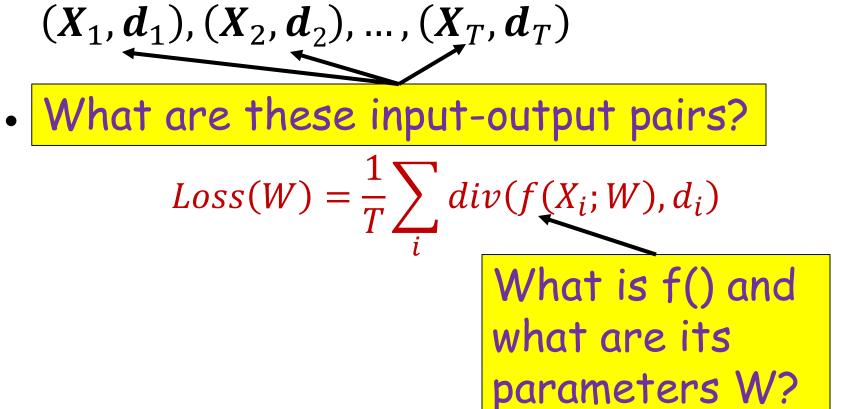
• Before we proceed: the problem setup

• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

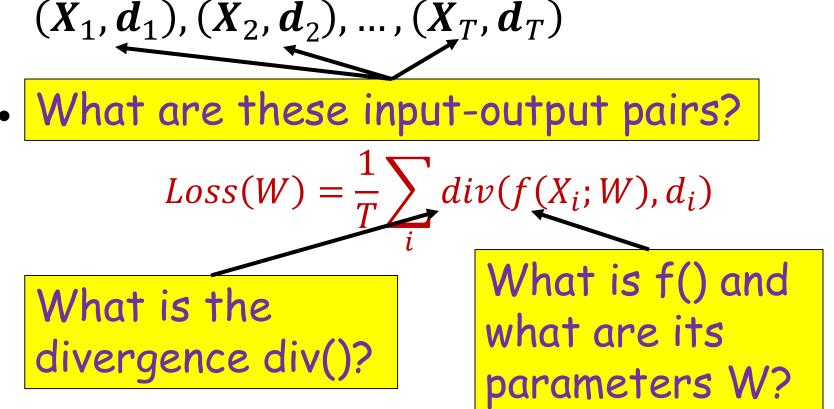
• What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

• Given a training set of input-output pairs



• Given a training set of input-output pairs

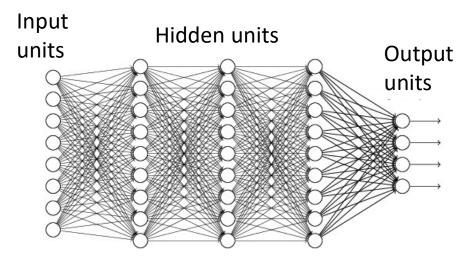


- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

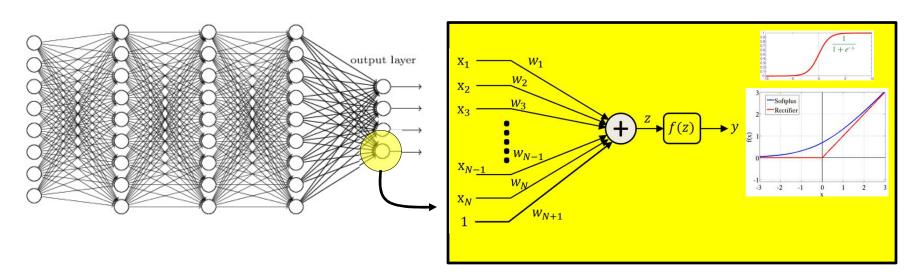
What is f() and
what are its
parameters W?

What is f()? Typical network



- Multi-layer perceptron
- A *directed* network with a set of inputs and outputs
 - No loops

The individual neurons



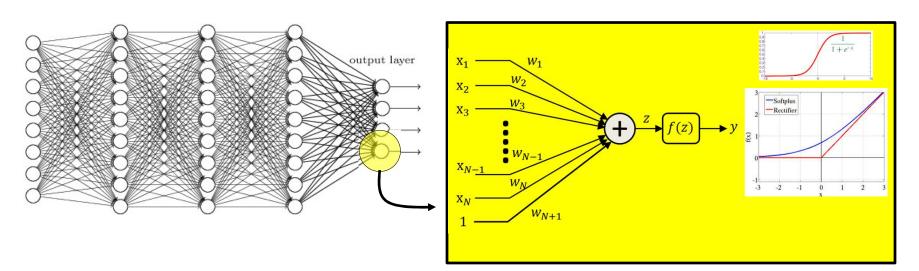
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine combination of the inputs

$$y = f\left(\sum_{i} w_i x_i + b\right)$$

- More generally: *any* differentiable function

$$y = f(x_1, x_2, ..., x_N; W)$$
 54

The individual neurons



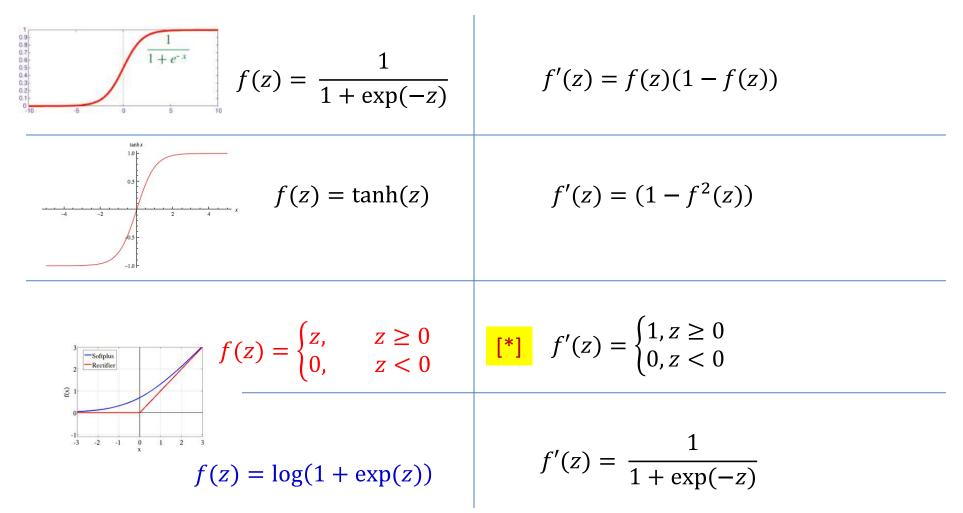
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine combination of the input
 We will assume this

$$y = f\left(\sum_{i} w_i x_i + b\right) \bigstar$$

- More generally: *any* differentiable function $y = f(x_1, x_2, ..., x_N; W)$ We will assume this unless otherwise specified

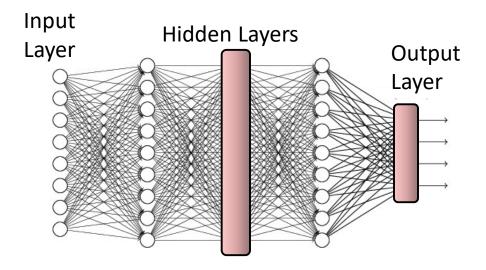
Parameters are weights w_i and bias b

Activations and their derivatives



Some popular activation functions and their derivatives

Vector Activations

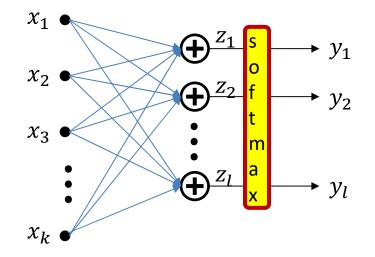


• We can also have neurons that have *multiple coupled* outputs

$$[y_1, y_2, \dots, y_l] = f(x_1, x_2, \dots, x_k; W)$$

- Function f() operates on set of inputs to produce set of outputs
- Modifying a single parameter in W will affect *all* outputs 57

Vector activation example: Softmax

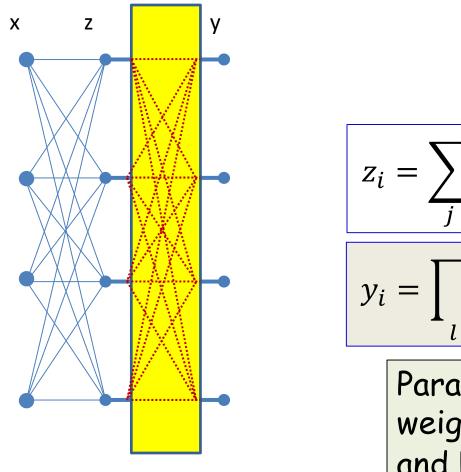


• Example: Softmax *vector* activation

$$z_{i} = \sum_{j} w_{ji} x_{j} + b_{i}$$
$$y = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

Parameters are weights w_{ji} and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations



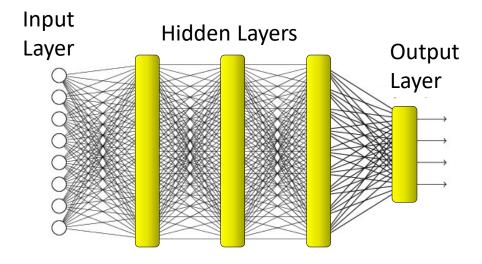
 $z_i = \sum w_{ji} x_j + b_i$

$$y_i = \prod_l (z_l)^{\alpha_{li}}$$

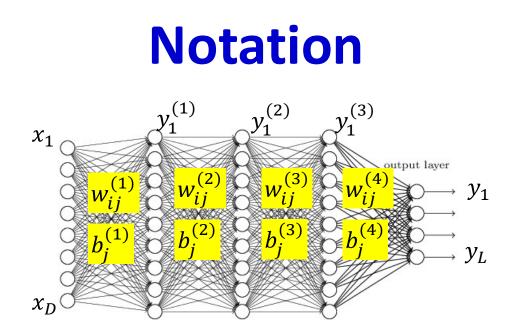
Parameters are weights w_{ii} and bias b_i

A layer of multiplicative combination is a special case of vector activation ٠

Typical network

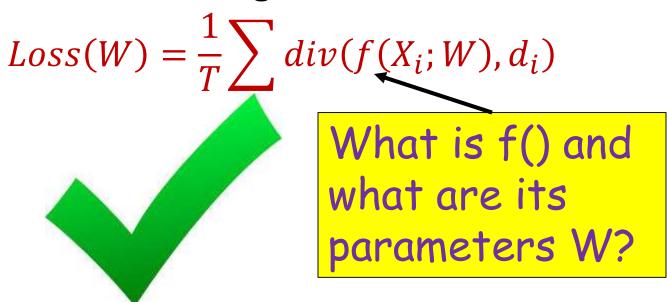


 In a layered network, each layer of perceptrons can be viewed as a single vector activation



- The input layer is the Oth layer
- We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as w^(k)_{ii}
 - The bias to the jth unit of the k-th layer is $b_i^{(k)}$

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

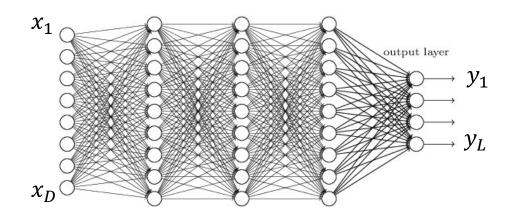


• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

• What are these input-output pairs?

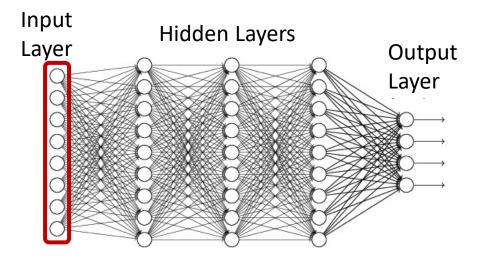
$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Input, target output, and actual output: Vector notation

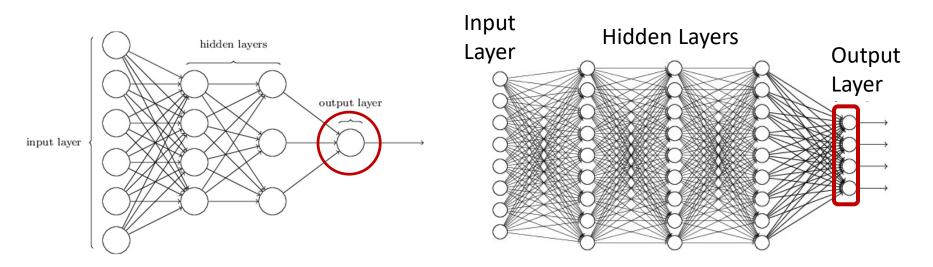


- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- $X_n = [x_{n1}, x_{n2}, \dots, x_{nD}]^T$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, \dots, d_{nL}]^T$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, ..., y_{nL}]^{\top}$ is the nth vector of *actual* outputs of the network - Function of input X_n and network parameters
- We will sometimes drop the first subscript when referring to a *specific* instance

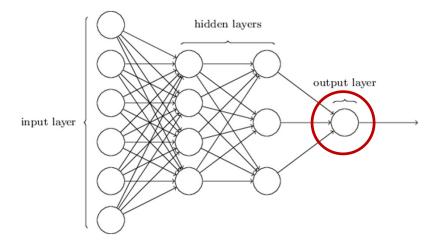
Representing the input



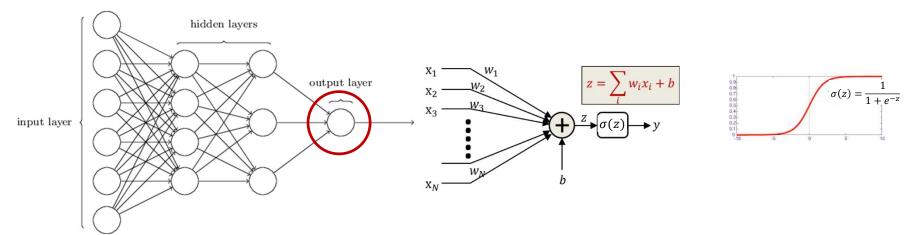
- Vectors of numbers
 - (or may even be just a scalar, if input layer is of size 1)
 - E.g. vector of pixel values
 - E.g. vector of speech features
 - E.g. real-valued vector representing text
 - We will see how this happens later in the course
 - Other real valued vectors



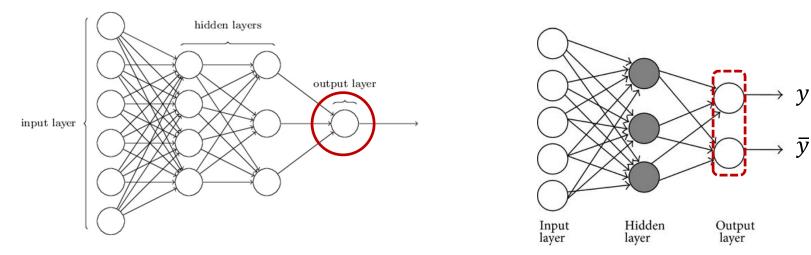
- If the desired *output* is real-valued, no special tricks are necessary
 - Scalar Output : single output neuron
 - d = scalar (real value)
 - Vector Output : as many output neurons as the dimension of the desired output
 - $d = [d_1 d_2 .. d_L]$ (vector of real values)



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - -1 = Yes it's a cat
 - 0 = No it's not a cat.



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability P(Y = 1|X) of class value 1
 - Indicating the fact that for actual data, in general a feature value X may occur for both classes, but with different probabilities
 - Is differentiable



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it's a cat
 - 0 = No it's not a cat.
- Sometimes represented by *two* outputs, one representing the desired output, the other representing the *negation* of the desired output
 - Yes: \rightarrow [1 0]
 - No: \rightarrow [0 1]
- The output explicitly becomes a 2-output softmax

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector, with the classes arranged in a chosen order:

[cat dog camel hat flower][⊤]

• For inputs of each of the five classes the desired output is:

```
cat: [1000]^{T}
```

```
dog: [0 \ 1 \ 0 \ 0 \ 0]^{\top}
```

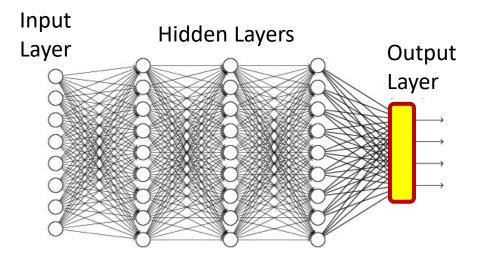
```
camel: [0 \ 0 \ 1 \ 0 \ 0]^{T}
```

```
hat: [00010]<sup>+</sup>
```

```
flower: [0 \ 0 \ 0 \ 0 \ 1]^{T}
```

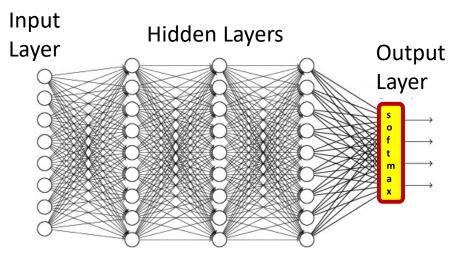
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks



- For a multi-class classifier with N classes, the one-hot representation will have N binary target outputs
 - The desired output d is an N-dimensional binary vector
- The neural network's output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
 - N probability values that sum to 1.

Multi-class classification: Output



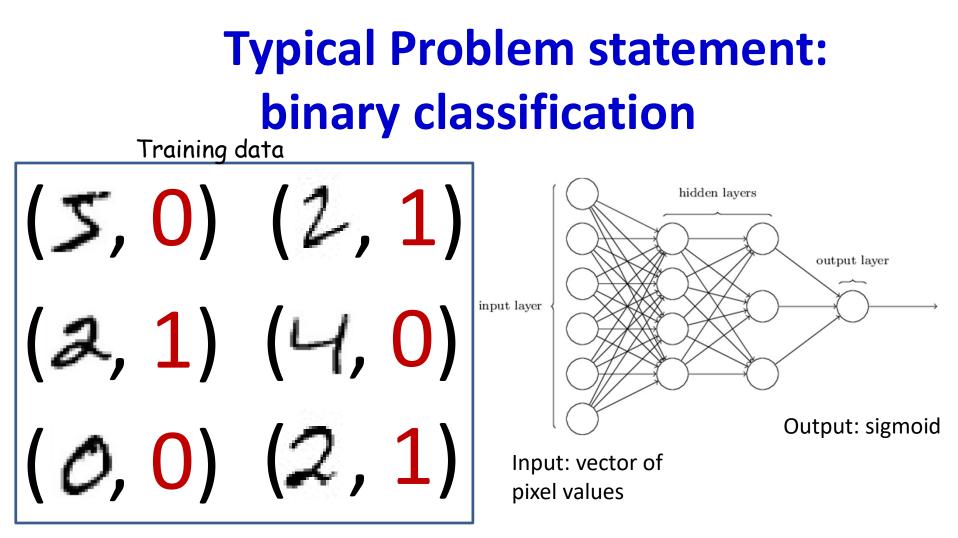
• Softmax *vector* activation is often used at the output of multi-class classifier nets

$$z_{i} = \sum_{j} w_{ji}^{(n)} y_{j}^{(n-1)}$$
$$y_{i} = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

• This can be viewed as the probability $y_i = P(class = i|X)$

Inputs and outputs: Typical Problem Statement

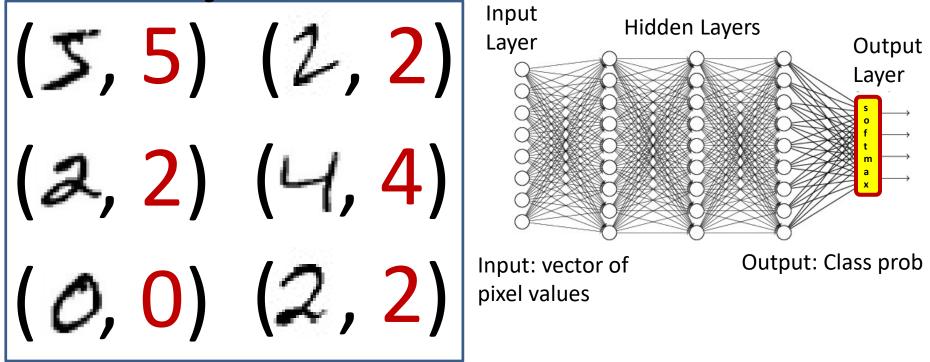
- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a "2" or not
 - Multi-class recognition: Which digit is this?



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

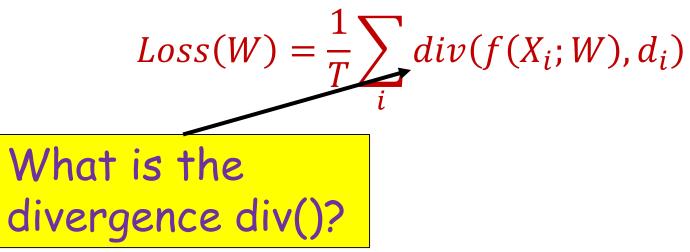
Training data



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

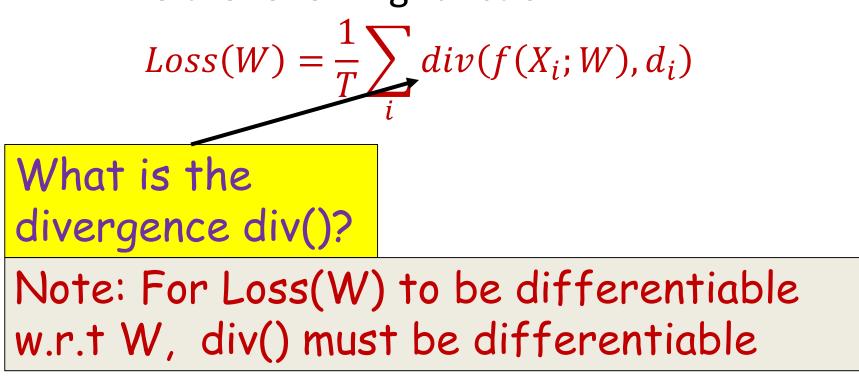
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

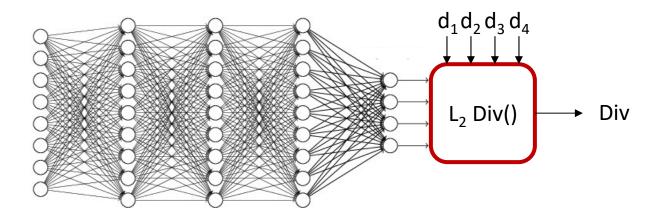


Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function



Examples of divergence functions



• For real-valued output vectors, the (scaled) L₂ divergence is popular

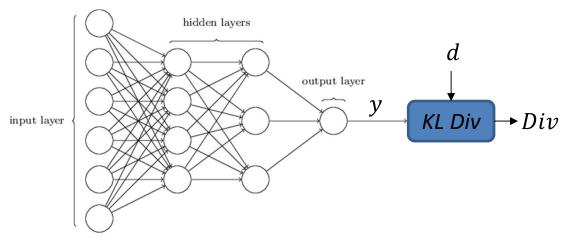
$$Div(Y,d) = \frac{1}{2} ||Y - d||^2 = \frac{1}{2} \sum_{i} (y_i - d_i)^2$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$\frac{dDiv(Y,d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y,d) = [y_1 - d_1, y_2 - d_2, \dots]$$

For binary classifier

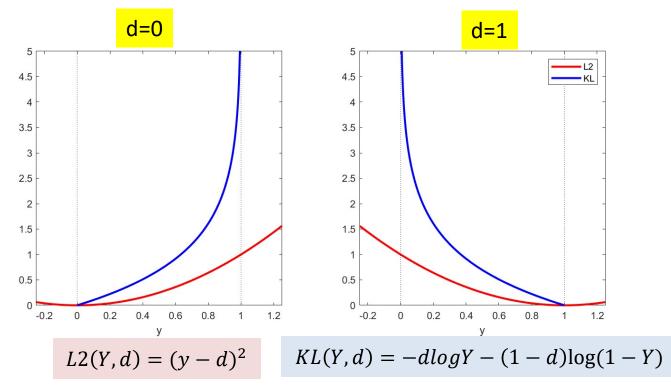


• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1 - Y] and the ideal output probability [d, 1 - d] is popular

$$Div(Y,d) = -dlogY - (1-d)\log(1-Y)$$

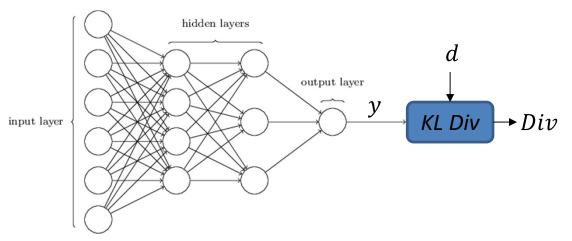
- Minimum when d = Y

KL vs L2



- Both KL and L2 have a minimum when y is the target value of d
- KL rises much more steeply away from *d*
 - Encouraging faster convergence of gradient descent
- The derivative of KL is *not* equal to 0 at the minimum
 - It is 0 for L2, though

For binary classifier



• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1 - Y] and the ideal output probability [d, 1 - d] is popular

$$Div(Y,d) = -dlogY - (1-d)\log(1-Y)$$

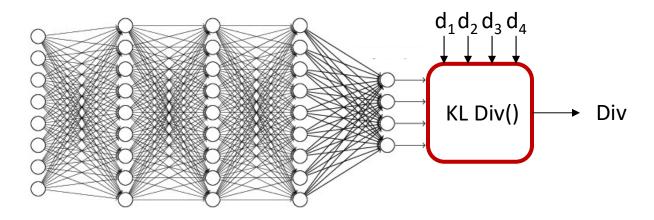
 $\int 1$

- Minimum when d = Y
- Derivative

Note: when
$$y = d$$
 the derivative is *not* 0

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$
Even though div() = 0
(minimum) *when y = d*

For multi-class classification



- Desired output d is a one hot vector $[0 \ 0 \dots 1 \dots 0 \ 0 \ 0]$ with the 1 in the c-th position (for class c)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y,d) = \sum_{i} d_i \log d_i - \sum_{i} d_i \log y_i = -\log y_c$$

- Note $\sum_i d_i \log d_i = 0$ for one-hot $d \Rightarrow Div(Y, d) = -\sum_i d_i \log y_i$

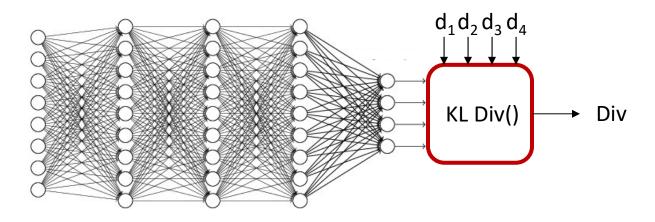
• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} & \text{for the } c - th \text{ component} \\ 0 & \text{for remaining component} \end{cases}$$
$$\nabla_{Y}Div(Y,d) = \begin{bmatrix} 0 & 0 & \dots & \frac{-1}{y_{c}} & \dots & 0 & 0 \end{bmatrix}$$

The slope is negative w.r.t. *y_c*

Indicates *increasing* y_c will *reduce* divergence

For multi-class classification



- Desired output *d* is a one hot vector $[0 \ 0 \dots 1 \ \dots 0 \ 0 \ 0]$ with the 1 in the *c*-th position (for class *c*)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y,d) = -\sum_{i} d_i \log y_i = -\log y_c$$

Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} & \text{for the } c - th \text{ component} \\ 0 & \text{for remaining component} \end{cases}$$
$$\nabla_{Y}Div(Y,d) = \begin{bmatrix} 0 & 0 & \dots & \frac{-1}{y_{c}} & \dots & 0 & 0 \end{bmatrix}$$

The slope is negative w.r.t. *y_c*

Indicates *increasing* y_c will *reduce* divergence

Note: when y = d the derivative is *not* 0

Even though div() = 0(minimum) when y = d

KL divergence vs cross entropy

• KL divergence between *d* and *y*:

$$KL(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

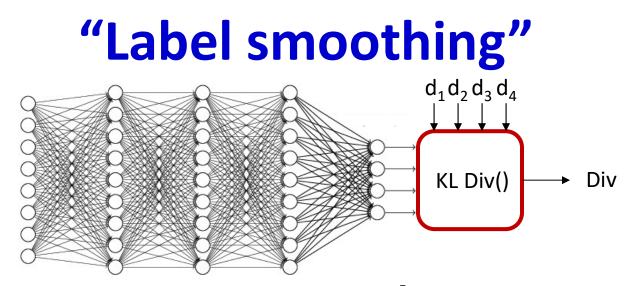
• *Cross-entropy* between *d* and *y*:

$$Xent(Y,d) = -\sum_{i} d_i \log y_i$$

• The cross entropy is merely the KL - entropy of d

$$Xent(Y,d) = KL(Y,d) - \sum_{i} d_{i} \log d_{i} = KL(Y,d) - H(d)$$

- The W that minimizes cross-entropy will minimize the KL divergence
 - since d is the desired output and does not depend on the network, H(d) does not depend on the net
 - In fact, for one-hot d, H(d) = 0 (and KL = Xent)
- We will generally minimize to the *cross-entropy* loss rather than the KL divergence
 - The Xent is *not* a divergence, and although it attains its minimum when y = d, its minimum value is not 0

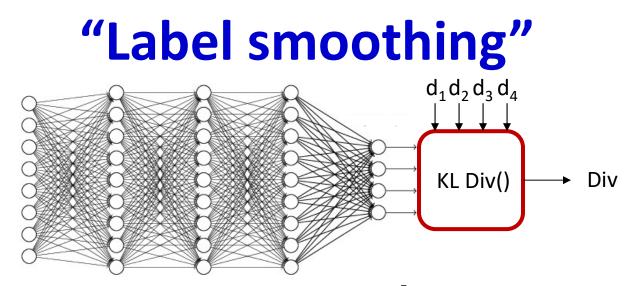


- It is sometimes useful to set the target output to [ε ε ... (1 − (K − 1)ε) ... ε ε ε] with the value 1 − (K − 1)ε in the *c*-th position (for class *c*) and ε elsewhere for some small ε
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1 - (K - 1)\epsilon}{y_{c}} & \text{for the } c - th \text{ component} \\ -\frac{\epsilon}{y_{i}} \text{for remaining components} \end{cases}$$



- It is sometimes useful to set the target output to [ε ε ... (1 − (K − 1)ε) ... ε ε ε] with the value 1 − (K − 1)ε in the *c*-th position (for class *c*) and ε elsewhere for some small ε
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

Negative derivatives encourage *increasing* the probabilities of *all* classes, including *incorrect* classes! (Seems wrong, no?)

• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1 - (K - 1)\epsilon}{y_{c}} & \text{for the } c - th \text{ component} \\ -\frac{\epsilon}{y_{i}} & \text{for remaining components} \end{cases}$$

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

ALL TERMS HAVE BEEN DEFINED

Story so far

- Neural nets are universal approximators
- Neural networks are trained to approximate functions by adjusting their parameters to minimize the average divergence between their actual output and the desired output at a set of "training instances"
 - Input-output samples from the function to be learned
 - The average divergence is the "Loss" to be minimized
- To train them, several terms must be defined
 - The network itself
 - The manner in which inputs are represented as numbers
 - The manner in which outputs are represented as numbers
 - As numeric vectors for real predictions
 - As one-hot vectors for classification functions
 - The divergence function that computes the error between actual and desired outputs
 - L2 divergence for real-valued predictions
 - KL divergence for classifiers

Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The divergence on the ith instance is $div(Y_i, d_i)$ - $Y_i = f(X_i; W)$
- The loss

 \mathbf{N}

$$Loss = \frac{1}{T} \sum_{i} div(Y_i, d_i)$$

1 inimize Loss w.r.t $\left\{ w_{ij}^{(k)}, b_j^{(k)} \right\}$

Recap: Gradient Descent Algorithm

• Initialize: $-W^0$

To minimize any function L(W) w.r.t W

-k = 0

• do

$$-W^{k+1} = W^{k} - \eta^{k} \nabla L(W^{k})^{T}$$

$$-k = k + 1$$
• while $|L(W^{k}) - L(W^{k-1})| > \varepsilon$

Recap: Gradient Descent Algorithm

- In order to minimize L(W) w.r.t. W
- Initialize:

$$-W^{0}$$

$$-k = 0$$

• do
- For every component *i*
•
$$W_i^{k+1} = W_i^k - \eta^k \frac{\partial L}{\partial W_i}$$
 Explicitly stating it by component
- $k = k + 1$
• while $|L(W^k) - L(W^{k-1})| > \varepsilon$

Training Neural Nets through Gradient Descent

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

• Gradient descent algorithm:

Assuming the bias is also represented as a weight

• Initialize all weights and biases $\left\{w_{ij}^{(k)}\right\}$

- Using the extended notation: the bias is also a weight

- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dLos}{dw_{i,j}^{(k)}}$$

• Until *Loss* has converged

Training Neural Nets through Gradient Descent

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

- Gradient descent algorithm:
- Initialize all weights $\{w_{ij}^{(k)}\}$

• Do:

– For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dLoss}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

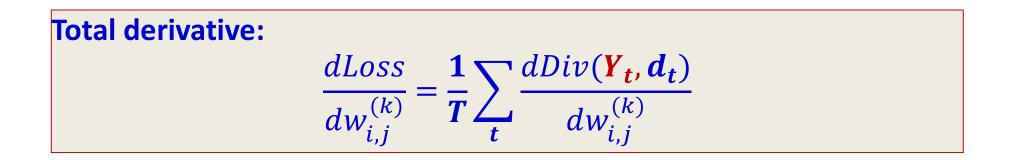
Assuming the bias is also represented as a weight

The derivative

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Computing the derivative



Training by gradient descent

- Initialize all weights $\left\{w_{ij}^{(k)}\right\}$
- Do:

- For all
$$i, j, k$$
, initialize $\frac{dLos}{dw_{i,j}^{(k)}} = 0$

- For all t = 1: T
 - For every layer k for all i, j:

- Compute
$$\frac{dDiv(Y_t,d_t)}{dw_{i,j}^{(k)}}$$

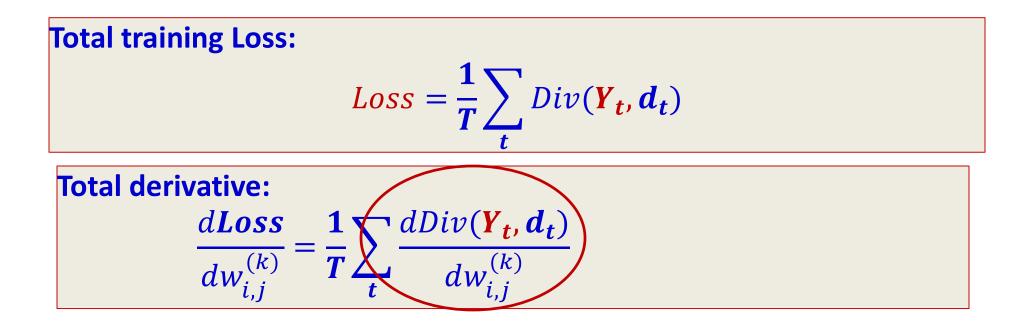
$$- \frac{dLos}{dw_{i,j}^{(k)}} += \frac{d\mathbf{D}i\boldsymbol{v}(\boldsymbol{Y}_t, \boldsymbol{d}_t)}{dw_{i,j}^{(k)}}$$

- For every layer k for all i, j:

$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dLoss}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

The derivative



 So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Basic rules of calculus

For any differentiable function y = f(x)with derivative $\frac{dy}{dx}$ the following must hold for sufficiently small $\Delta x \longrightarrow \Delta y \approx \frac{dy}{dx} \Delta x$

For any differentiable function $y = f(x_1, x_2, ..., x_M)$ with partial derivatives $\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, ..., \frac{\partial y}{\partial x_M}$ the following must hold for sufficiently small $\Delta x_1, \Delta x_2, ..., \Delta x_M$ $\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + ... + \frac{\partial y}{\partial x_M} \Delta x_M$ ⁹⁷

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

$$\frac{dy}{dx} = \frac{df}{dg(x)}\frac{dg(x)}{dx}$$

Check - we can confirm that : $\Delta y = \frac{dy}{dx} \Delta x$ $z = g(x) \implies \Delta z = \frac{dg(x)}{dx} \Delta x$ $y = f(z) \implies \Delta y = \frac{df}{dz} \Delta z = \frac{df}{dg(x)} \frac{dg(x)}{dx} \Delta x$

Calculus Refresher: Distributed Chain rule

$$y = f(g_1(x), g_1(x), \dots, g_M(x))$$

$$\frac{dy}{dx} = \frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx}$$

Check:
$$\Delta y = \frac{dy}{dx} \Delta x$$

 $\Delta y = \frac{\partial f}{\partial z_1} \Delta z_1 + \frac{\partial f}{\partial z_2} \Delta z_2 + \dots + \frac{\partial f}{\partial z_M} \Delta z_M$
 $\Delta y = \frac{\partial f}{\partial z_1} \frac{dz_1}{dx} \Delta x + \frac{\partial f}{\partial z_2} \frac{dz_2}{dx} \Delta x + \dots + \frac{\partial f}{\partial z_M} \frac{dz_M}{dx} \Delta x$
 $\Delta y = \left(\frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx}\right) \Delta x$

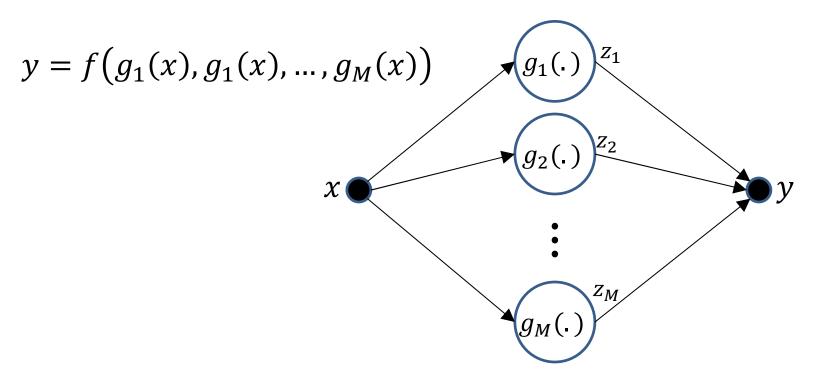
Calculus Refresher: Distributed Chain rule

$$y = f(g_1(x), g_1(x), \dots, g_M(x))$$

$$\frac{dy}{dx} = \frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx}$$

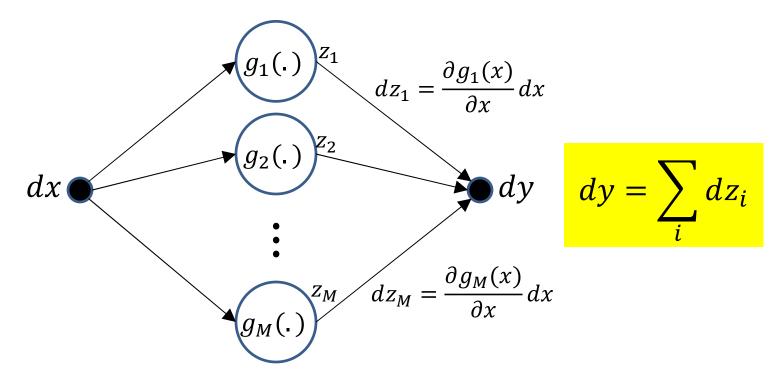
Check:
$$\Delta y = \frac{dy}{dx} \Delta x$$
$$\Delta y = \frac{\partial f}{\partial g_1(x)} \Delta g_1(x) + \frac{\partial f}{\partial g_2(x)} \Delta g_2(x) + \dots + \frac{\partial f}{\partial g_M(x)} \Delta g_M(x)$$
$$\Delta y = \frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} \Delta x + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} \Delta x + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx} \Delta x$$
$$\Delta y = \left(\frac{\partial f}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial f}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial f}{\partial g_M(x)} \frac{dg_M(x)}{dx} \right) \Delta x$$

Distributed Chain Rule: Influence Diagram



• x affects y through each of $g_1 \dots g_M$

Distributed Chain Rule: Influence Diagram

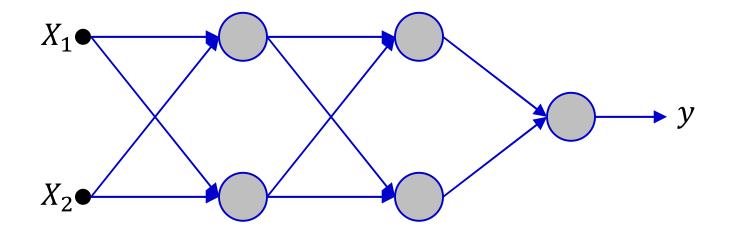


• Small perturbations in x cause small perturbations in each of $g_1 \dots g_M$, each of which individually additively perturbs y

Returning to our problem

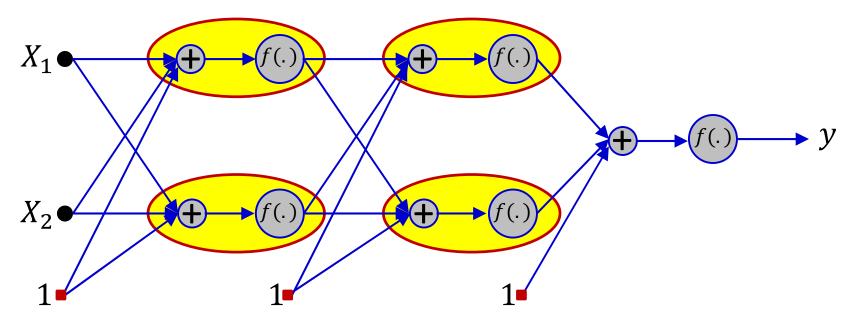
• How to compute $\frac{dDiv(Y,d)}{dw_{i,i}^{(k)}}$

A first closer look at the network



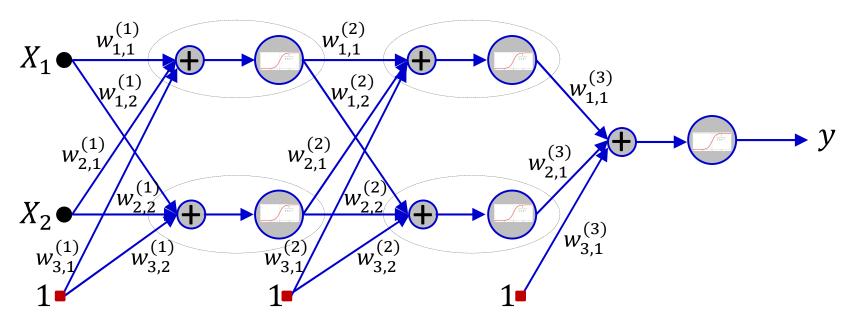
- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs

A first closer look at the network



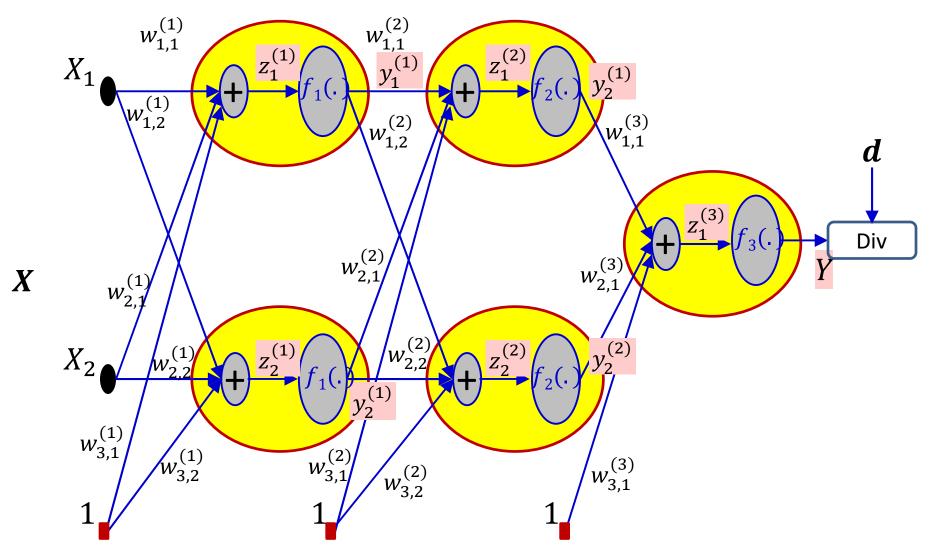
- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Explicitly separating the weighted sum of inputs from the activation

A first closer look at the network

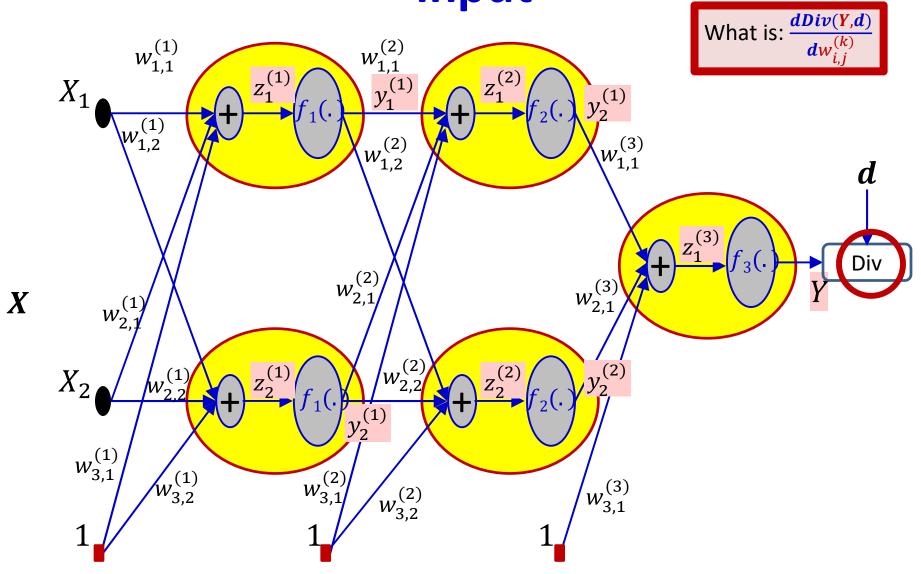


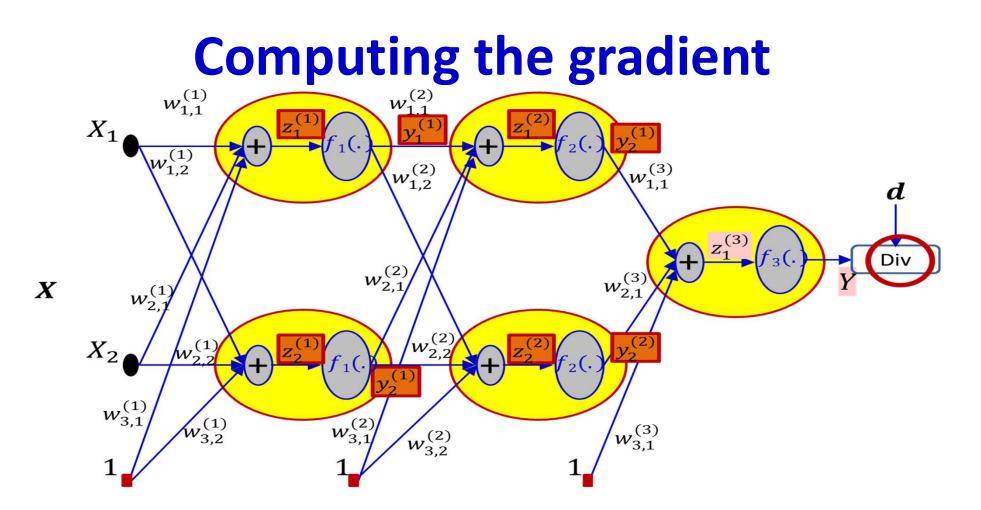
- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Expanded with all weights shown
- Lets label the other variables too...

Computing the derivative for a *single* input

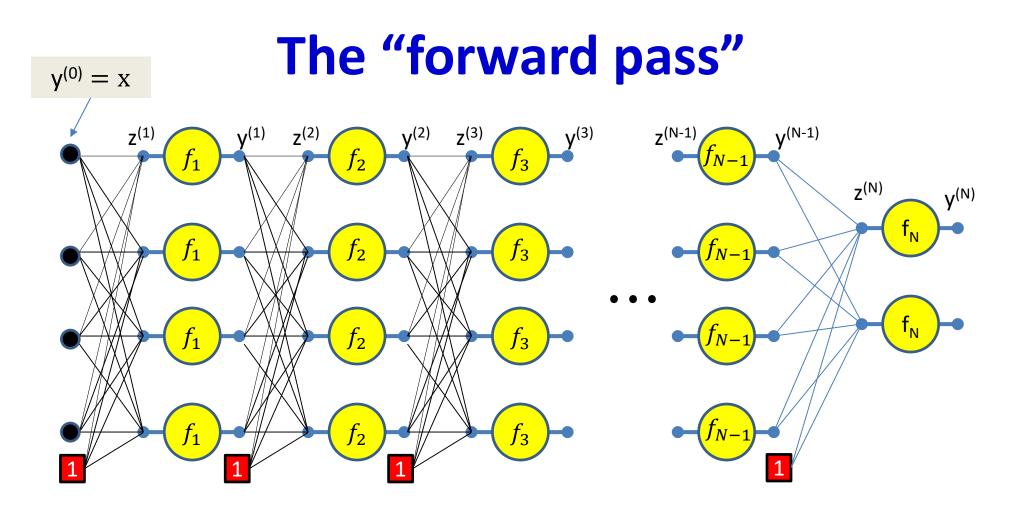


Computing the derivative for a *single* input



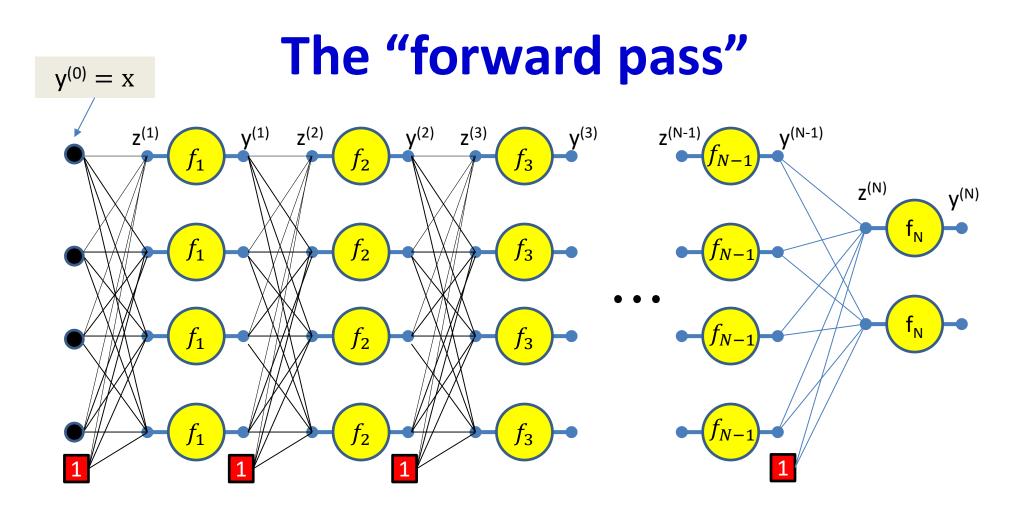


• Note: computation of the derivative $\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$ requires intermediate and final output values of the network in response to the input



We will refer to the process of computing the output from an input as the *forward pass*

We will illustrate the forward pass in the following slides

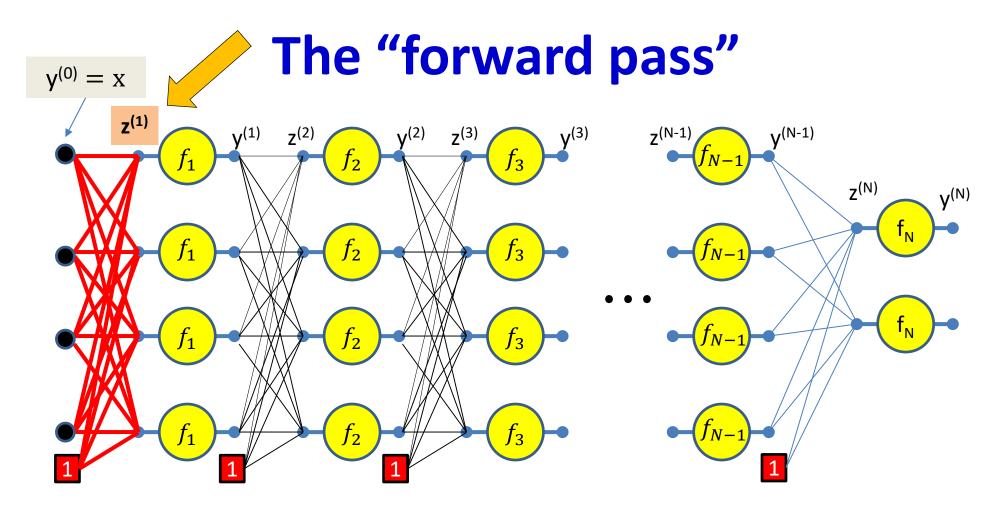


Setting $y_i^{(0)} = x_i$ for notational convenience

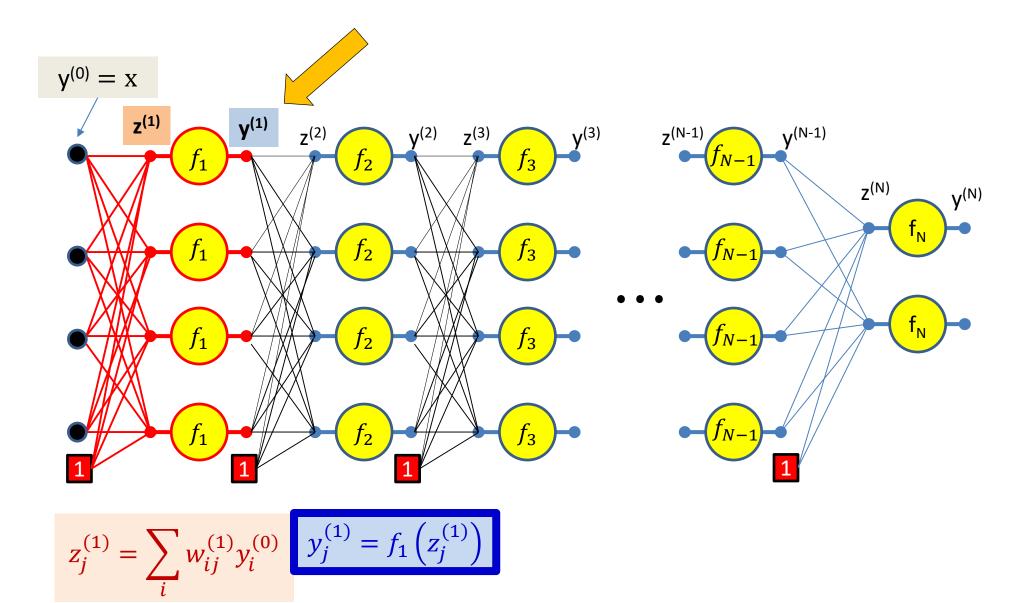
Assuming $w_{0j}^{(k)} = b_j^{(k)}$ and $y_0^{(k)} = 1$ -- assuming the bias is a weight and extending the output of every layer by a constant 1, to account for the biases 111

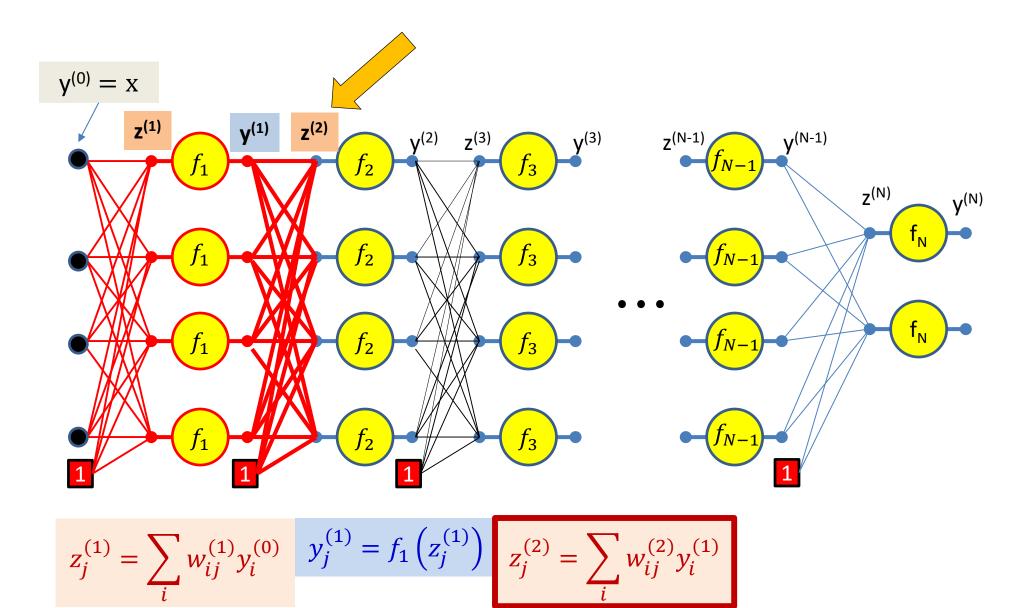
The "forward pass" $y^{(0)} = x$ y^(N-1) z^(N-1) z⁽¹⁾ v⁽¹⁾ z⁽²⁾ z⁽³⁾ v⁽²⁾ v⁽³⁾ f_2 f_3 z^(N) **y**^(N) f_N f_2 Ĵ3 ٦N. 1 f_N f_2 f_3 Ī1 f_1 f_2 f_3 N

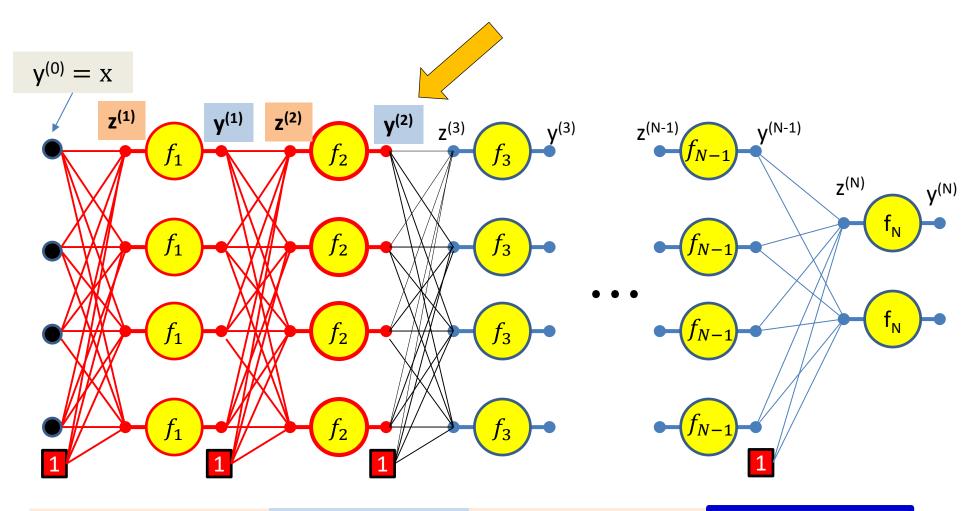
$$z_1^{(1)} = \sum_i w_{i1}^{(1)} y_i^{(0)}$$



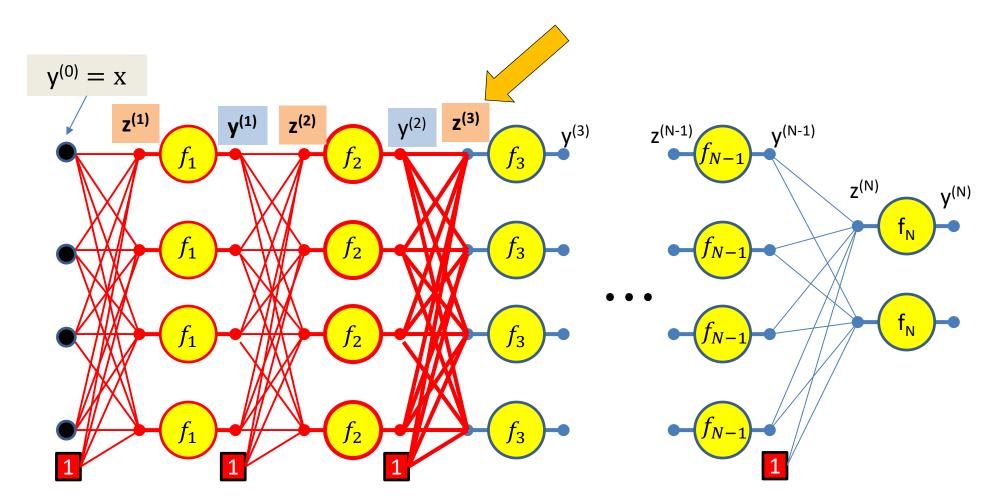
$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)}$$



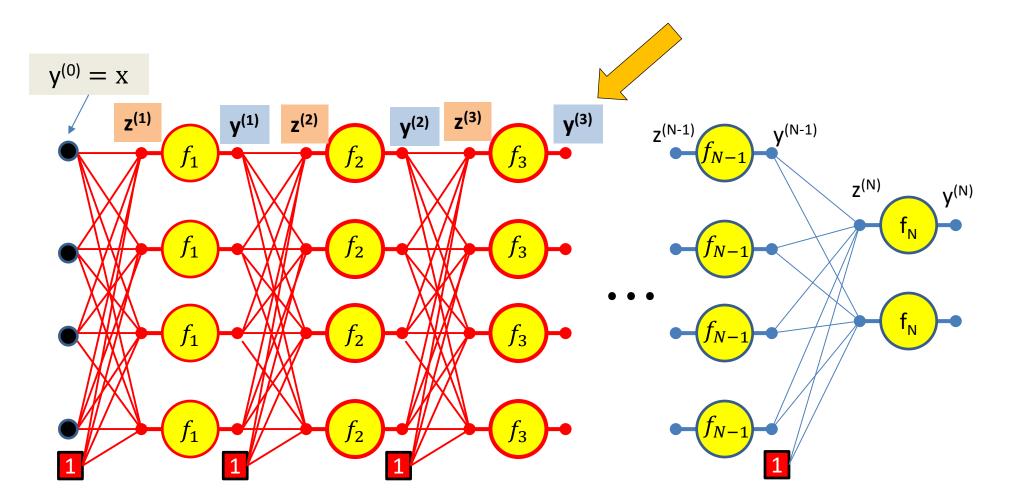




$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad \frac{y_{j}^{(1)} = f_{1}\left(z_{j}^{(1)}\right)}{z_{j}^{(2)}} \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad \frac{y_{j}^{(2)} = f_{2}\left(z_{j}^{(2)}\right)}{z_{j}^{(2)}}$$

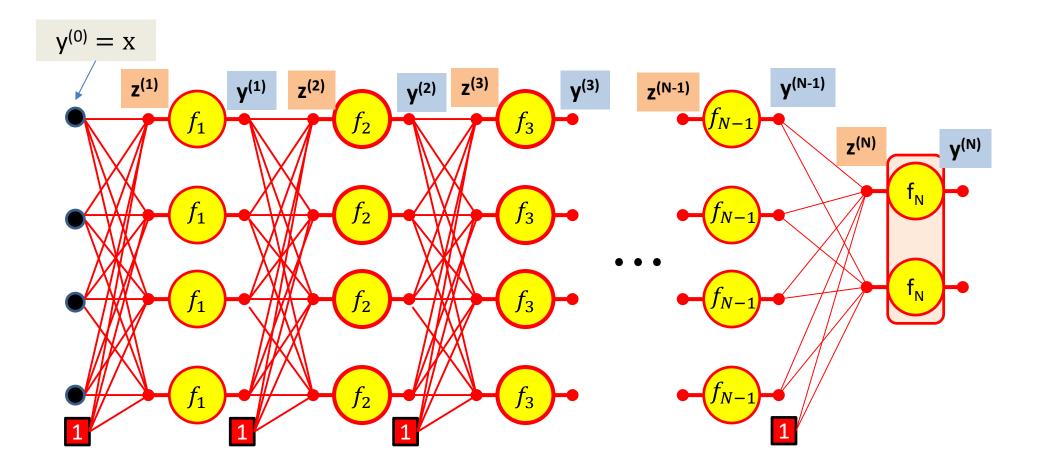


$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right) \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad y_{j}^{(2)} = f_{2} \left(z_{j}^{(2)} \right)$$
$$z_{j}^{(3)} = \sum_{i} w_{ij}^{(3)} y_{i}^{(2)} \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(3)} y_{i}^{(2)} \quad z_{j}^{(2)} = \int_{i} w_{ij}^{(2)} y_{i}^{(2)} \quad z_{j}^{(2)} \quad z_{j}^{(2)} \quad z_{j}^{(2)} \quad z_{j}^{(2)} = \int_{i} w_{ij}^{(2)} y_{i}^{(2)} \quad z_{j}^{(2)} \quad z_{j}^{(2)}$$

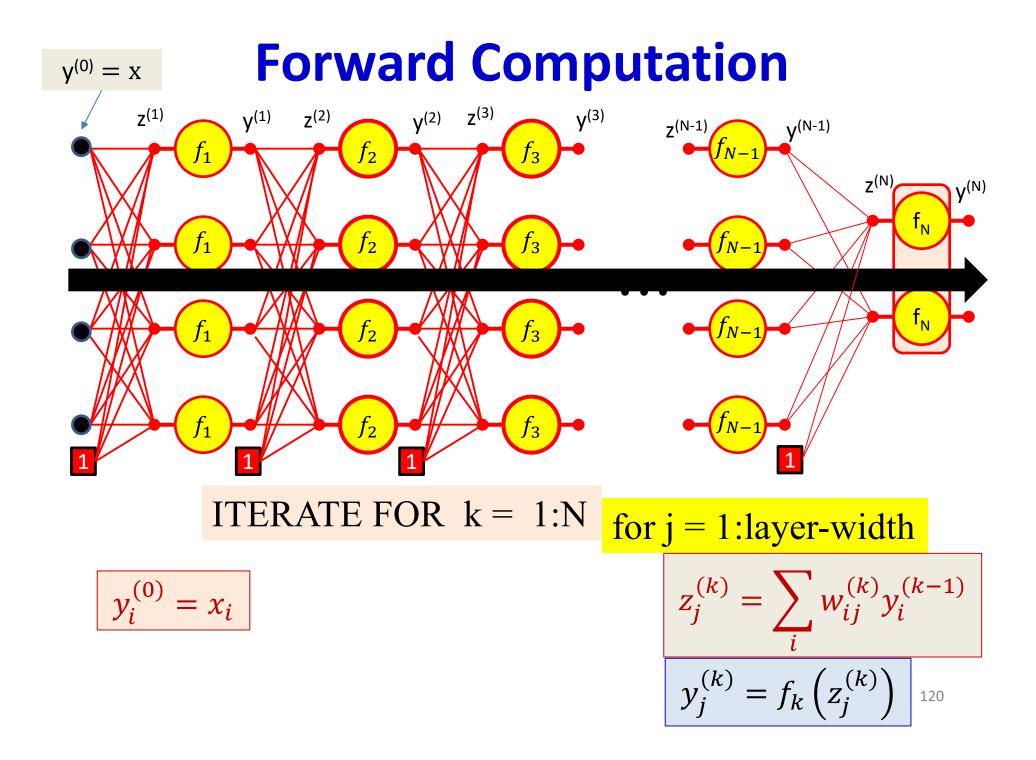


$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad \frac{y_{j}^{(1)} = f_{1}\left(z_{j}^{(1)}\right)}{z_{j}^{(2)}} \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad \frac{y_{j}^{(2)} = f_{2}\left(z_{j}^{(2)}\right)}{z_{j}^{(2)}}$$

$$z_j^{(3)} = \sum_i w_{ij}^{(3)} y_i^{(2)} \qquad y_j^{(3)} = f_3\left(z_j^{(3)}\right) \qquad \bullet \bullet$$



$$y_j^{(N-1)} = f_{N-1}\left(z_j^{(N-1)}\right) \quad z_j^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)} \qquad \qquad \mathbf{y}^{(N)} = f_N(\mathbf{z}^{(N)})$$



Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
- Set:

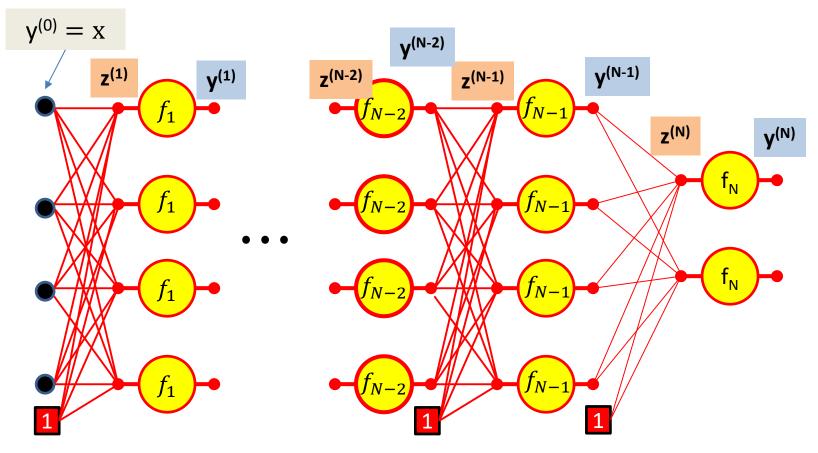
$$-D_0 = D$$
, is the width of the 0th (input) layer
 $-y_j^{(0)} = x_j, \ j = 1 \dots D; \quad y_0^{(k=1\dots N)} = x_0 = 1$

• For layer
$$k = 1 \dots N$$

- For $j = 1 \dots D_k$ D_k is the size of the kth layer
• $z_j^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_i^{(k-1)}$
• $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$

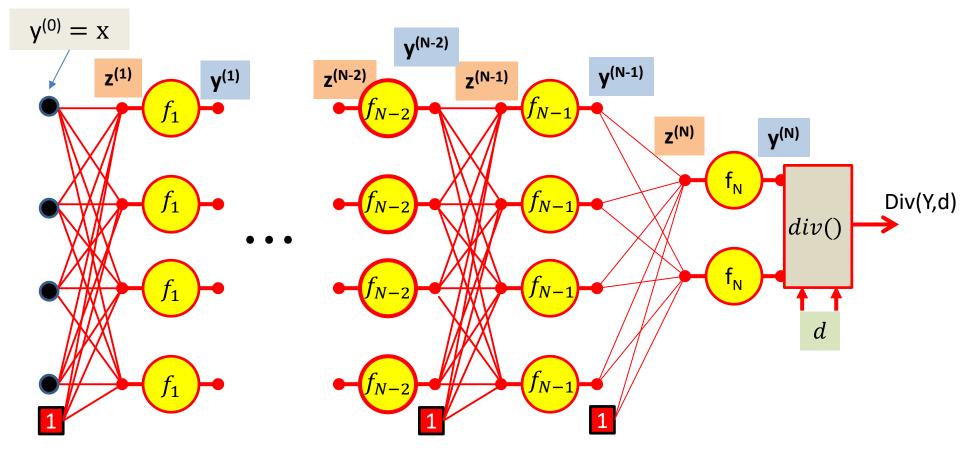
• Output:

$$-Y = y_j^{(N)}, j = 1..D_N$$

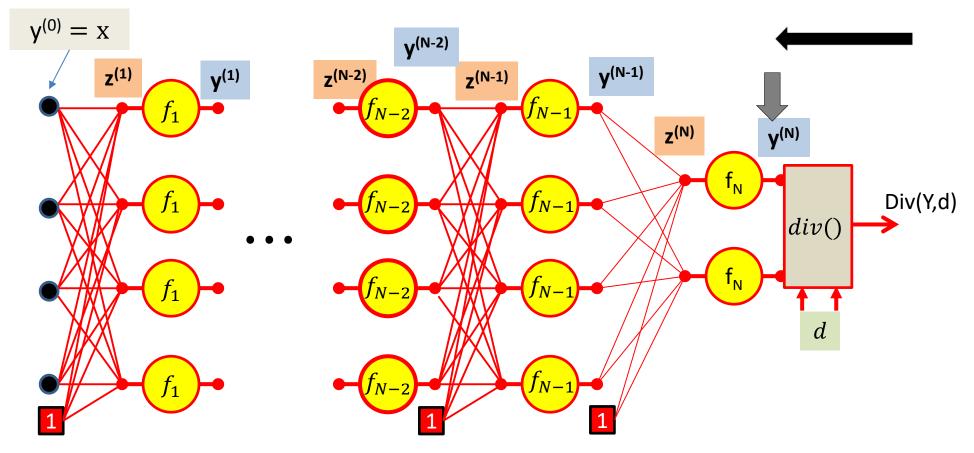


We have computed all these intermediate values in the forward computation

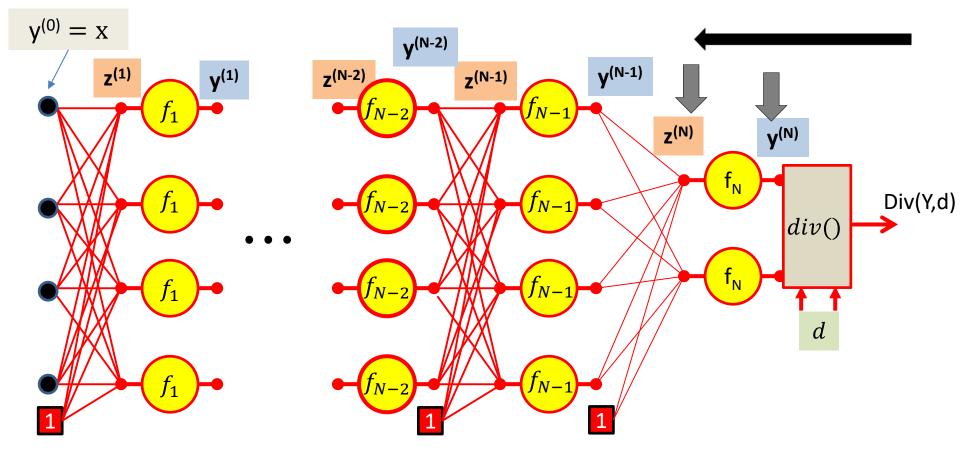
We must remember them - we will need them to compute the derivatives



First, we compute the divergence between the output of the net $y = y^{(N)}$ and the desired output d

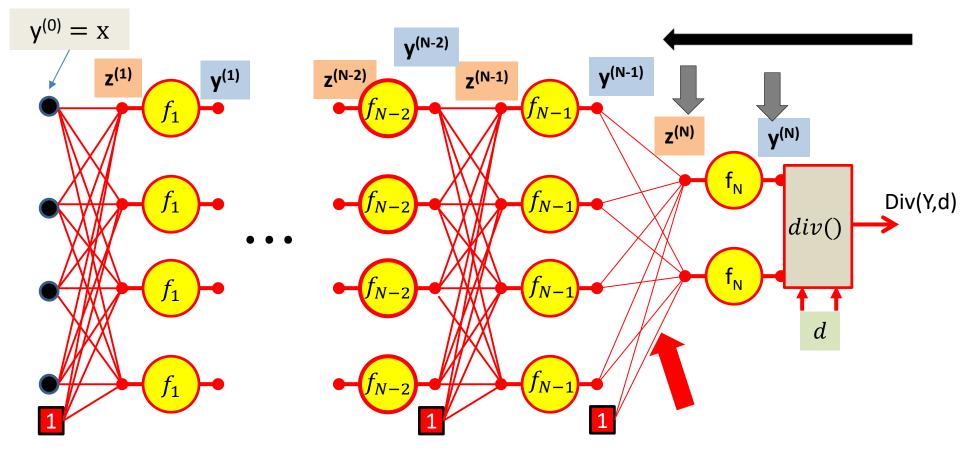


We then compute $\nabla_{Y^{(N)}} div(.)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$

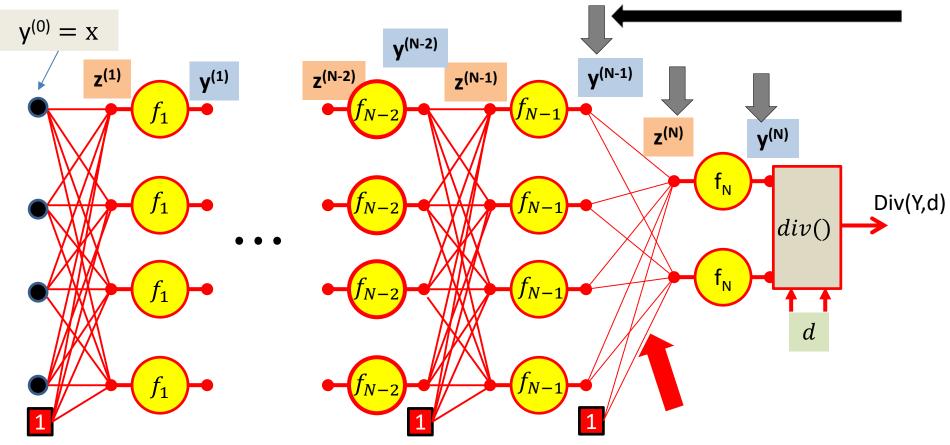


We then compute $\nabla_{Y^{(N)}} div(.)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$

We then compute $\nabla_{z^{(N)}} div(.)$ the derivative of the divergence w.r.t. the *pre-activation* affine combination $z^{(N)}$ using the chain rule

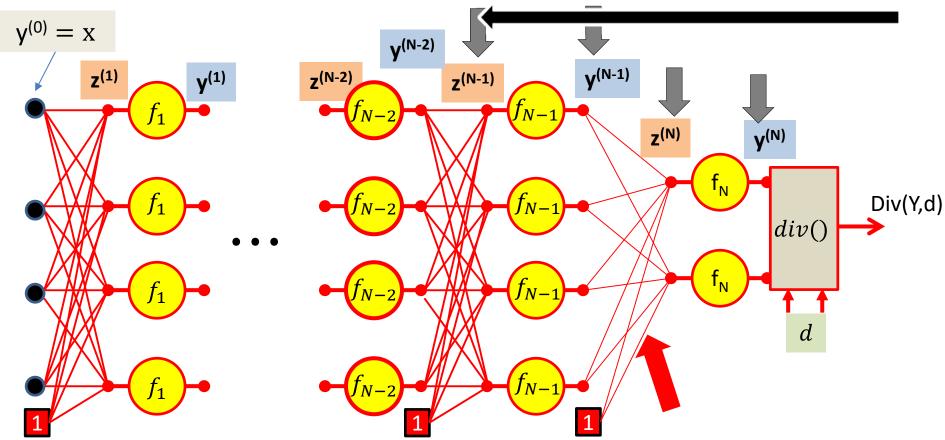


Continuing on, we will compute $V_{W^{(N)}} div(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer



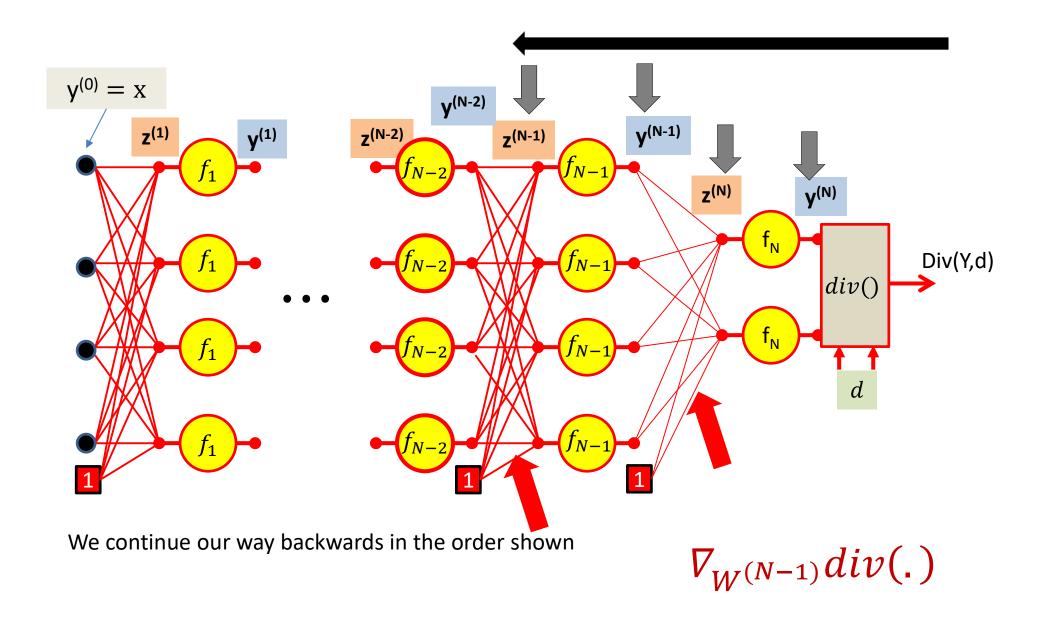
Continuing on, we will compute $V_{W^{(N)}} div(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer

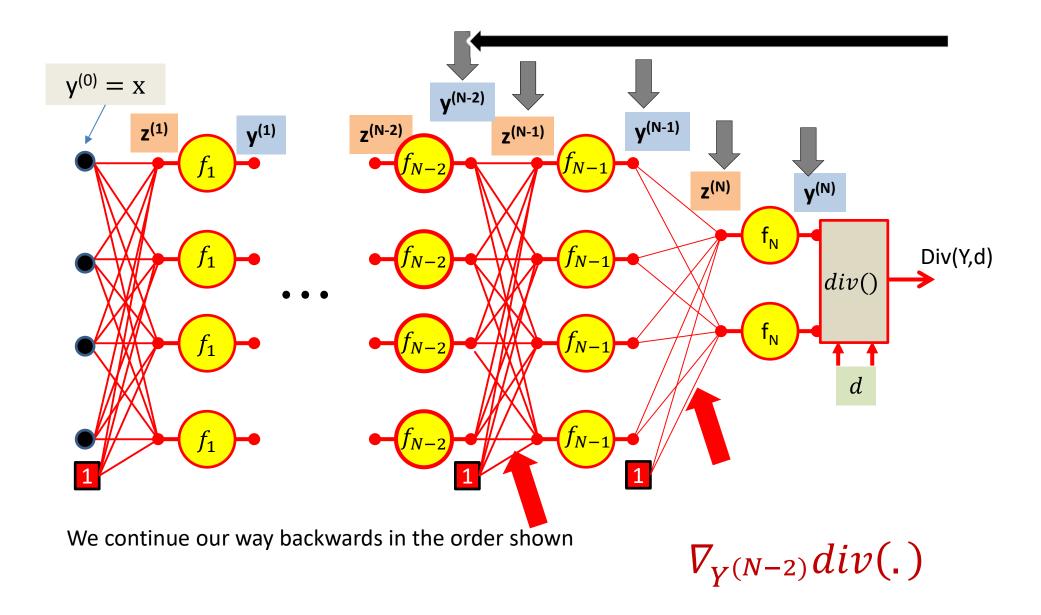
Then continue with the chain rule to compute $\nabla_{Y^{(N-1)}} div(.)$ the derivative of the divergence w.r.t. the output of the N-1th layer

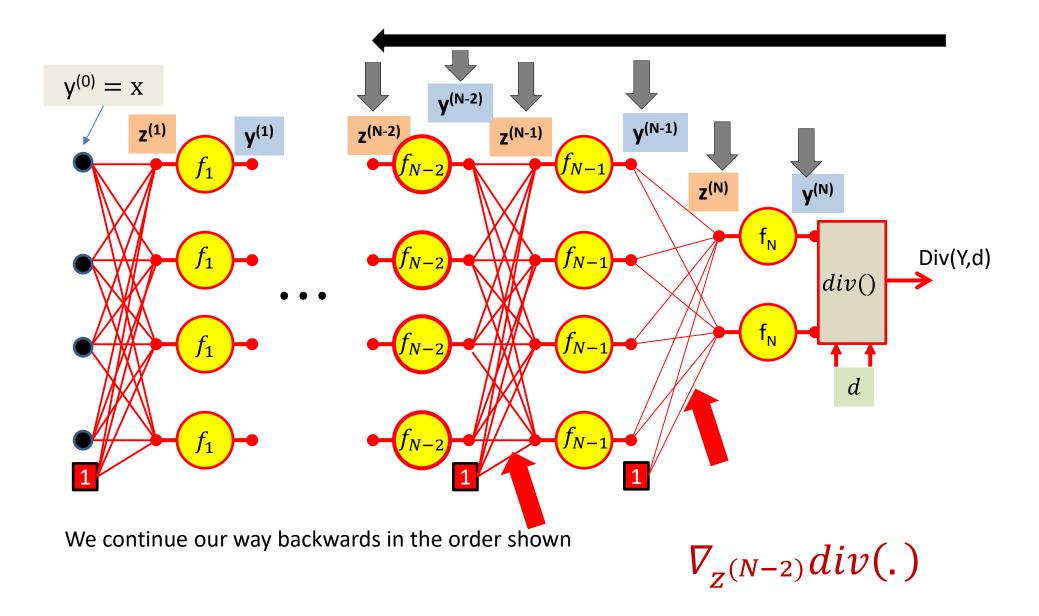


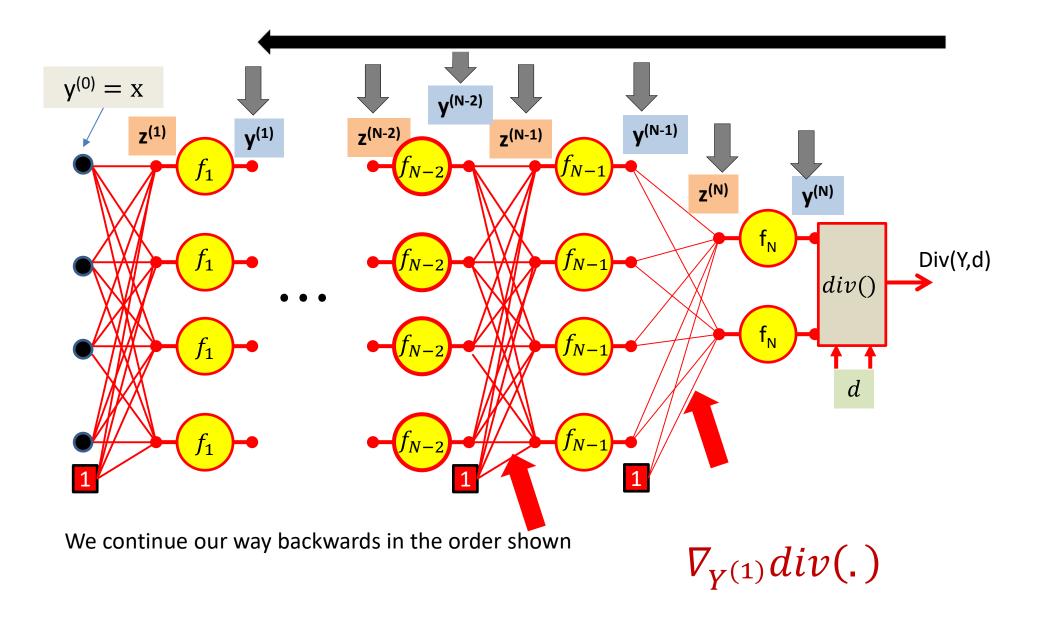
We continue our way backwards in the order shown

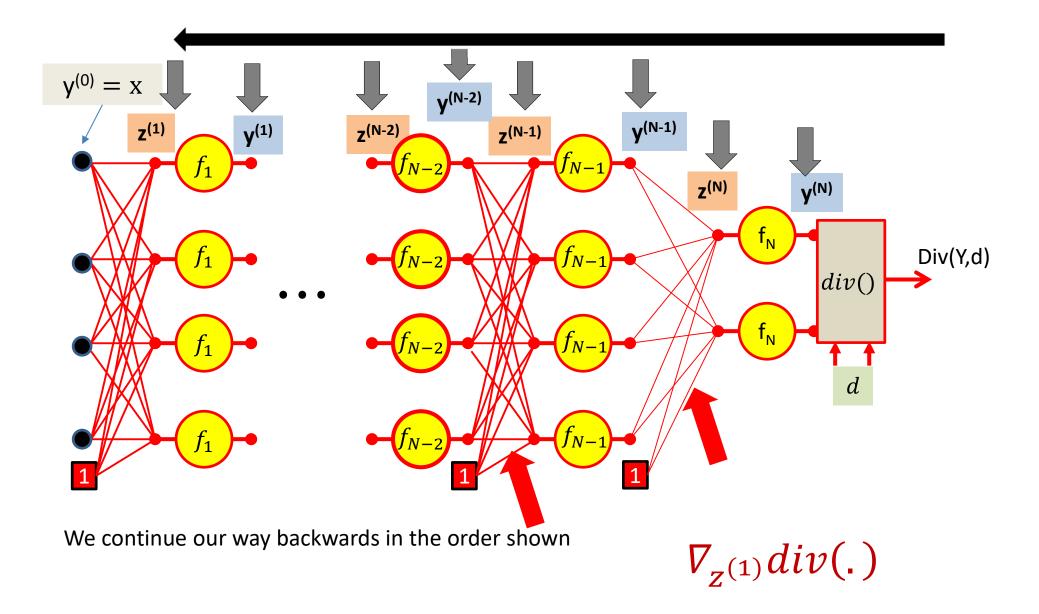
 $\nabla_{z^{(N-1)}} div(.)$

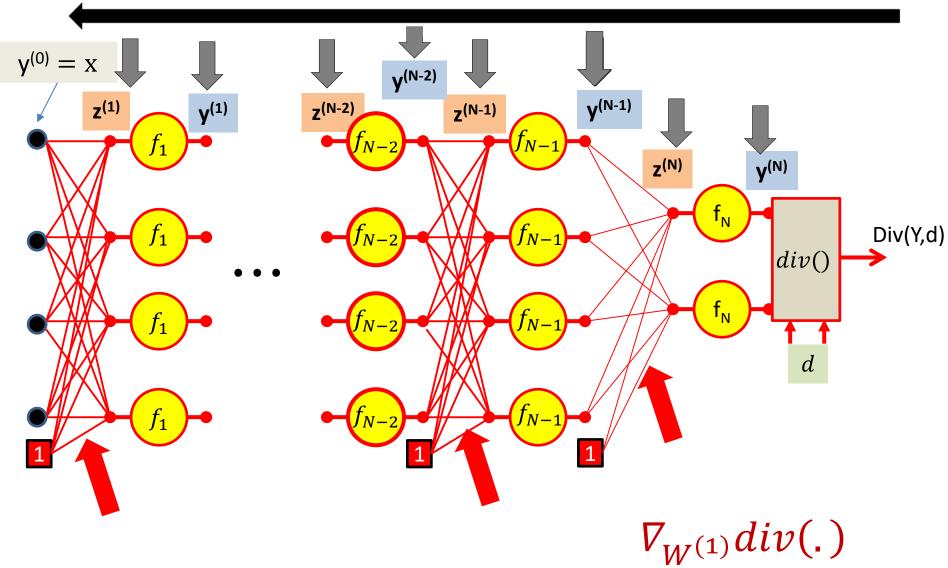








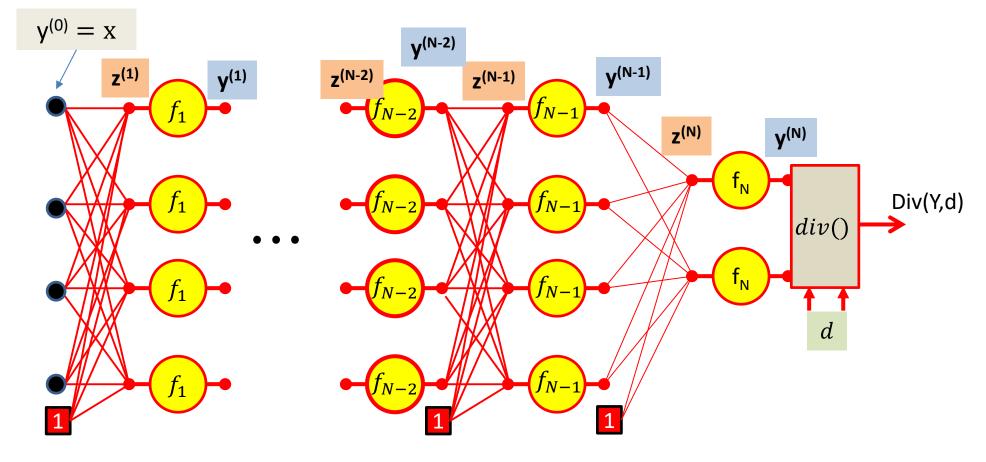


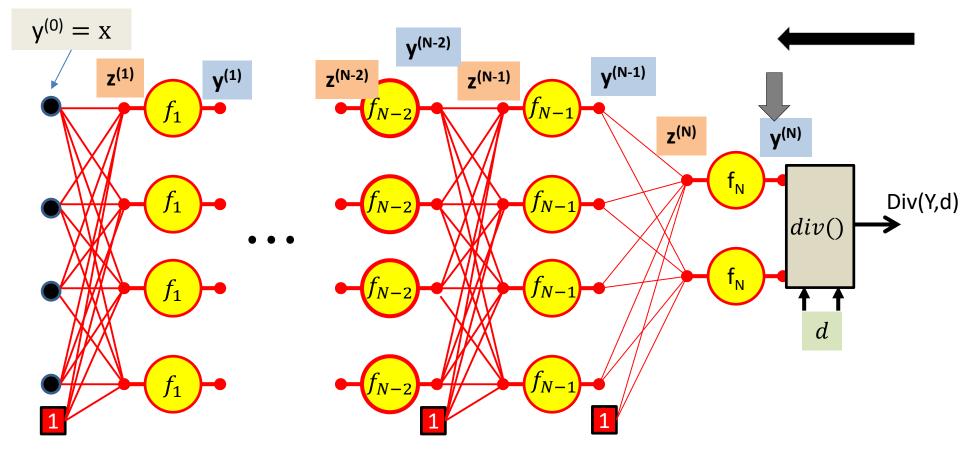


We continue our way backwards in the order shown

Backward Gradient Computation

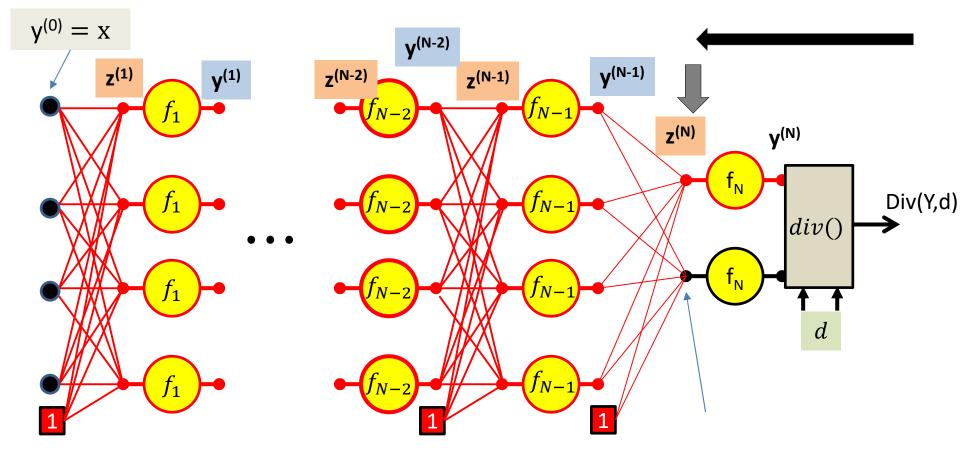
• Lets actually see the math..



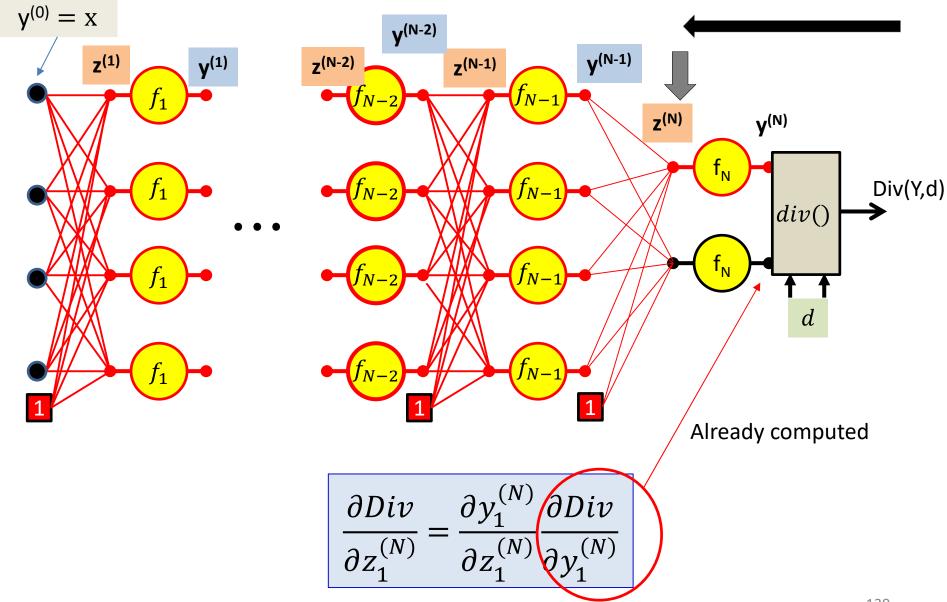


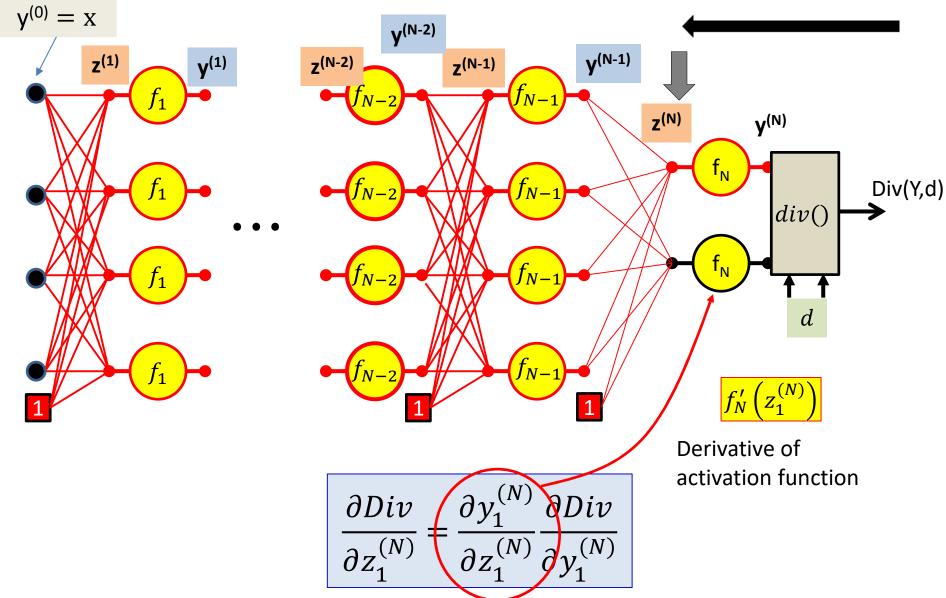
The derivative w.r.t the actual output of the final layer of the network is simply the derivative w.r.t to the output of the network

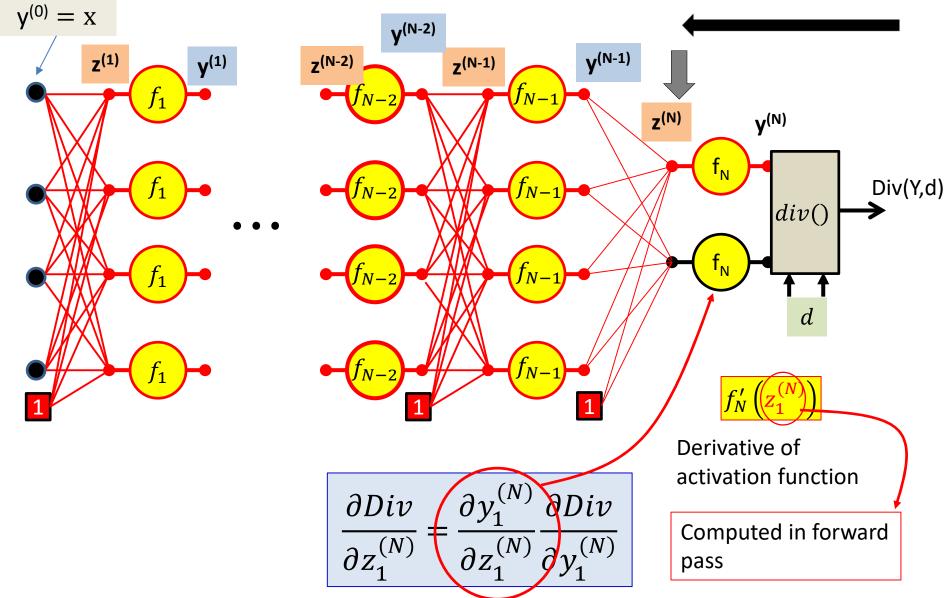
 $\partial Div(Y,d)$ $\partial Div(Y,d)$ $\partial y_i^{(N)}$ ∂y_i 137

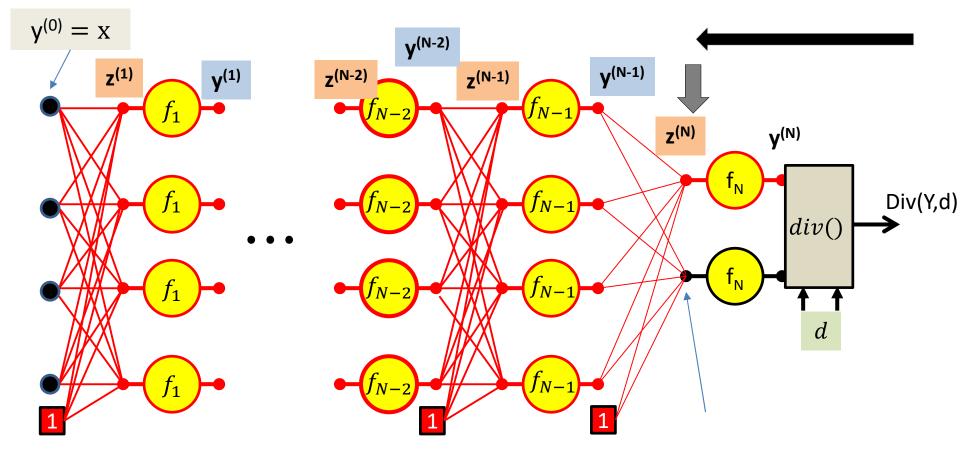


$$\frac{\partial Div}{\partial z_1^{(N)}} = \frac{\partial y_1^{(N)}}{\partial z_1^{(N)}} \frac{\partial Div}{\partial y_1^{(N)}}$$

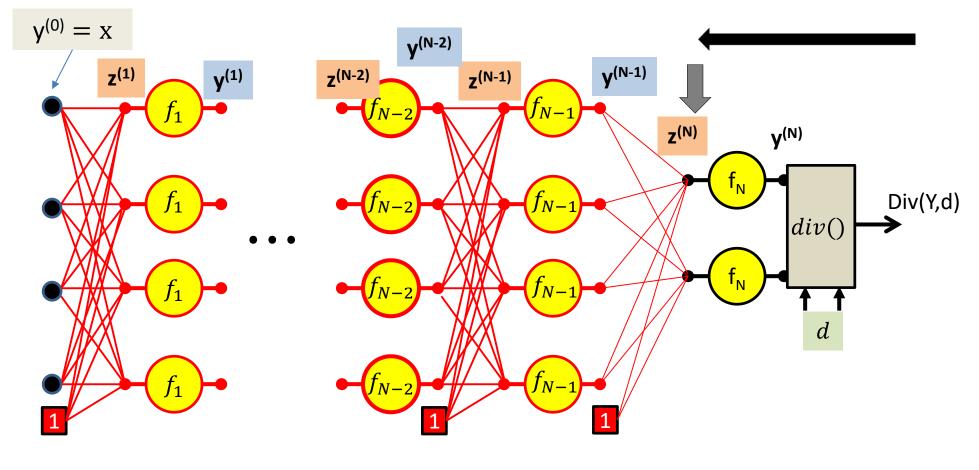




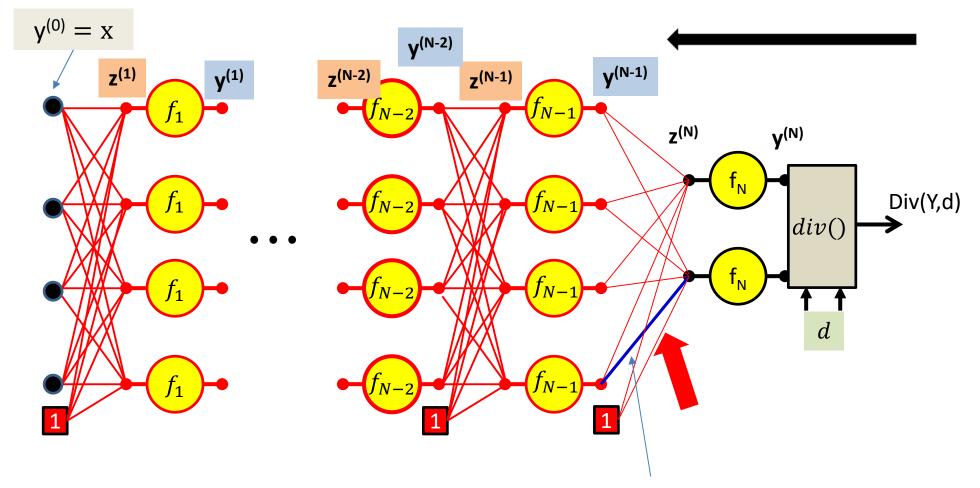




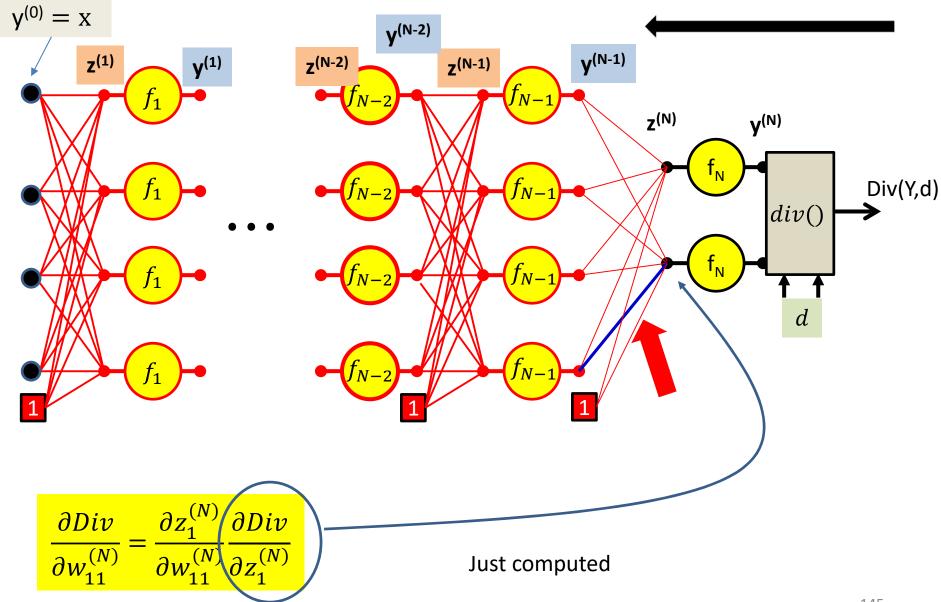
$$\frac{\partial Div}{\partial z_1^{(N)}} = f_N' \left(z_1^{(N)} \right) \frac{\partial Div}{\partial y_1^{(N)}}$$

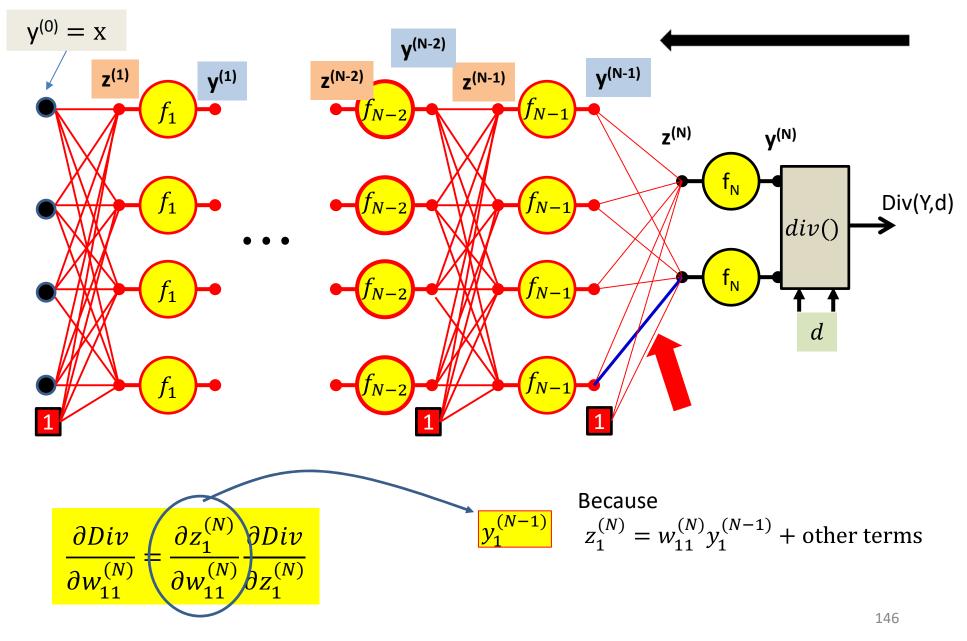


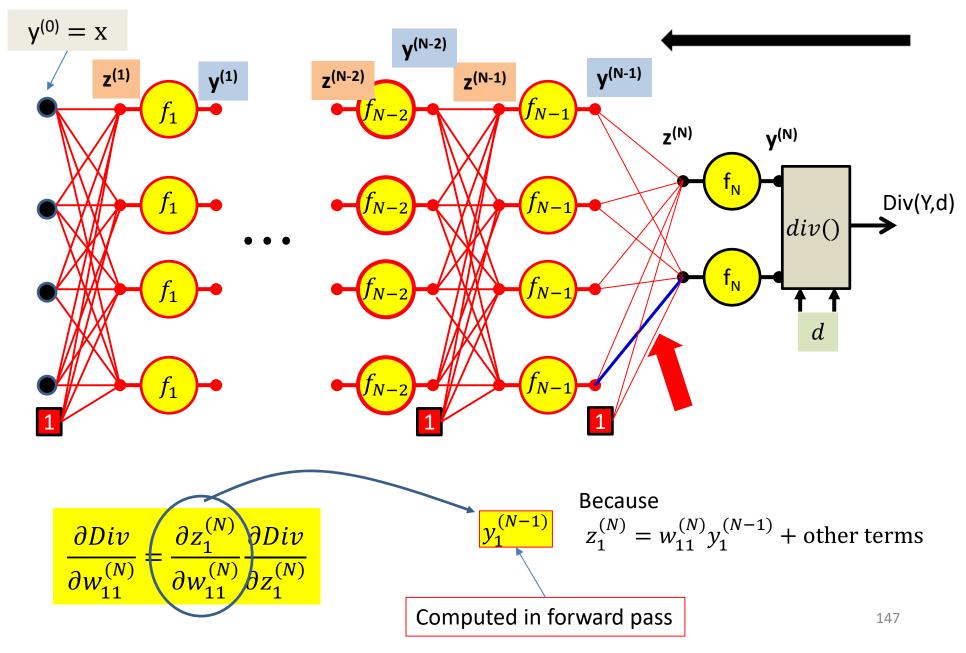
$$\frac{\partial Div}{\partial z_i^{(N)}} = f_N' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$

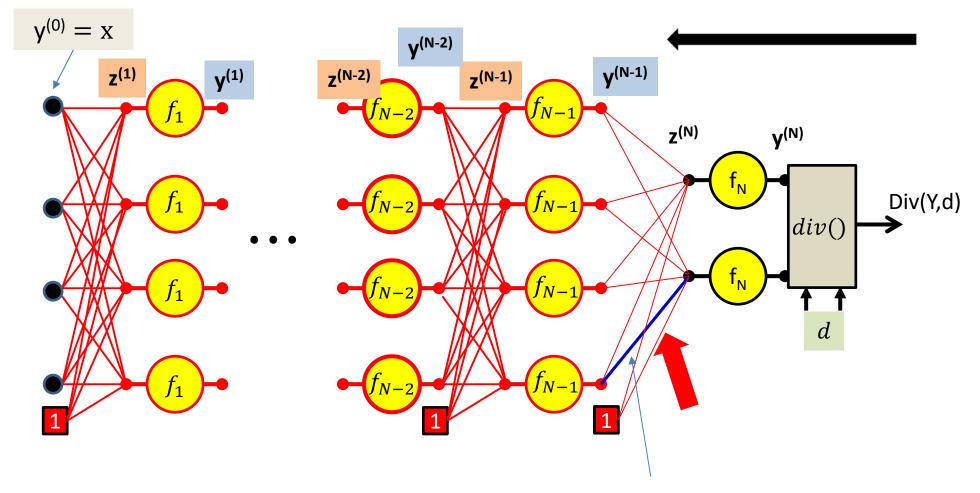


$$\frac{\partial Div}{\partial w_{11}^{(N)}} = \frac{\partial z_1^{(N)}}{\partial w_{11}^{(N)}} \frac{\partial Div}{\partial z_1^{(N)}}$$

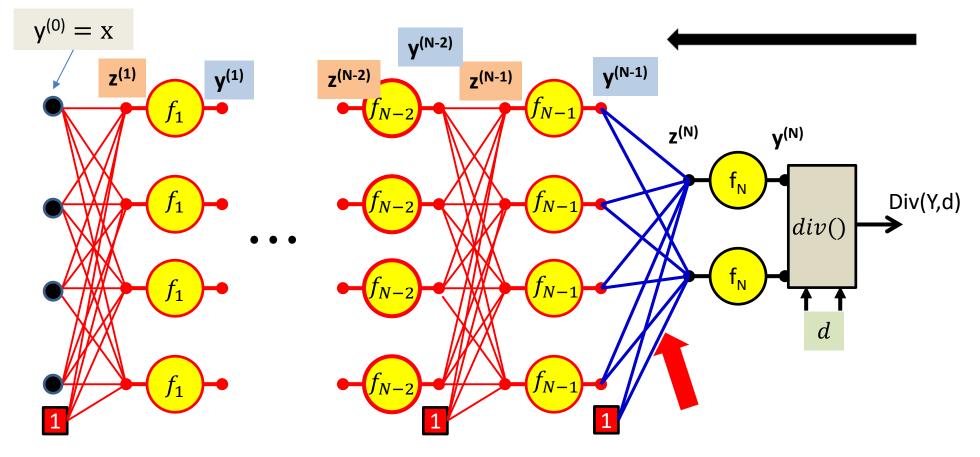






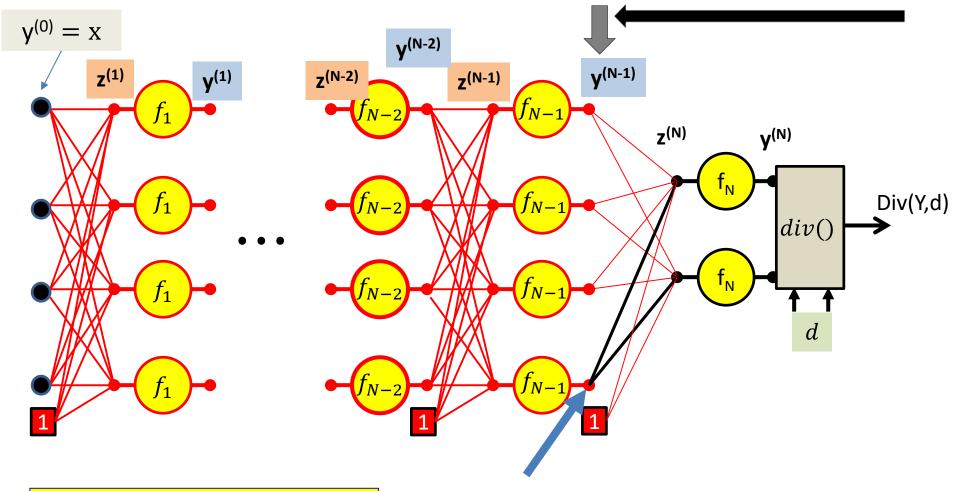


$$\frac{\partial Div}{\partial w_{11}^{(N)}} = y_1^{(N-1)} \frac{\partial Div}{\partial z_1^{(N)}}$$

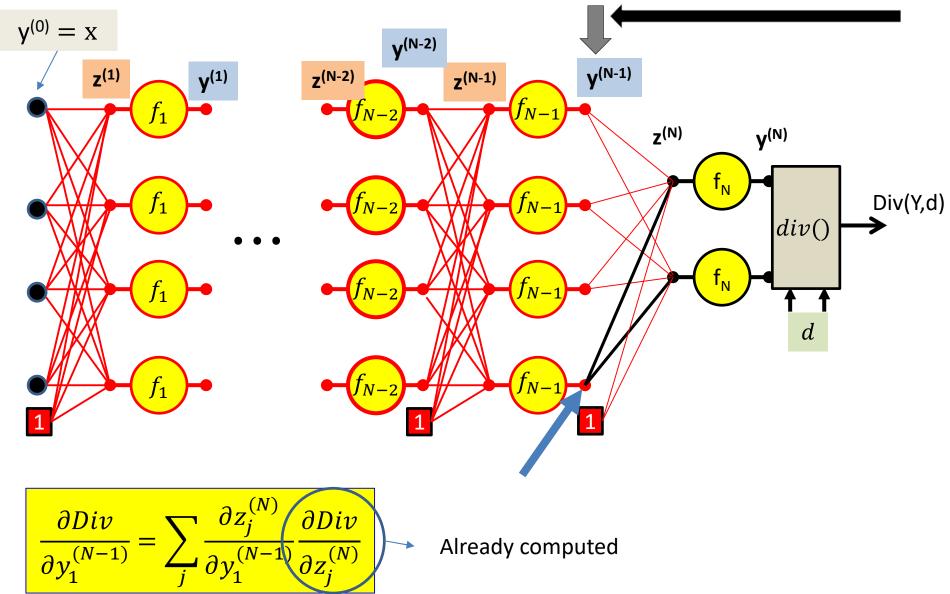


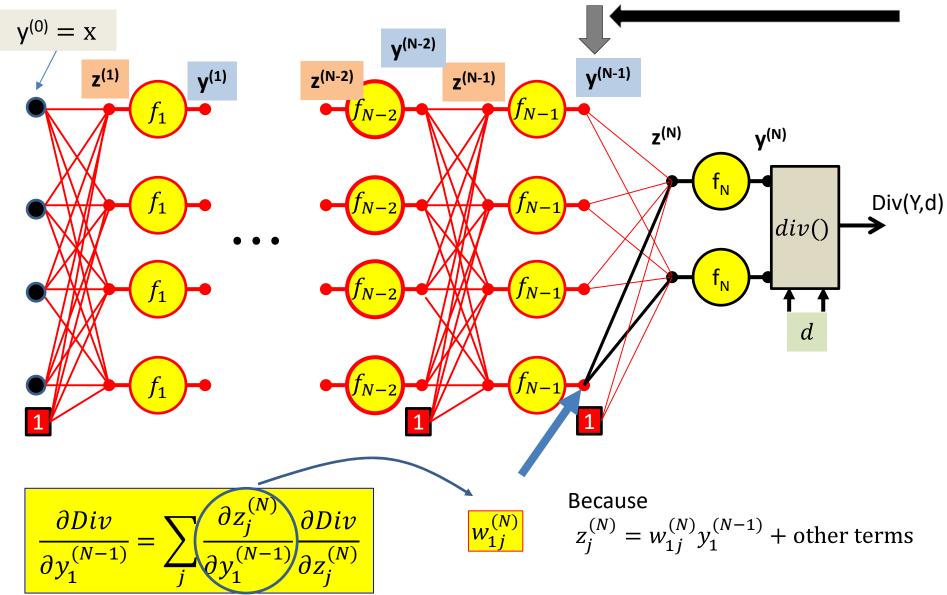
$$\frac{\partial Div}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_j^{(N)}}$$

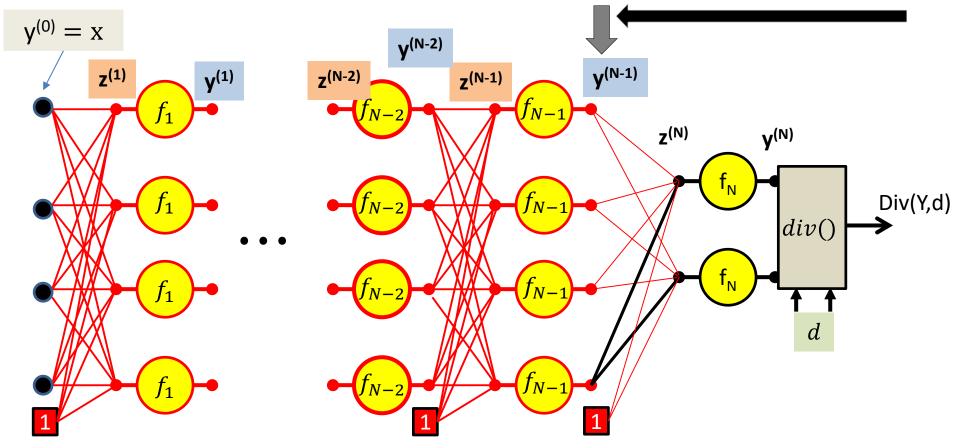
For the bias term $y_0^{(N-1)} = 1$



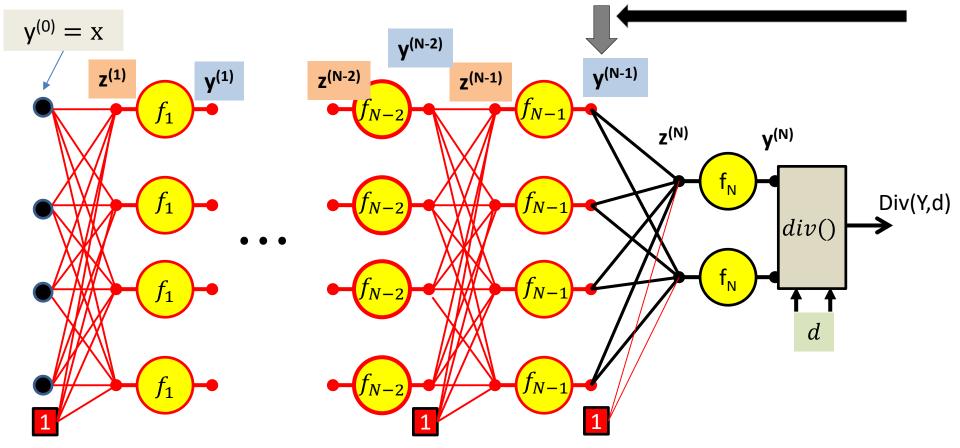
$$\frac{\partial Div}{\partial y_1^{(N-1)}} = \sum_j \frac{\partial z_j^{(N)}}{\partial y_1^{(N-1)}} \frac{\partial Div}{\partial z_j^{(N)}}$$



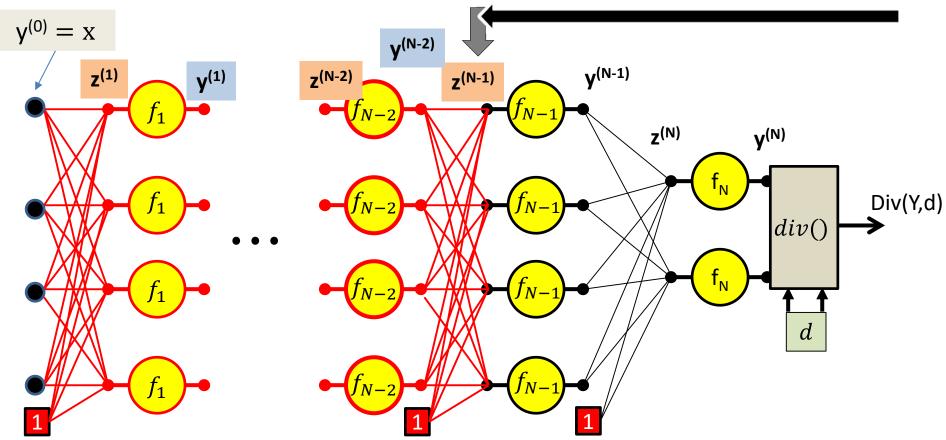




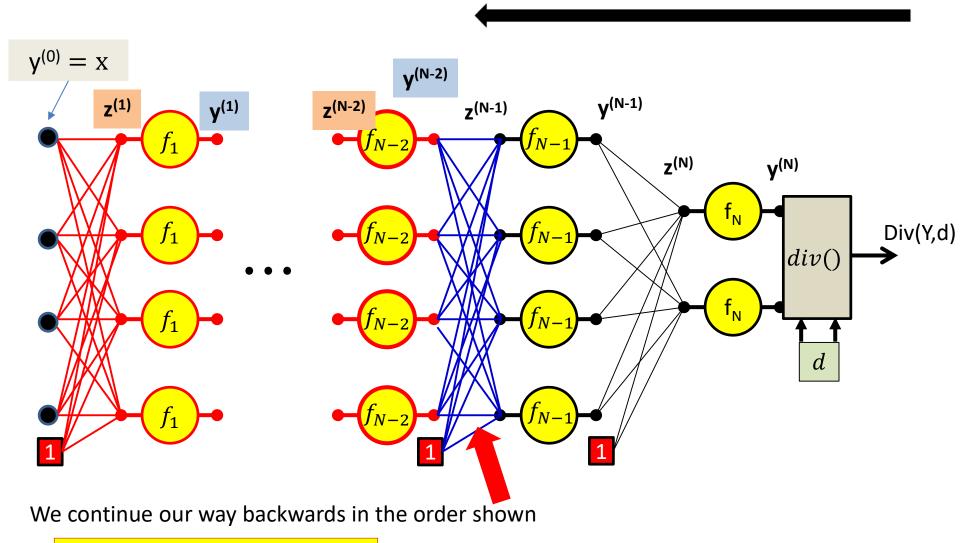
$$\frac{\partial Div}{\partial y_1^{(N-1)}} = \sum_j w_{1j}^{(N)} \frac{\partial Div}{\partial z_j^{(N)}}$$



$$\frac{\partial Div}{\partial y_i^{(N-1)}} = \sum_j w_{ij}^{(N)} \frac{\partial Div}{\partial z_j^{(N)}}$$

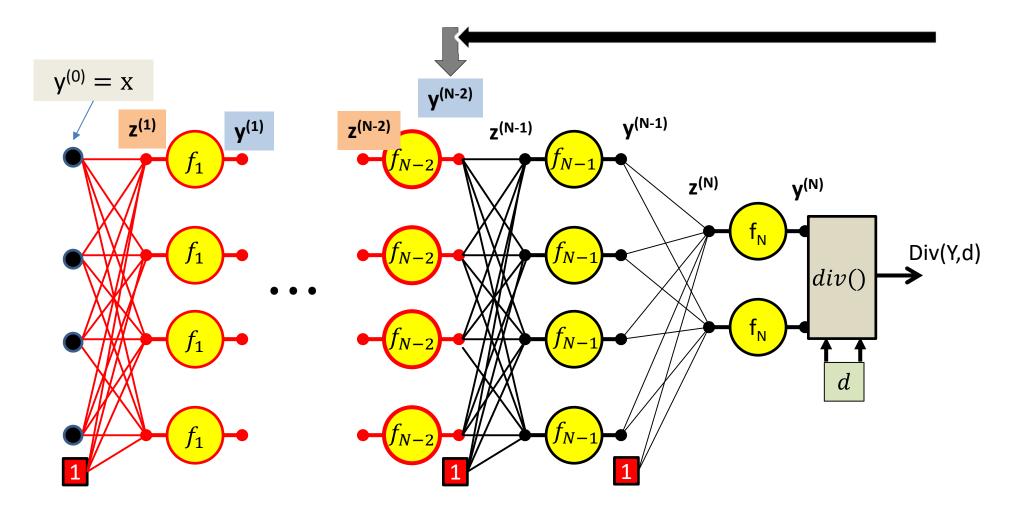


$$\frac{\partial Div}{\partial z_{i}^{(N-1)}} = f_{N-1}' \left(z_{i}^{(N-1)} \right) \frac{\partial Div}{\partial y_{i}^{(N-1)}}$$

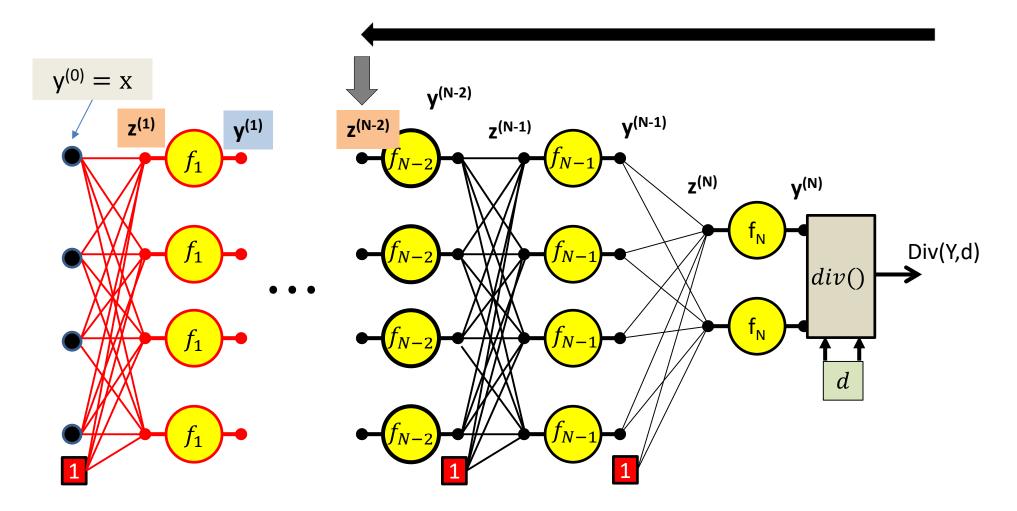


$$\frac{\partial Div}{\partial w_{ij}^{(N-1)}} = y_i^{(N-2)} \frac{\partial Div}{\partial z_j^{(N-1)}}$$

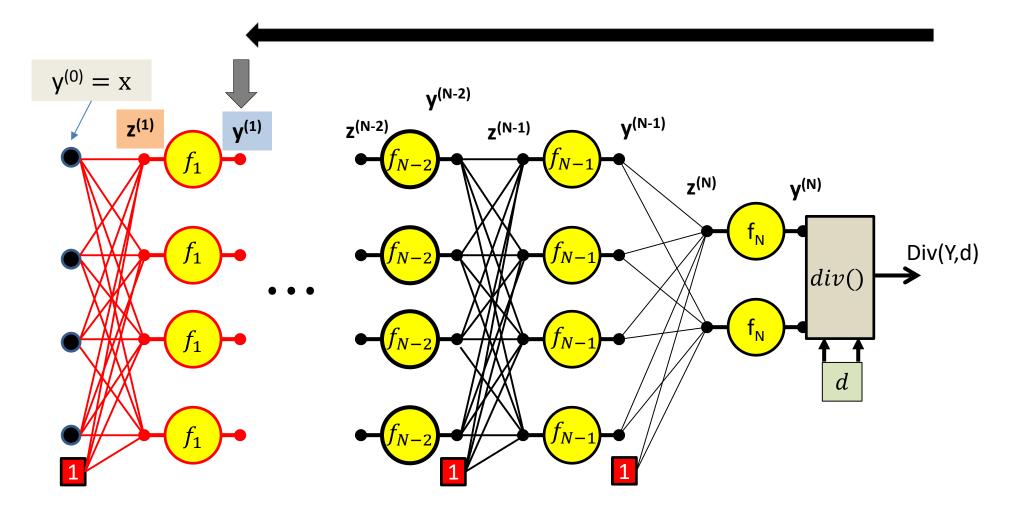
For the bias term $y_0^{(N-2)} = 1$



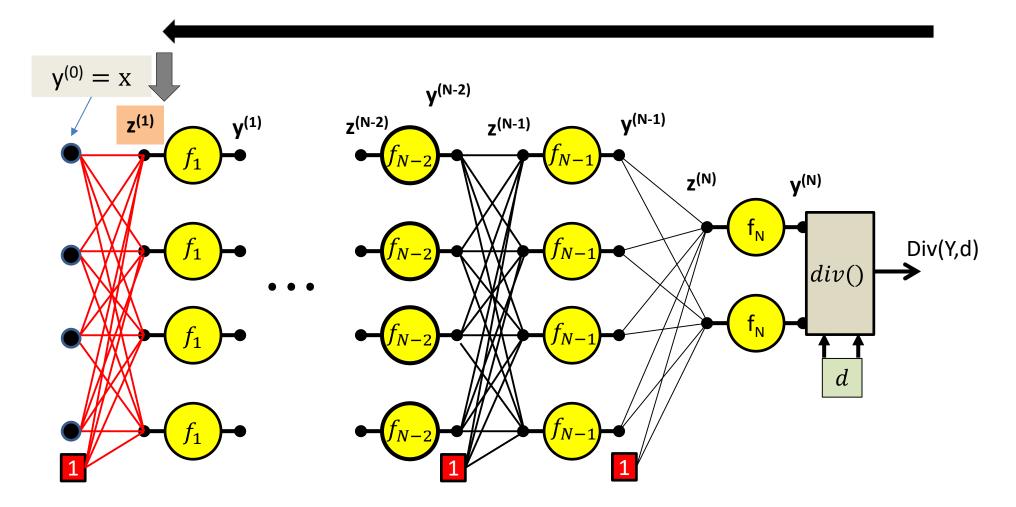
$$\frac{\partial Div}{\partial y_i^{(N-2)}} = \sum_j w_{ij}^{(N-1)} \frac{\partial Div}{\partial z_j^{(N-1)}}$$



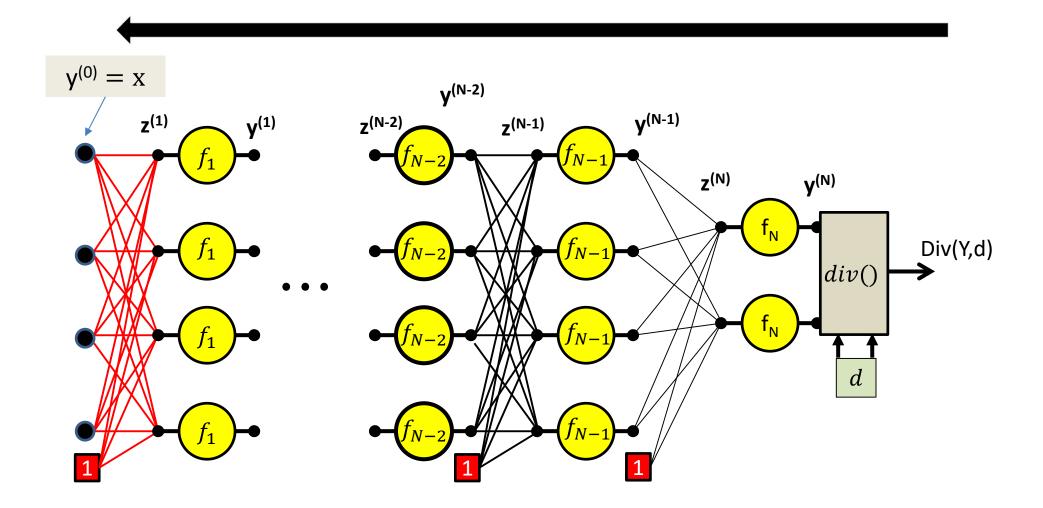
$$\frac{\partial Div}{\partial z_{i}^{(N-2)}} = f_{N-2}' \left(z_{i}^{(N-2)} \right) \frac{\partial Div}{\partial y_{i}^{(N-2)}}$$



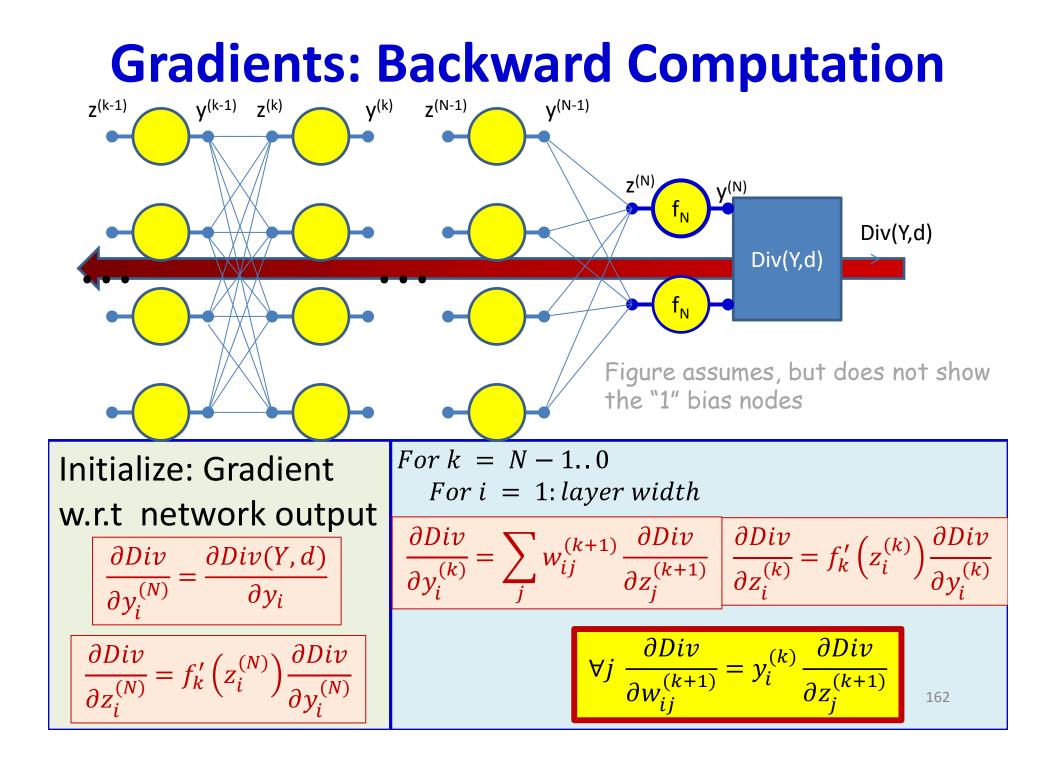
$$\frac{\partial Div}{\partial y_1^{(1)}} = \sum_j w_{ij}^{(2)} \frac{\partial Div}{\partial z_j^{(2)}}$$



$$\frac{\partial Div}{\partial z_i^{(1)}} = f_1' \left(z_i^{(1)} \right) \frac{\partial Div}{\partial y_i^{(1)}}$$



$$\frac{\partial Div}{\partial w_{ij}^{(1)}} = y_i^{(0)} \frac{\partial Div}{\partial z_j^{(1)}}$$



Backward Pass

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

•
$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} f_N'\left(z_i^{(N)}\right)$$

• For layer k = N - 1 downto 1

- For
$$i = 1 \dots D_k$$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

• $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} f_k' \left(z_i^{(k)} \right)$

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial D}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_k$

$$- \frac{\partial Div}{\partial w_{ji}^{(1)}} = y_j^{(0)} \frac{\partial Div}{\partial z_i^{(1)}} \quad \text{for } j = 1 \dots D_0$$

Backward Pass

• Output layer (N) :

- For
$$i = 1 ... D_N$$

•
$$\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

•
$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} f_N'\left(z_i^{(N)}\right)$$

• For layer k = N - 1 downto 1

- For
$$i = 1 ... D_k$$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial u_{k}}{\partial z_{i}^{(k)}} = \frac{\partial u_{k}}{\partial y_{i}^{(k)}} f_{k}'(z_{i}^{(k)})$$

•
$$\frac{\partial Di}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_k$

$$-\frac{\partial Div}{\partial w_{ji}^{(1)}} = y_j^{(0)} \frac{\partial Div}{\partial z_i^{(1)}} \text{ for } j = 1 \dots D_0$$

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

Very analogous to the forward pass:

Backward weighted combination of next layer

Backward equivalent of activation

Using notation $\dot{y} = \frac{\partial Div(Y,d)}{\partial y}$ etc (overdot represents derivative of Div w.r.t variable)

Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\dot{y}_i^{(N)} = \frac{\partial Div}{\partial y_i}$$

•
$$\dot{z}_i^{(N)} = \dot{y}_i^{(N)} f_N'(z_i^{(N)})$$

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

• For layer $k = N - 1 \ downto \ 1$ Very analogous to the forward pass:

- For
$$i = 1 \dots D_k$$

• $\dot{y}_i^{(k)} = \sum_j w_{ij}^{(k+1)} \dot{z}_j^{(k+1)}$

Backward weighted combination of next layer

•
$$\dot{z}_i^{(k)} = \dot{y}_i^{(k)} f_k' \left(z_i^{(k)} \right)^{4}$$

Backward equivalent of activation

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \dot{z}_i^{(k+1)} \text{ for } j = 1 \dots D_k$$

$$-\frac{\partial Div}{\partial w_{ji}^{(1)}} = y_j^{(0)} \dot{z}_i^{(1)} \text{ for } j = 1 \dots D_0$$

For comparison: the forward pass again

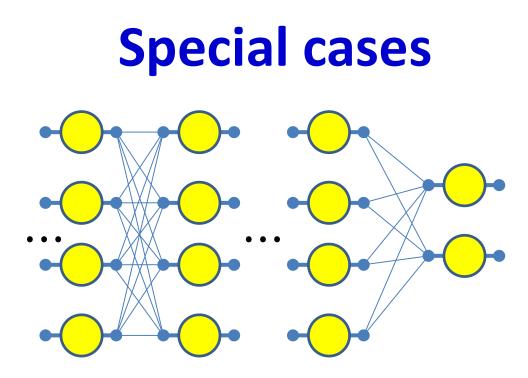
- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
- Set:

$$- D_0 = D$$
, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, \ j = 1 \dots D; \quad y_0^{(k=1\dots N)} = x_0 = 1$$

- For layer k = 1 ... N- For $j = 1 ... D_k$ • $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$ • $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$
- Output:

$$-Y = y_j^{(N)}, j = 1..D_N$$



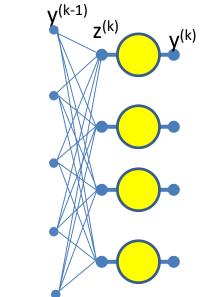
- Have assumed so far that
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 - 2. Inputs to neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable
- Will not discuss all of these in class, but explained in slides
 - Will appear in quiz. Please read the slides

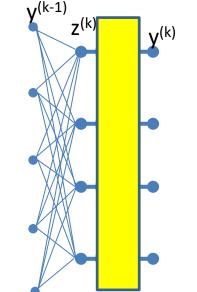
Special Case 1. Vector activations



 Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations





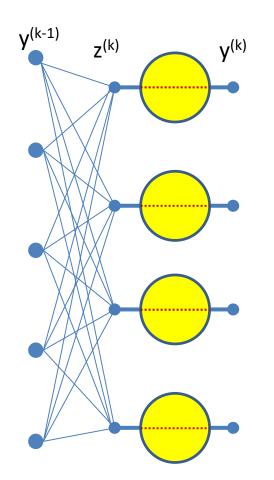
Scalar activation: Modifying a z_i only changes corresponding y_i

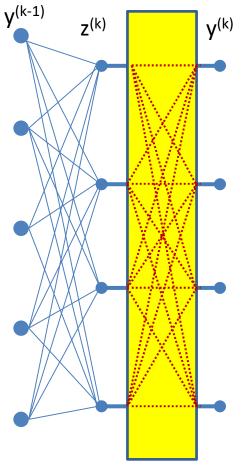
 $y_i^{(k)} = f\left(z_i^{(k)}\right)$

Vector activation: Modifying a z_i potentially changes all, $y_1 \dots y_M$

$$\begin{bmatrix} y_{1}^{(k)} \\ y_{2}^{(k)} \\ \vdots \\ y_{M}^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_{1}^{(k)} \\ z_{2}^{(k)} \\ \vdots \\ z_{D}^{(k)} \end{bmatrix} \end{pmatrix}_{169}$$

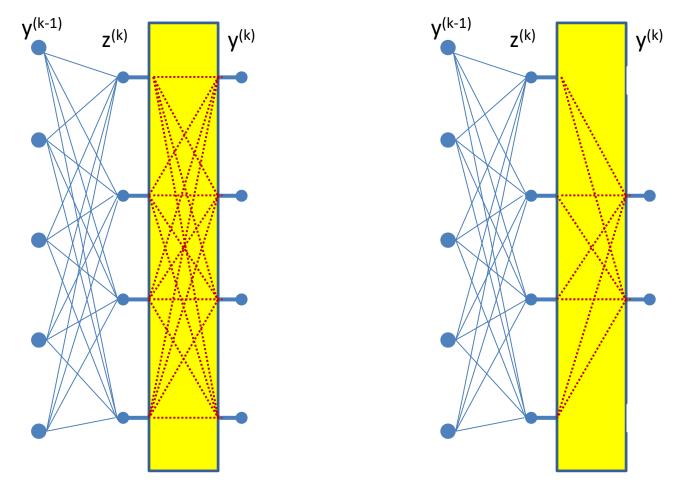
"Influence" diagram





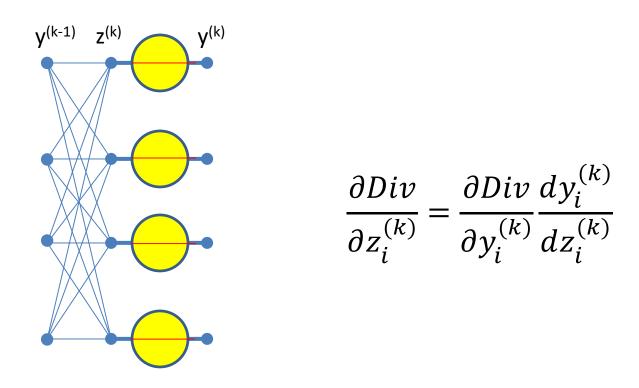
Scalar activation: Each z_i influences one y_i Vector activation: Each z_i influences all, $y_1 \dots y_M$

The number of outputs



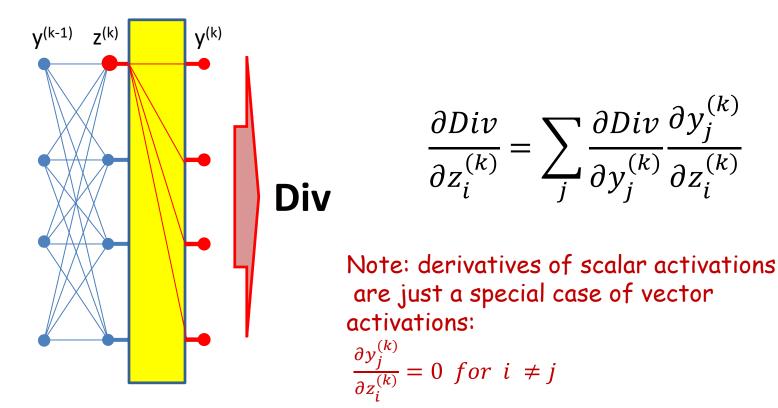
- Note: The number of outputs (y^(k)) need not be the same as the number of inputs (z^(k))
 - May be more or fewer

Scalar Activation: Derivative rule



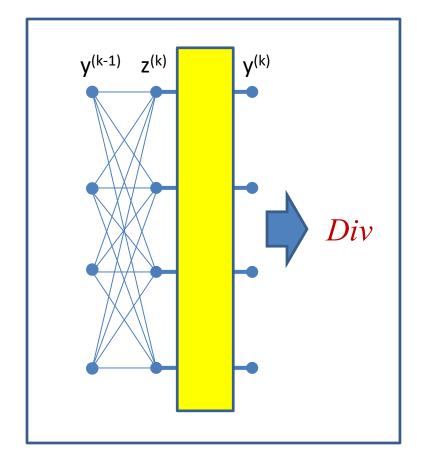
 In the case of *scalar* activation functions, the derivative of the error w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

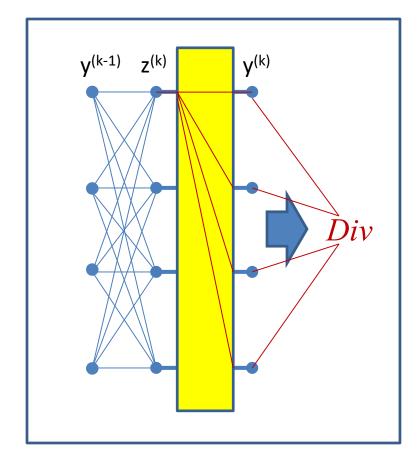


• For *vector* activations the derivative of the error w.r.t. to any input is a sum of partial derivatives

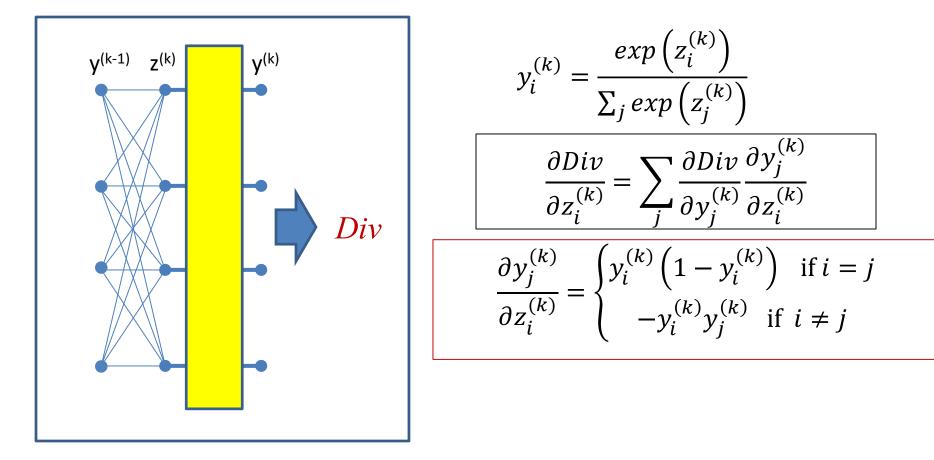
- Regardless of the number of outputs $y_i^{(k)}$

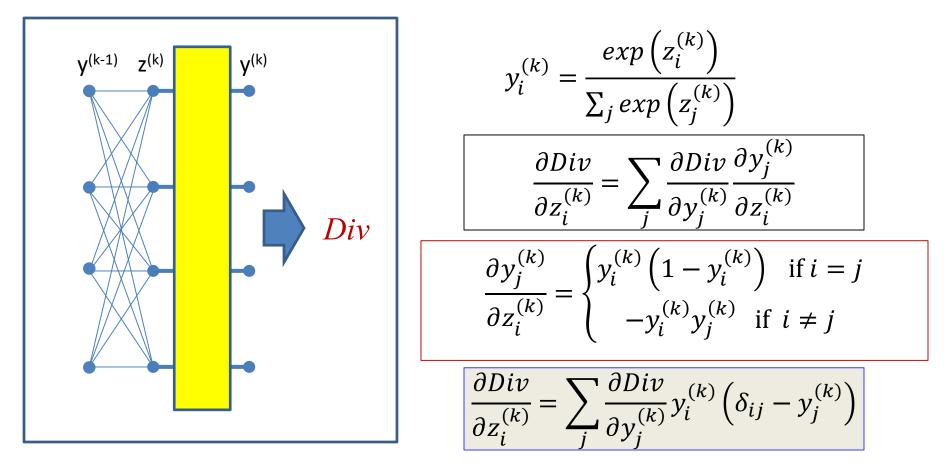


 $y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_i^{(k)}\right)}$



$$y_{i}^{(k)} = \frac{exp\left(z_{i}^{(k)}\right)}{\sum_{j} exp\left(z_{j}^{(k)}\right)}$$
$$\frac{\partial Div}{\partial z_{i}^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_{j}^{(k)}} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}$$





- For future reference
- δ_{ij} is the Kronecker delta: $\delta_{ij} = 1$ if i = j, 0 if $i \neq j_{177}$

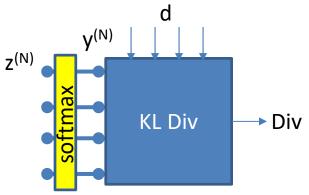
Backward Pass for softmax output layer d

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

•
$$\frac{\partial Div}{\partial z_i^{(N)}} = \sum_j \frac{\partial Div(Y,d)}{\partial y_j^{(N)}} y_i^{(N)} \left(\delta_{ij} - y_j^{(N)}\right)$$



• For layer k = N - 1 downto 1

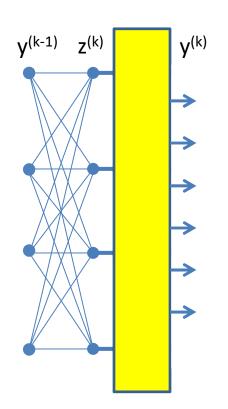
- For
$$i = 1 \dots D_k$$

• $\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$
• $\frac{\partial Div}{\partial z_i^{(k)}} = f'_k \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$
• $\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$ for $j = 1 \dots D_k$
- $\frac{\partial Div}{\partial w_{ji}^{(1)}} = y_j^{(0)} \frac{\partial Div}{\partial z_i^{(1)}}$ for $j = 1 \dots D_0$

Special cases

- Examples of vector activations and other special cases on slides
 - Please look up
 - Will appear in quiz!

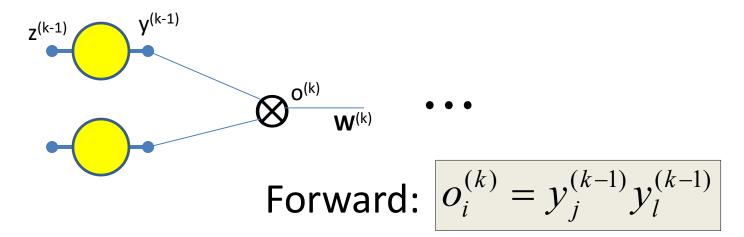
Vector Activations



$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix}$$

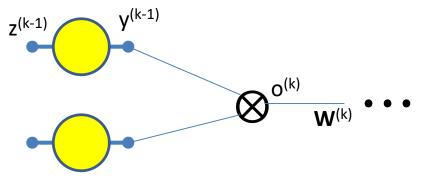
- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax), etc.

Special Case 2: Multiplicative networks



- Some types of networks have *multiplicative* combination
 In contrast to the *additive* combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative Networks



Bac

Forward:

$$o_i^{(k)} = y_j^{(k-1)} y_l^{(k-1)}$$

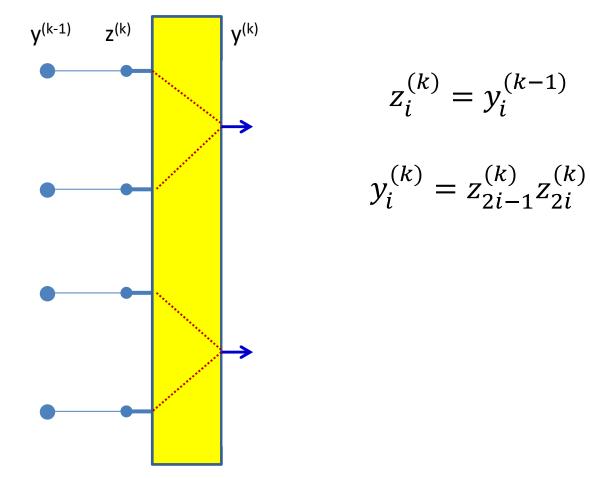
kward:
$$\frac{\partial Div}{\partial o_i^{(k)}} = \sum_i w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$

$$\frac{\partial Div}{\partial y_j^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} \frac{\partial Div}{\partial o_i^{(k)}} = y_l^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

$$\frac{\partial Div}{\partial y_l^{(k-1)}} = y_j^{(k-1)} \frac{\partial Div}{\partial o_i^{(k)}}$$

• Some types of networks have *multiplicative* combination

Multiplicative combination as a case of vector activations

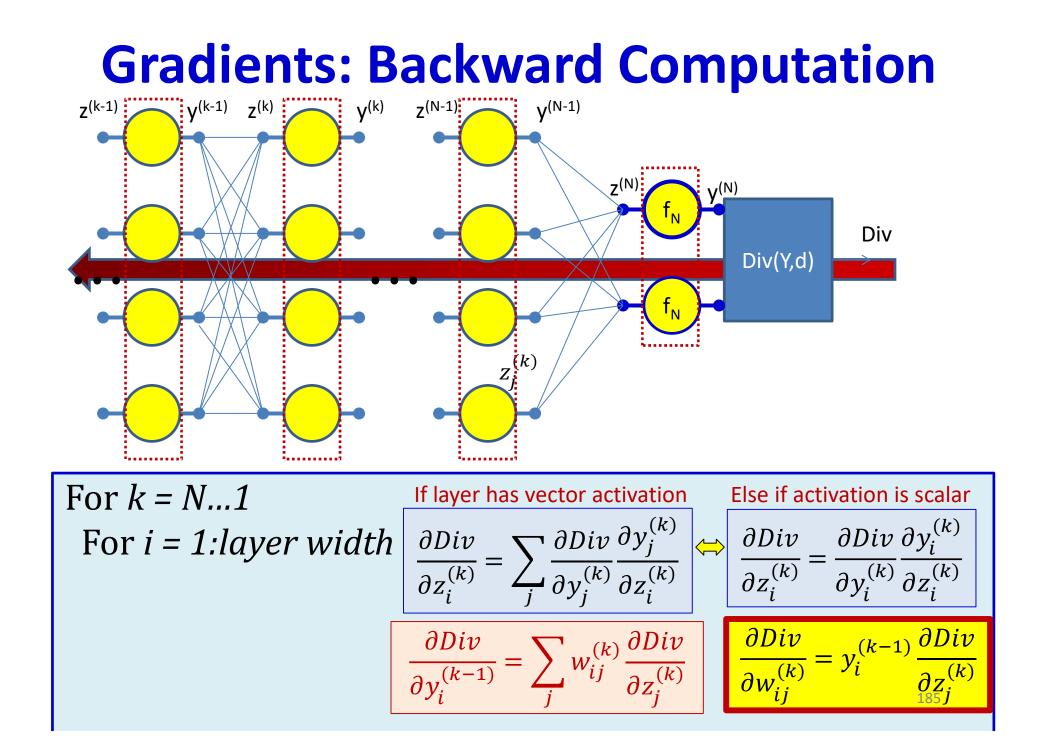


• A layer of multiplicative combination is a special case of vector activation

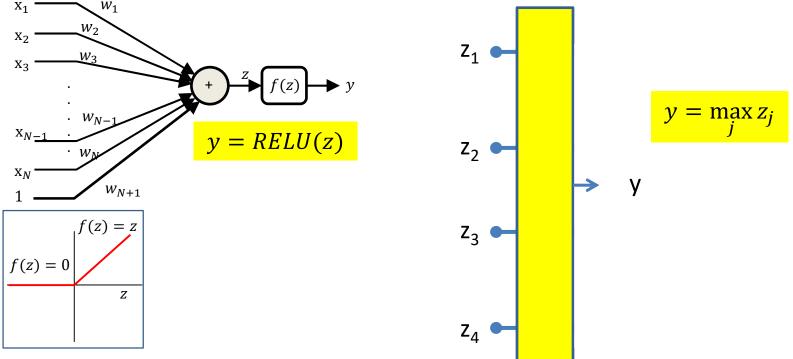
Multiplicative combination: Can be viewed as a case of vector activations



• A layer of multiplicative combination is a special case of vector activation

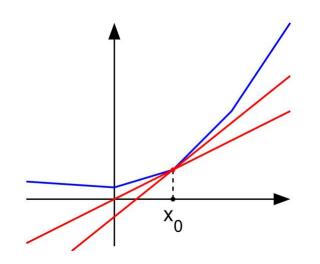


Special Case : Non-differentiable activations



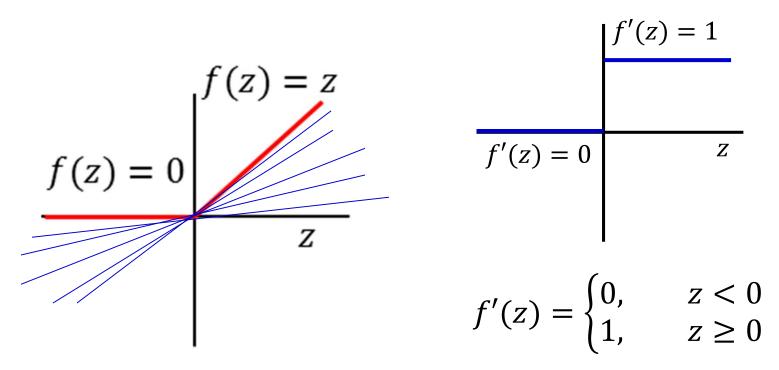
- Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 - And its variants: leaky RELU, randomized leaky RELU
 - E.g. The "max" function
- Must use "subgradients" where available
 - Or "secants"

The subgradient



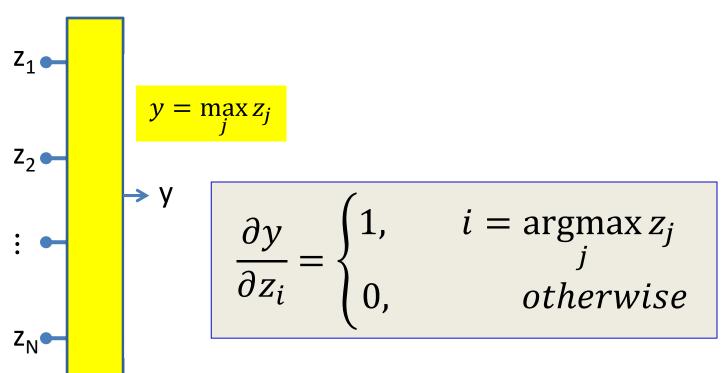
- A subgradient of a function f(x) at a point x_0 is any vector v such that $(f(x) - f(x_0)) \ge v^T (x - x_0)$
 - Any direction such that moving in that direction increases the function
- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_0 , the subgradient is the gradient
 - The gradient is not always the subgradient though

Subgradients and the RELU

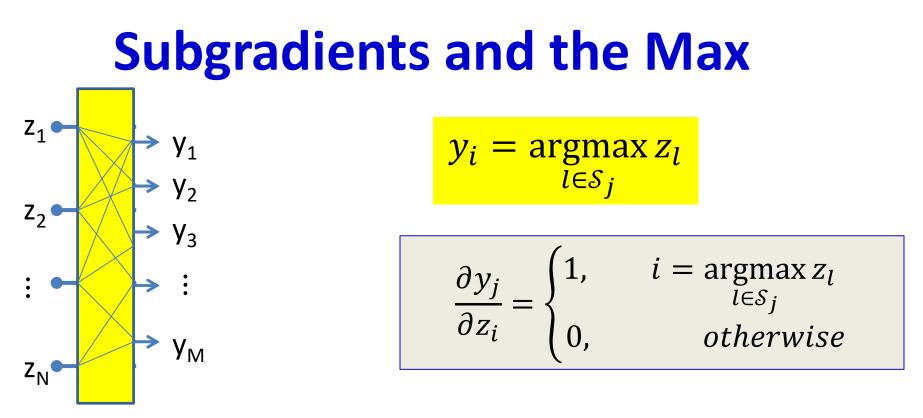


- Can use any subgradient
 - At the differentiable points on the curve, this is the same as the gradient
 - Typically, will use the equation given

Subgradients and the Max



- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output



- Multiple outputs, each selecting the max of a different subset of inputs
 - Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

Backward Pass: Recap

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

• $\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$
• $\frac{\partial Di}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} = OR \sum_j \frac{\partial Div}{\partial y_j^{(N)}} \frac{\partial y_j^{(N)}}{\partial z_i^{(N)}}$ (vector activation)
• For layer $k = N - 1$ downto 1
- For $i = 1 \dots D_k$
• $\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$
• $\frac{\partial Di}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} = OR \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$ (vector activation)
• $\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$ for $j = 1 \dots D_k$
- $\frac{\partial Div}{\partial w_{ji}^{(1)}} = y_j^{(0)} \frac{\partial Div}{\partial z_i^{(1)}}$ for $j = 1 \dots D_0$

Overall Approach

- For each data instance
 - Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation.
 - Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual loss is the sum of the divergence over all training instances

$$\mathbf{Loss} = \frac{1}{|\{X\}|} \sum_{X} Div(Y(X), d(X))$$

• Actual gradient is the sum or average of the derivatives computed for each training instance

$$\nabla_{W} \mathbf{Loss} = \frac{1}{|\{X\}|} \sum_{X} \nabla_{W} Div(Y(X), d(X)) \quad W \leftarrow W - \eta \nabla_{W} \mathbf{Loss}^{\mathrm{T}}$$

Training by BackProp

- Initialize weights $W^{(k)}$ for all layers $k = 1 \dots K$
- Do: (Gradient descent iterations)

- Initialize Loss = 0; For all i, j, k, initialize $\frac{dLoss}{dw_{i,j}^{(k)}} = 0$

- For all t = 1:T (Iterate over training instances)
 - Forward pass: Compute
 - Output Y_t
 - Loss += $Div(Y_t, d_t)$
 - Backward pass: For all *i*, *j*, *k*:

- Compute
$$\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

- Compute $\frac{dLoss}{dw_{i,j}^{(k)}} + = \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$

- For all *i*, *j*, *k*, update:

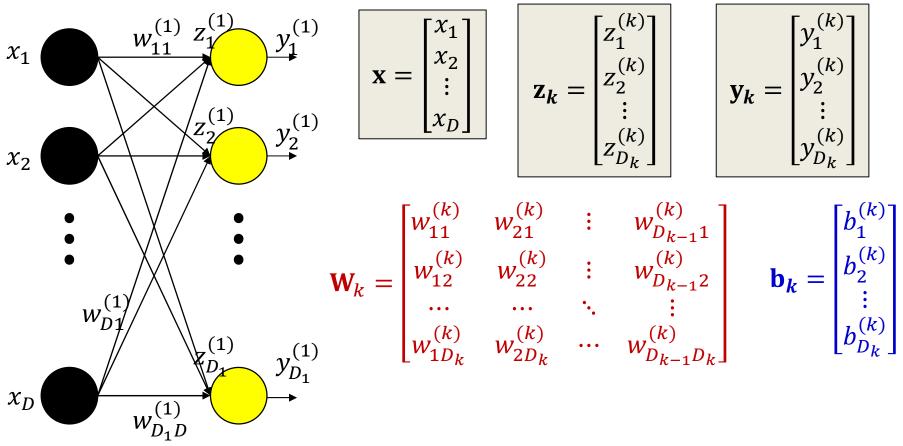
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dLoss}{dw_{i,j}^{(k)}}$$

• Until *Loss* has converged

Vector formulation

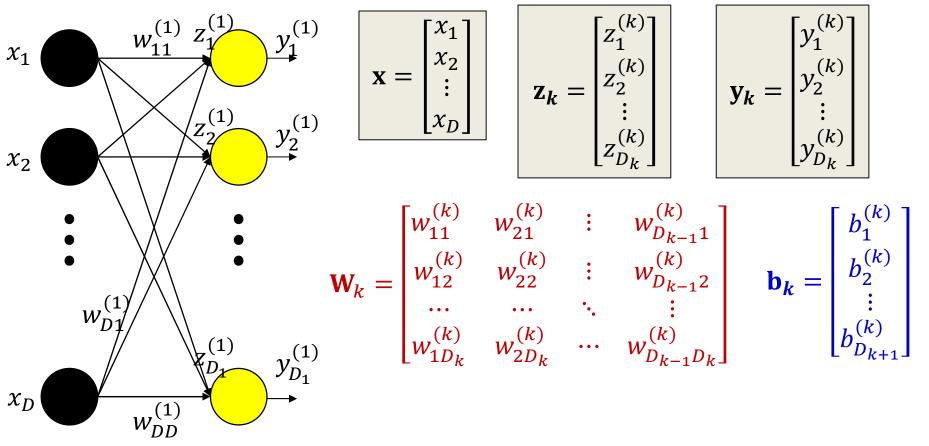
- For layered networks it is generally simpler to think of the process in terms of vector operations
 - Simpler arithmetic
 - Fast matrix libraries make operations *much* faster
- We can restate the entire process in vector terms
 - This is what is *actually* used in any real system

Vector formulation



- Arrange all inputs to the network in a vector **x**
- Arrange the *inputs* to neurons of the kth layer as a vector \mathbf{z}_{k}
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_{k}
- Arrange the weights to any layer as a matrix \mathbf{W}_k
 - Similarly with biases

Vector formulation

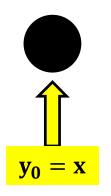


• The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

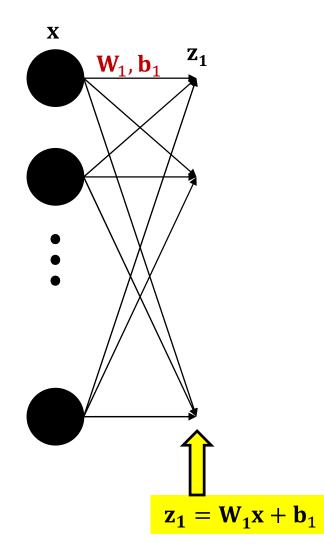
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \qquad \mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)$$

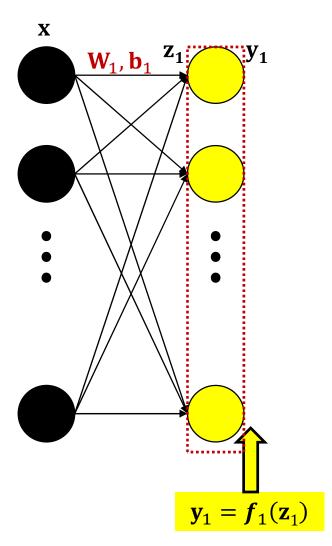
The forward pass: Evaluating the network

- •
- •

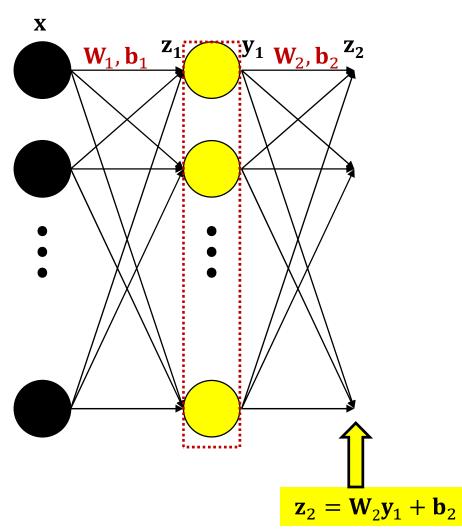


Χ

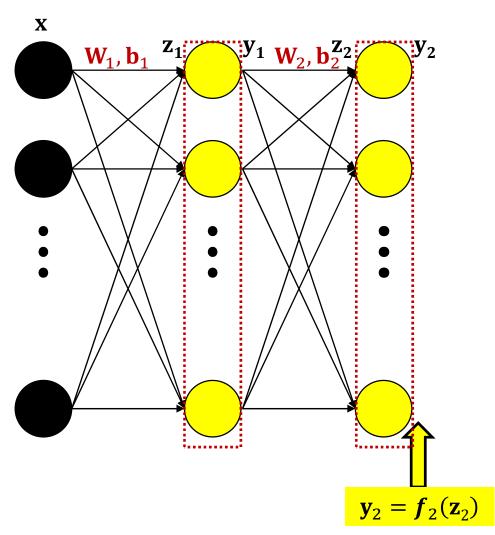




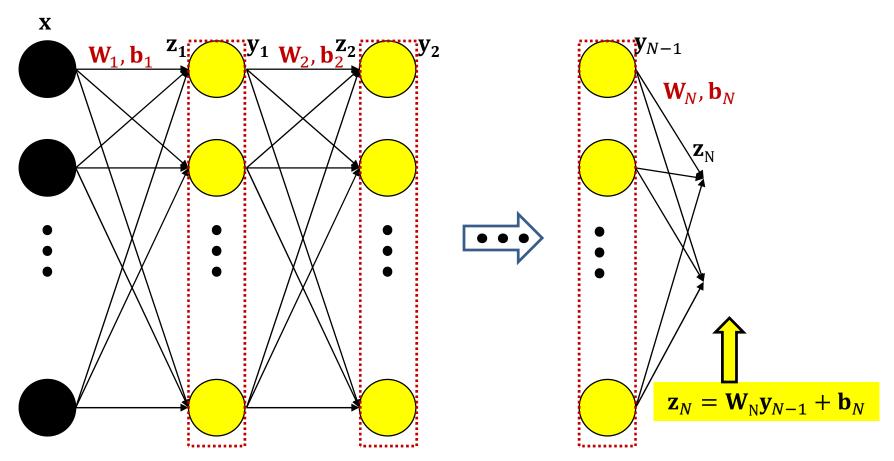
$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$
¹⁹⁹



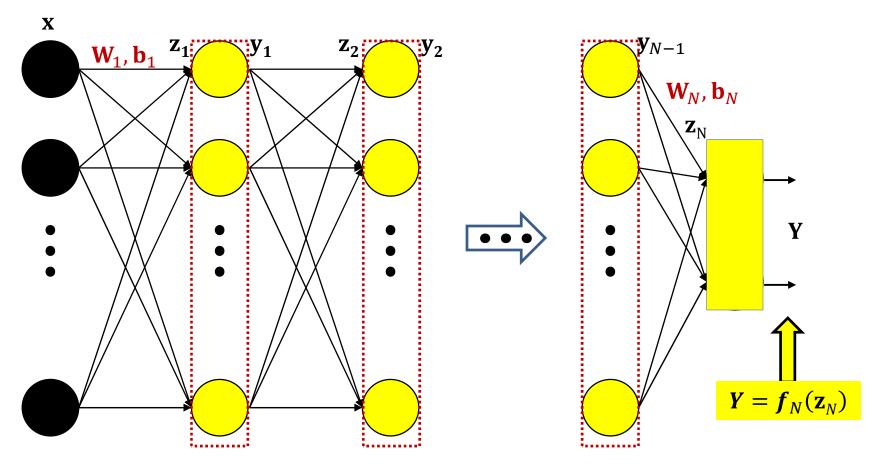
$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$



$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$
²⁰¹

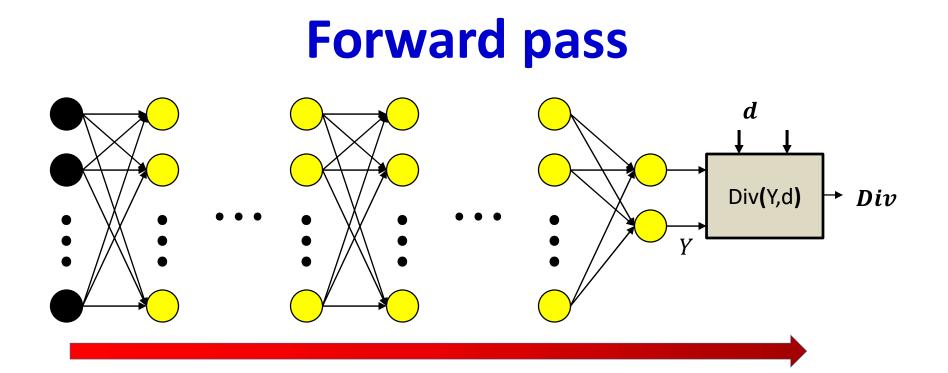


$$\mathbf{z}_{N} = \mathbf{W}_{N} f_{N-1}(\dots f_{2}(\mathbf{W}_{2} f_{1}(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}) \dots) + \mathbf{b}_{N}$$
²⁰²



The Complete computation

 $Y = f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N)$ ²⁰³



Forward pass: Initialize

 $\mathbf{y}_0 = \mathbf{x}$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
 $\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$
Output $\mathbf{Y} = \mathbf{y}_N$

204

The Forward Pass

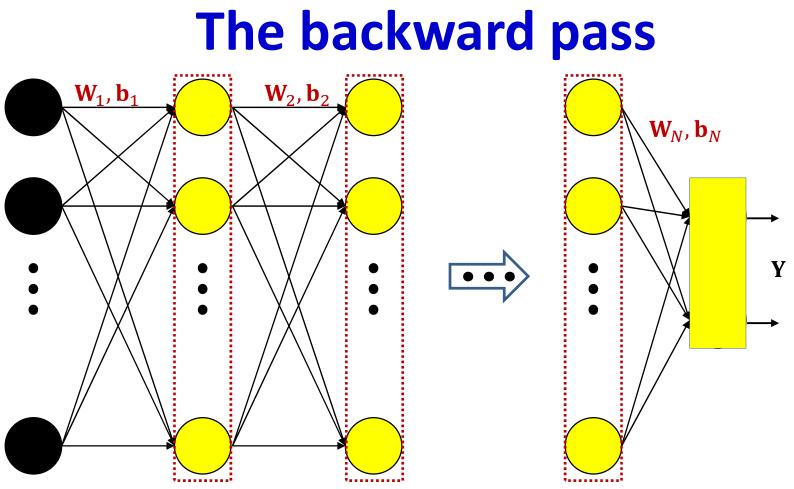
- Set $\mathbf{y}_0 = \mathbf{x}$
- Recursion through layers:

– For layer k = 1 to N:

$$\mathbf{z}_{k} = \mathbf{W}_{k}\mathbf{y}_{k-1} + \mathbf{b}_{k}$$
$$\mathbf{y}_{k} = \mathbf{f}_{k}(\mathbf{z}_{k})$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$



The network is a nested function

 $\mathbf{Y} = f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N)$

• The divergence for any **x** is also a nested function

 $Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N), d)_{206}$

Calculus recap 2: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a *Jacobian*
- It is the matrix of partial derivatives given below

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f\left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)$$

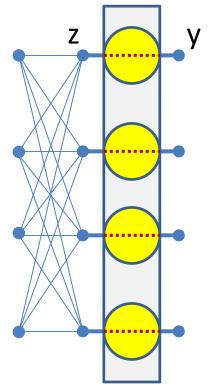
Using vector notation

$$\mathbf{y} = f(\mathbf{z})$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \cdots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \cdots & \frac{\partial y_2}{\partial z_D} \\ \cdots & \cdots & \ddots & \cdots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \cdots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

Check:
$$\Delta \mathbf{y} = J_{\mathbf{y}}(\mathbf{z})\Delta \mathbf{z}$$

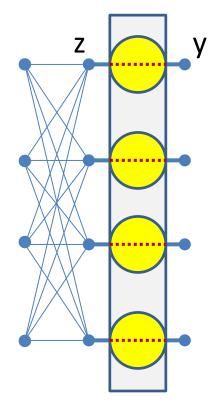
Jacobians can describe the derivatives of neural activations w.r.t their input



$$I_{y}(\mathbf{z}) = \begin{bmatrix} \frac{dy_{1}}{dz_{1}} & 0 & \cdots & 0 \\ 0 & \frac{dy_{2}}{dz_{2}} & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & \frac{dy_{D}}{dz_{D}} \end{bmatrix}$$

- For Scalar activations
 - Number of outputs is identical to the number of inputs
- Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs
 - Not showing the superscript "(k)" in equations for brevity

Jacobians can describe the derivatives of neural activations w.r.t their input



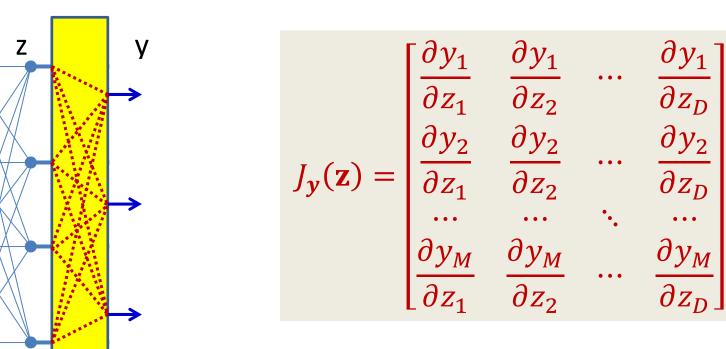
$$y_i = f(z_i)$$

$$J_{y}(\mathbf{z}) = \begin{bmatrix} f'(z_{1}) & 0 & \cdots & 0 \\ 0 & f'(z_{2}) & \cdots & 0 \\ \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(z_{M}) \end{bmatrix}$$

• For scalar activations (shorthand notation):

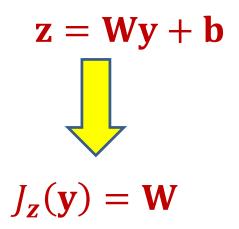
- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations



- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs
 w.r.t individual inputs

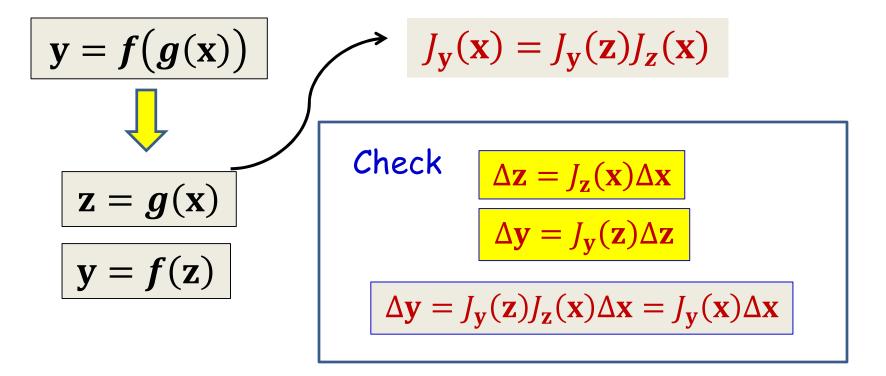
Special case: Affine functions



- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of **z** w.r.t **y** is simply the matrix **W**

Vector derivatives: Chain rule

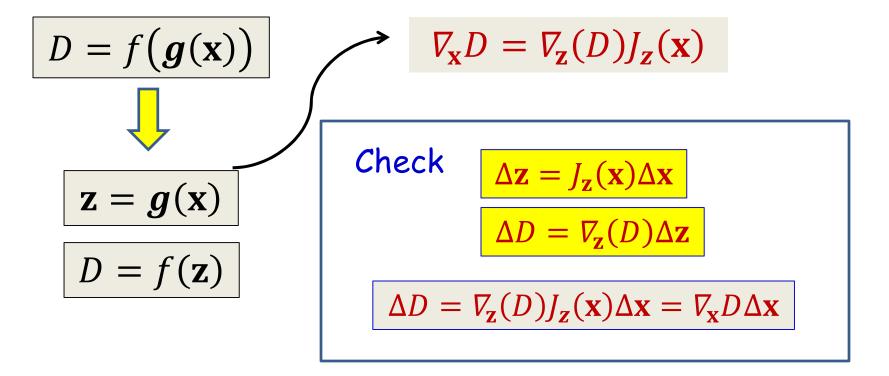
- We can define a chain rule for Jacobians
- For vector functions of vector inputs:



Note the order: The derivative of the outer function comes first 212

Vector derivatives: Chain rule

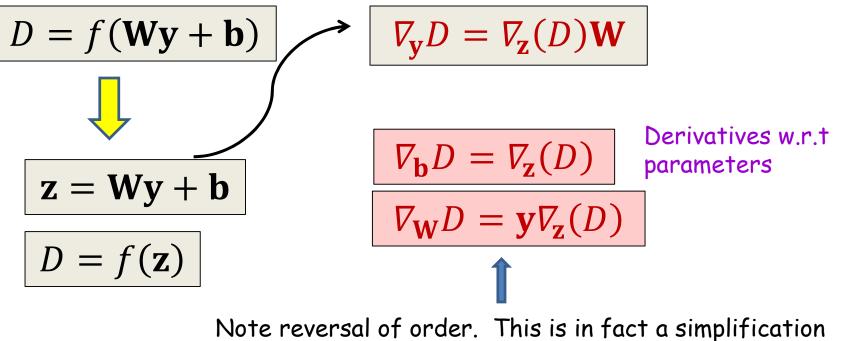
- The chain rule can combine Jacobians and Gradients
- For *scalar* functions of vector inputs (*g*() is vector):



Note the order: The derivative of the outer function comes first 213

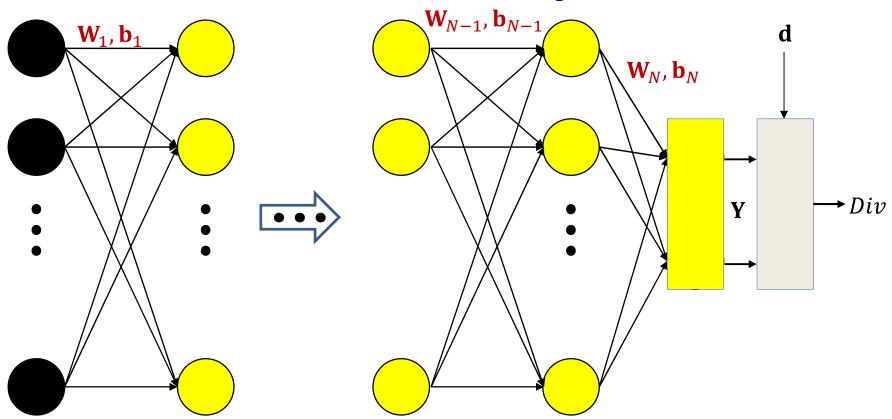
Special Case

Scalar functions of Affine functions



of a product of tensor terms that occur in the right order

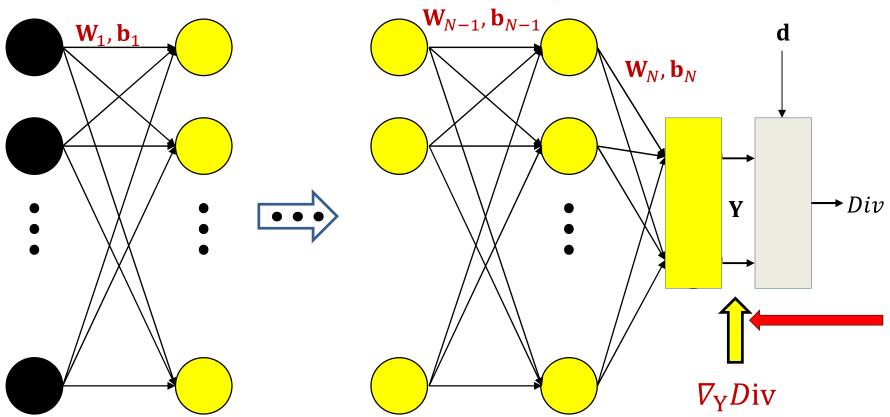
The backward pass



In the following slides we will also be using the notation $\nabla_z Y$ to represent the Jacobian $J_Y(z)$ to explicitly illustrate the chain rule

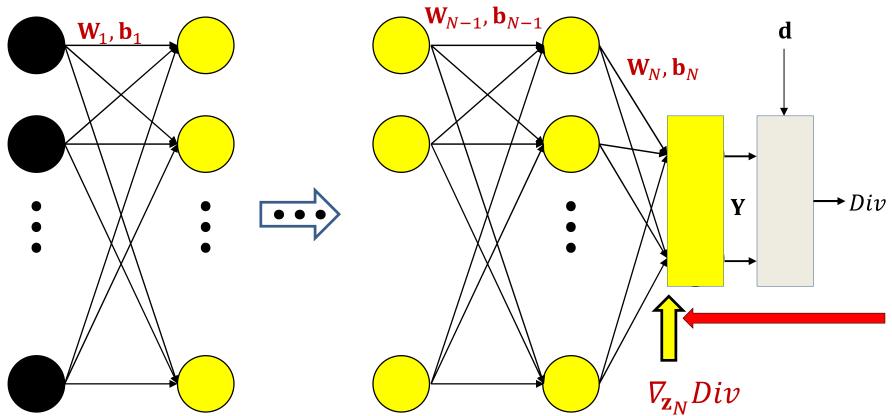
In general $\nabla_a \mathbf{b}$ represents a derivative of \mathbf{b} w.r.t. \mathbf{a} and could be a the transposed gradient (for scalar \mathbf{b}) or a Jacobian (for vector \mathbf{b}) 215

The backward pass



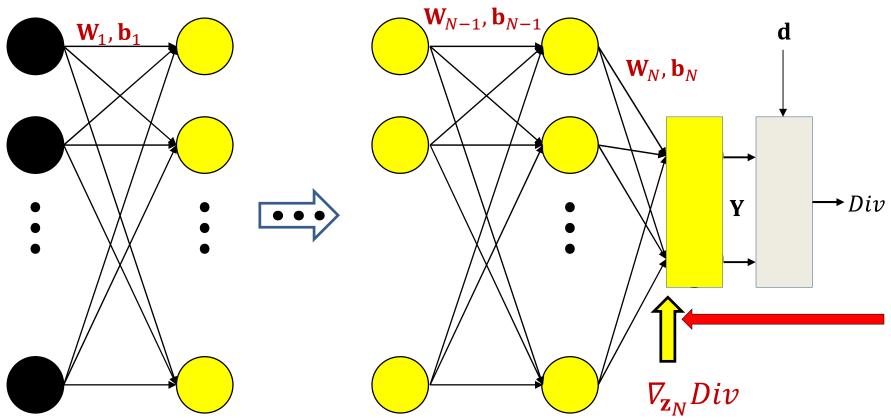
First compute the derivative of the divergence w.r.t. Y. The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative

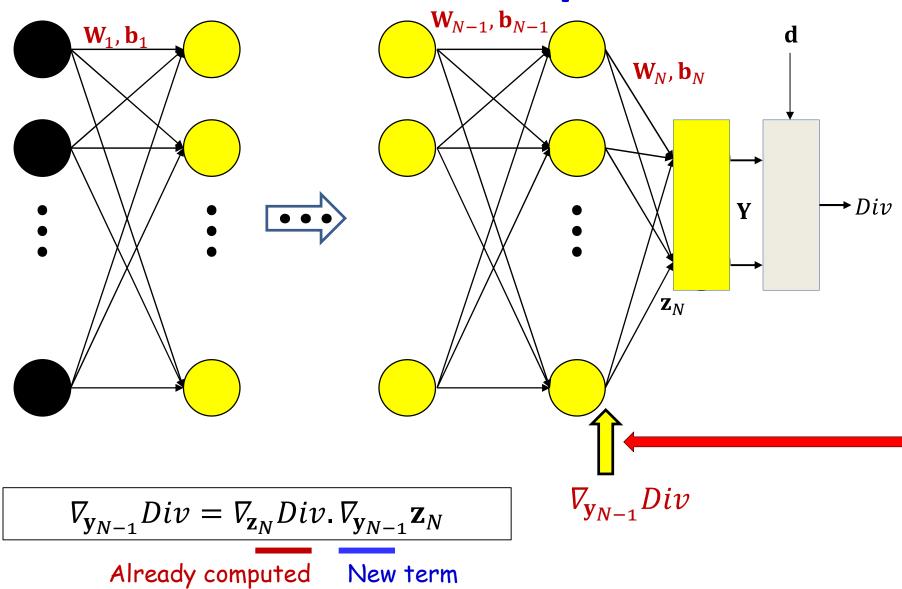


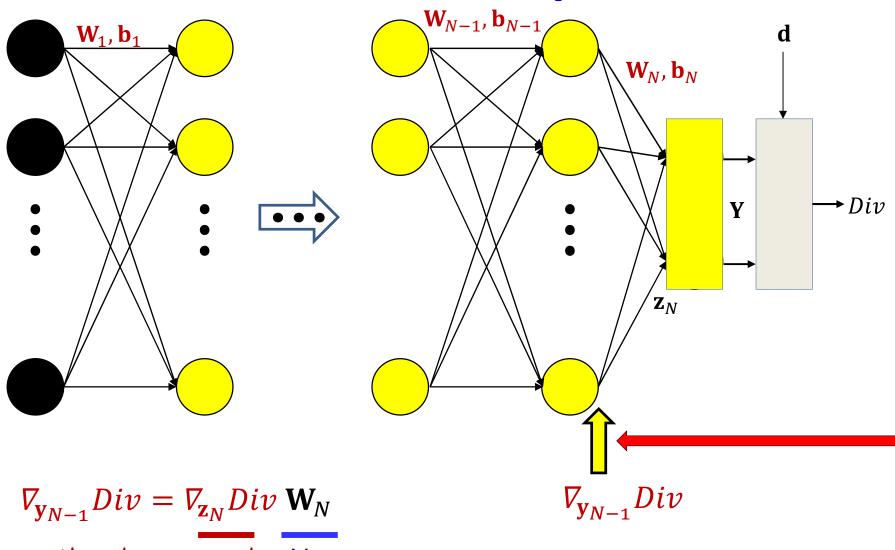
$$\nabla_{\mathbf{z}_N} Di\boldsymbol{v} = \nabla_{\mathbf{Y}} Di\boldsymbol{v} \cdot \nabla_{\mathbf{z}_N} \mathbf{Y}$$

Already computed New term

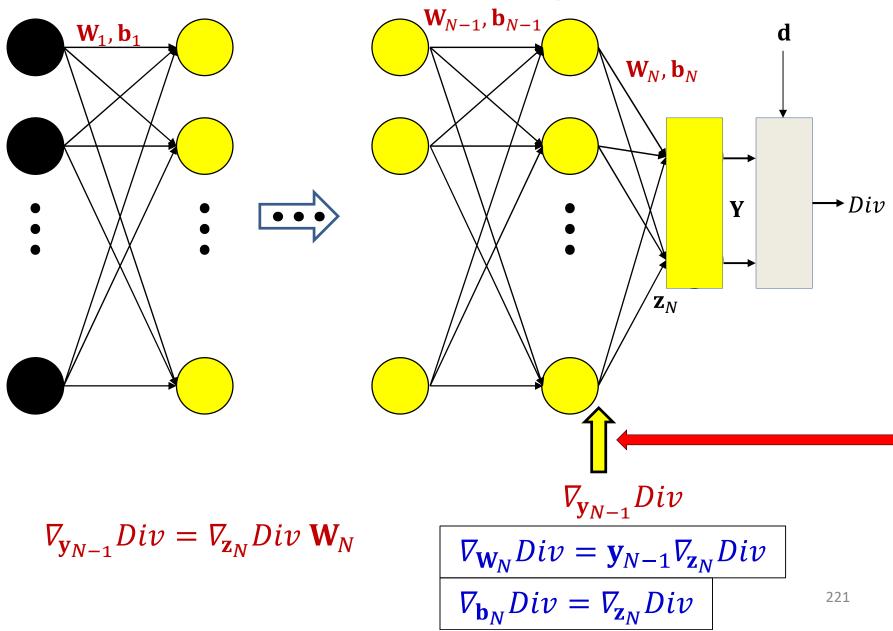


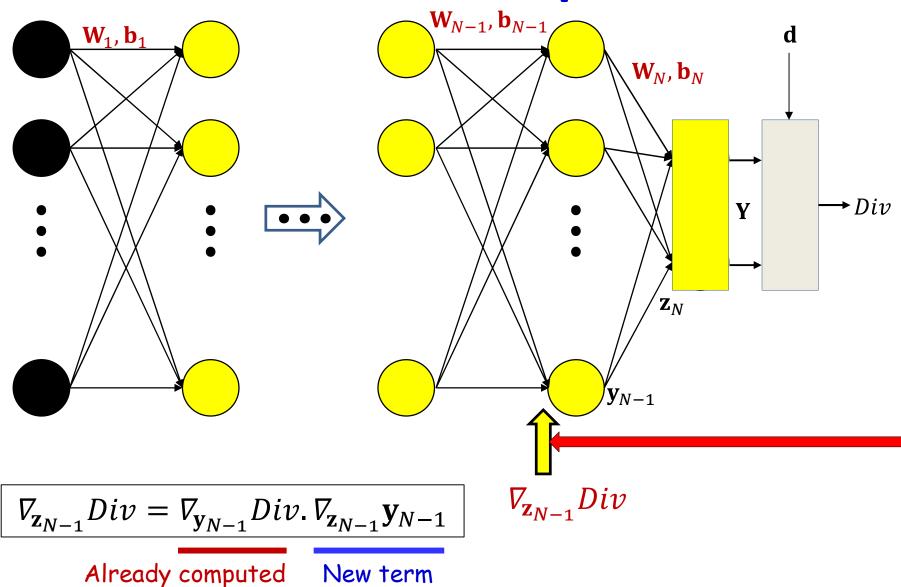
 $\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div J_{\mathbf{Y}}(\mathbf{z}_N)$ Already computed New term



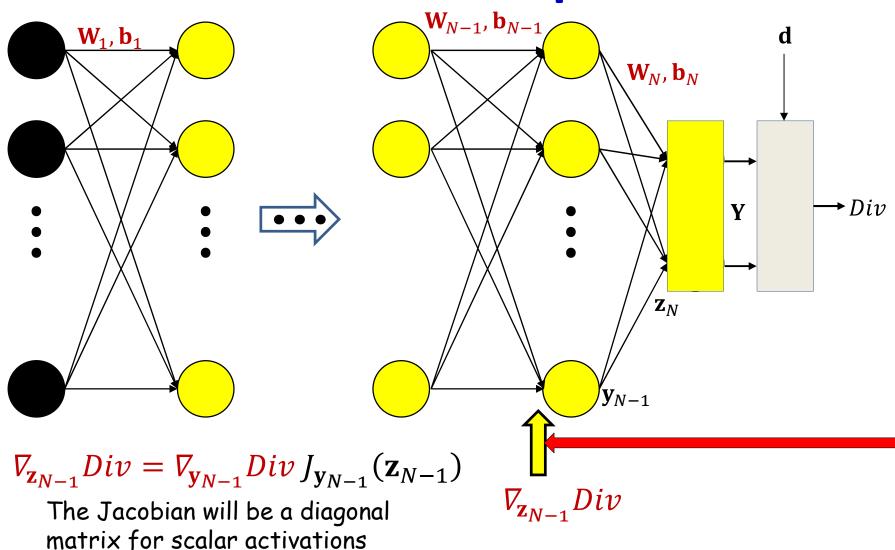


Already computed New term

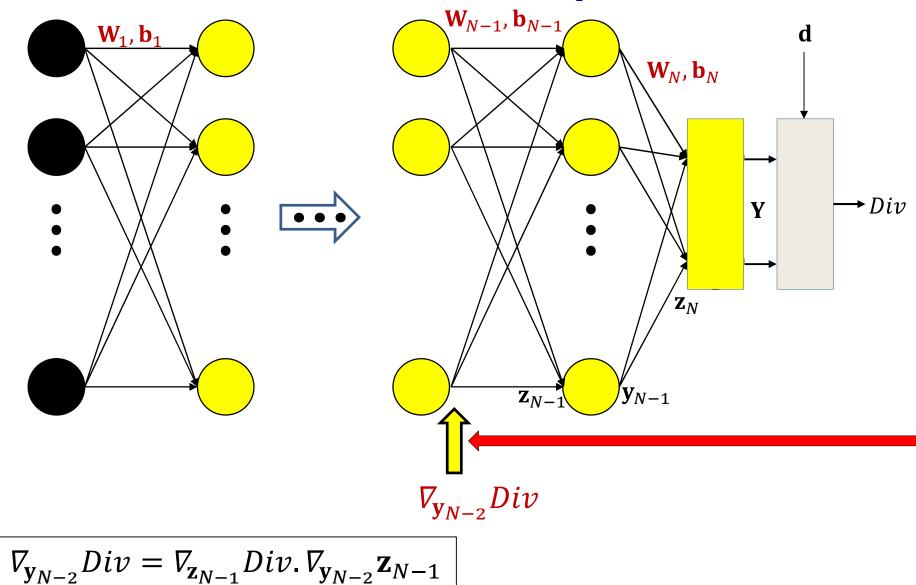


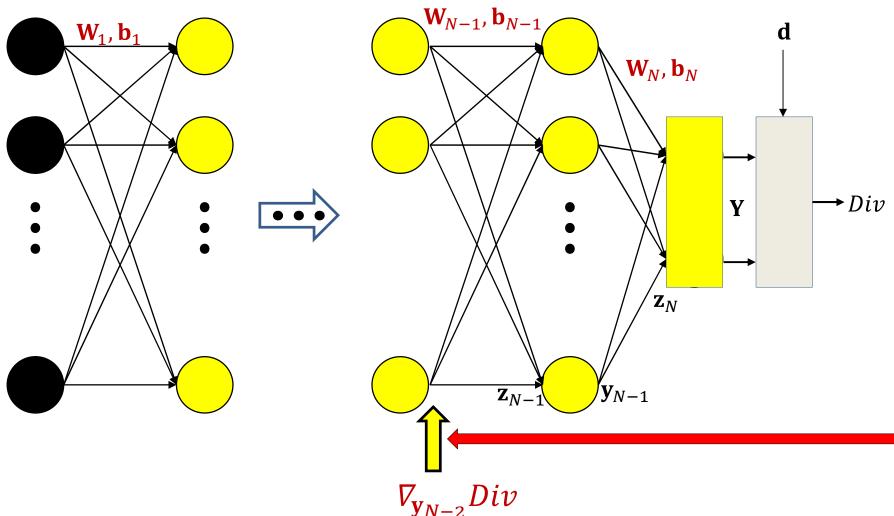


222



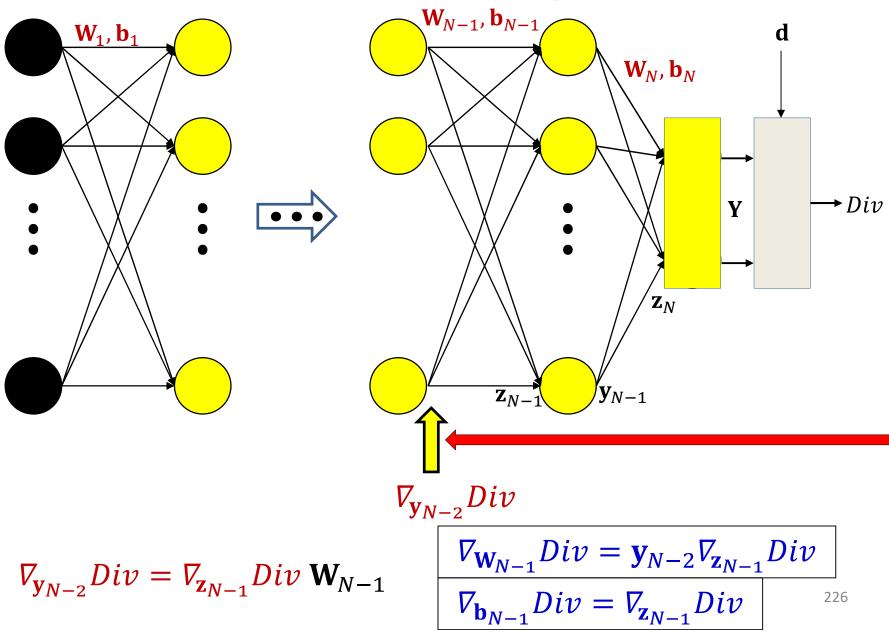
223





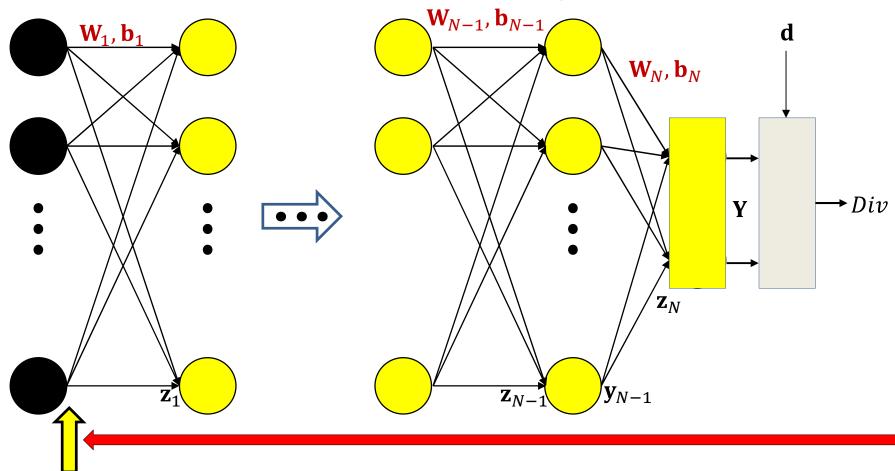
 $\nabla_{\mathbf{y}_{N-2}}Di\nu = \nabla_{\mathbf{z}_{N-1}}Di\nu \mathbf{W}_{N-1}$

225





 $\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$



 $\nabla_{\mathbf{W}_{1}}Div = \mathbf{x}\nabla_{\mathbf{z}_{1}}Div$ $\nabla_{\mathbf{b}_{1}}Div = \nabla_{\mathbf{z}_{1}}Div$

In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Backward recursion step:

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Backward recursion step: Note analogy to forward pass

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

For comparison: The Forward Pass

- Set **y**₀ = **x**
- For layer k = 1 to N :

- Forward recursion step:

$$\mathbf{z}_{k} = \mathbf{W}_{k}\mathbf{y}_{k-1} + \mathbf{b}_{k}$$
$$\mathbf{y}_{k} = \mathbf{f}_{k}(\mathbf{z}_{k})$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$

Neural network training algorithm

- Initialize all weights and biases $(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_N, \mathbf{b}_N)$
- Do:
 - Loss = 0
 - For all k, initialize $\nabla_{\mathbf{W}_k} Loss = 0$, $\nabla_{\mathbf{b}_k} Loss = 0$
 - For all t = 1:T # Loop through training instances
 - Forward pass : Compute
 - Output $Y(X_t)$
 - Divergence $Div(Y_t, d_t)$
 - Loss += $Div(Y_t, d_t)$
 - Backward pass: For all k compute:

$$- \nabla_{\mathbf{y}_k} Div = \nabla_{\mathbf{z}_k+1} Div \mathbf{W}_{k+1}$$

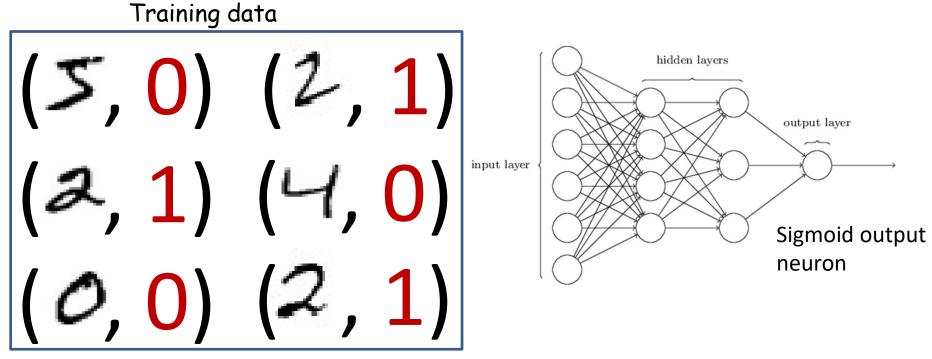
$$- \nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div J_{\mathbf{y}_k}(\mathbf{z}_k)$$

- $\nabla_{\mathbf{W}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t}) = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div; \nabla_{\mathbf{b}_{k}} Div(\mathbf{Y}_{t}, \mathbf{d}_{t}) = \nabla_{\mathbf{z}_{k}} Div$
- $\nabla_{\mathbf{W}_k} Loss += \nabla_{\mathbf{W}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t); \quad \nabla_{\mathbf{b}_k} Loss += \nabla_{\mathbf{b}_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)$
- For all *k*, update:

$$\mathbf{W}_{k} = \mathbf{W}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Loss \right)^{T}; \qquad \mathbf{b}_{k} = \mathbf{b}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Loss \right)^{T}$$

• Until *Loss* has converged

Setting up for digit recognition



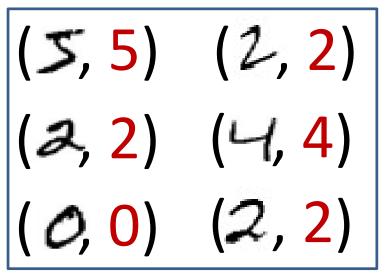
- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation

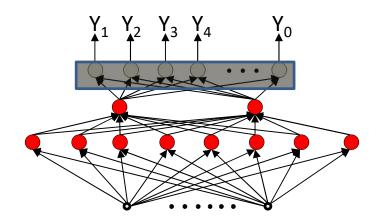
 $- Y \in (0,1)$

- d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters

Recognizing the digit

Training data





- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence to learn network

Story so far

- Neural networks must be trained to minimize the average divergence between the output of the network and the desired output over a set of training instances, with respect to network parameters.
- Minimization is performed using gradient descent
- Gradients (derivatives) of the divergence (for any individual instance) w.r.t. network parameters can be computed using backpropagation
 - Which requires a "forward" pass of inference followed by a "backward" pass of gradient computation
- The computed gradients can be incorporated into gradient descent

Issues

- Convergence: How well does it learn
 - And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- *Etc.*.

Next up

• Convergence and generalization