Neural Networks
Learning the network: Part 2

11-785, Fall 2020
Lecture 4

Recap: Universal approximators

Y =fX;W)

d(X)

* Neural networks are universal approximators
— Can approximate any function
* Provided they have sufficient architecture

— We have to determine the weights and biases to
make them model the function

Recap: Approach

d(X)

» Define a divergence div(f, d) between the actual output f and desired
output d of the network

— Must be differentiable: can quantify how much a miniscule change of f
changes div(f, d)

* Make all neuronal activations a(z) differentiable
— Differentiable: can quantify how much a miniscule change of z changes a(z)

* Differentiability — enables us to determine if a small change in any
parameter of the network is increasing or decreasing div(f, d)

— Will let us optimize the network 3

Recap: The expected divergence

Y =fX;W)

d(X)

 Minimize the expected “divergence” between
the output of the net and the desired function
over the input space

W = argmin E|div(f (X; W), d(X))]
w

Recap: Emipirical Risk Minimization

fX; W) 4

d(X)

» X
Problem: Computing the expected divergence E[div(f(X; w), d(X))] requires
knowledge of d(X) at all X which we will not have

Solution: Approximate it by the average divergence over a large number of
“training” samples (X, d(X)) drawn from P(X)

1
Loss(W) = Nz div(f(X; W), d(X;))

Estimate the parameters to minimize this “loss” instead

—~~

W = argmin Loss(W)
w

Problem Statement

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XN' dN)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)
w.r.t W

* This is problem of function minimization

— An instance of optimization

* A CRASH COURSE ON FUNCTION
OPTIMIZATION

A brief note on derivatives..

derivative

e A derivative of a function at any point tells us how
much a minute increment to the argument of the
function will increment the value of the function

* Foranyy = f(x), expressed as a multiplier a to a tiny
increment Ax to obtainthe increments Ay to the output
Ay = alx
= Based on the fact that at a fine enough resolution, any
smooth, continuous function is locally linear at any point

Scalar function of scalar argument

* When x and y are scalar

y = f(x)
= Derivative:
Ay = alx

: : , d
= Often represented (using somewhat inaccurate notation) as d—z

= Or alternately (and more reasonably) as f'(x)

Multivariate scalar function:
Scalar function of vector argument

Note: AX is now a vector

__________________________ Axq
Ay Ax =]

---------------------------- AXD

Ay = aAx
Giving us that « is a row vector: @ = [@¢1 - Qap]
Ay = a1Axy + a,Ax, + -+ apAxp
The partial derivative a; gives us how y increments when only x; is
incremented

Often represented as %
oy 9 0
Ay = —yAx1 + —ysz + -+ —yAxD

axl axz axD

10

Multivariate scalar function:
Scalar function of vector argument

Note: AX is now a vector

Ax
Ax = | :
AXD

We will be using this
* Where ’g\ symbol for vector and

ay ay matrix derivatives
Vy=|— .. —/—
* 0x4 0xp
o You may be more familiar with the term “gradient” which
is actually defined as the transpose of the derivative

11

Caveat about following slides

The following slides speak of optimizing a
function w.r.t a variable “x”

This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights “w”

To reiterate — “x” in the slides represents the
variable that we’re optimizing a function over
and not the input to a neural network

Do not get confused!

12

The problem of optimization

f(x)

global maximum

inflection point

local minimum

glhbal minimum 02l

* General problem of
optimization: find
the value of x where
f(x) is minimum

Finding the minimum of a function

A
dy_
dx

J(x) l

0

X

Find the value x at which f'(x) =0
— Solve

af @) _
dx
The solution is a “turning point”
— Derivatives go from positive to negative or vice versa at this point

But is it a minimum?

14

Turning Points

* Bot
e Bot

N maxima and minima have zero derivative

N are turning points

15

Derivatives of a curve

v

* Both maxima and minima are turning points

e Both maxima and minima have zero derivative

16

Derivative of the derivative of the
curve

 Both maxima and minima are turning points

e Both maxima and minima have zero derivative

* The second derivative f”’(x) is —ve at maxima and
+ve at minimal

17

Solution: Finding the minimum or
. maximum of a function

dy

o

=0
x) l

>
X
* Find the value x at which f'(x) =0: Solve
dfeo _
dx

* The solution x,;,, is a turning point
* Check the double derivative at x¢,;, : compute

df’(xsoln)
dx

f”(xsoln) =

o If " (x5o1n) is poOsitive X,y is @ minimum, otherwise it is a maximum

18

A note on derivatives of functions of
single variable

2 : i
maximum

" \ o I » All locations with zero
f(.X') " Inflection point X

= = derivative are critical points

1F // ’,¢””—’,»’ -7 7 .
— These can be local maxima, local

- minimum
1 1 1

/ _

/ -z b
-2 7 -

z

o, n#TTTache 2000 3000 4000 5000 6000 minima, or inflection points
Critical points
Z T

| |y C e
df () | The second derivative is
dx — Positive (or 0) at minima
-1+ -
, | | | | | | — Negative (or 0) at maxima
7 0 1000 2000 3000 4000 5000 6000

— Zero at inflection points

Derivative is O

19

A note on derivatives of functions of
single variable

2 T T T
maximum . .
il \ I » All locations with zero
Inflection point X
f(x) o \ derivative are critical points
A+ g .
| | | minimum | — These can be local maxima, local

_20 1000 2000 3000 4000 5000 6000 minima’ or inflection points
2
. | Y C e

af () | The second derivative is

— = 0 at minima
-1+
5 | — < 0 at maxima
_ 0 1000 2000 3000 4000 5000 6000 . . .
— Zero at inflection points

) positivé
2r]

d2f (x), zero / * It’s a little more complicated for
2l / | functions of multiple variables..

negative
“ ' | ' | | ' 20
0 1000 2000 3000 4000 5000 6000

What about functions of multiple
variables?

w. ..
- SOARAND &
1“1&:5:::::::::%*
SKESORD
LKA ‘I‘f*"‘:
4

5000 B,
Bl 0ty
00

% .F"I:‘Q:':'- K £

: K

BE . - Sy
\ : A atels
B oo ARy

* The optimum point is still “turning” point
— Shifting in any direction will increase the value
— For smooth functions, miniscule shifts will not result in any change at all

 We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

21

A brief note on derivatives of
multivariate functions

22

The Gradient of a scalar function

df (X)

The derivative Vyf (X) of a scalar function f (X) of a
multi-variate input X is a multiplicative factor that gives

us the change in f(X) for tiny variations in X
df (X) = Vxf(X)dX

— The gradient is the transpose of the derivative Vy f(X)T -

Gradients of scalar functions with

multivariate inputs
e Consider f(X) = f(xq, x5, ..., Xp)

0xq dx, 0x,

Vxf(X) =

e Relation:
df (X) = Vxf(X)dX

This is a vector inner product. To understand its behavior lets
consider a well-known property of inner products

24

A well-known vector property

u'v = |ul|v|cos6

* The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned

—i.e.when8 =0

25

Properties of Gradient

Vyf(X)dX vs angle of dX

1.5 1.5

) 1

Blue arrow 1
isdX

» L2Tics

-1 0 1 0 100 200 300
theta

* df(X) = Vxf(X)dX
e For anincrement dX of any given length df (X) is max if
dX is aligned with Vy f(X)T

— The function f(X) increases most rapidly if the input increment
dX is exactly in the direction of Vy f(X)T

* The gradient is the direction of fastest increase in f(X) 2%

Gradient

.....

T
‘-"I .
.

-
{ .

Gradient

, vector Vy f(X)T

27

Gradient

16

12

03

04

- -
......
-

12 e

Gradient

) vector Uy f(X)T

Moving in this
direction increases
f(X) fastest

28

Gradient

.....
e
=

v
et
'..‘.__ﬂ

16 L "

12

03
Gradient

o | 2 L vector T f(X)T

| o e l |
ot == b Sl Moving in this
o —Vxf (X)) s SO o ‘—4 direction increases

0

Moving in this =5 N —2 f(X) fastest

direction decreases 12 e "0
f(X) fastest 15— s

29

Gradient

. t?

Fou,

Gradient here

isO

—
L)

| Gradient here

isO

)4

30

Properties of Gradient: 2

* The gradient vector Vy f(X)' is perpendicular to the level curve
31

The Hessian

* The Hessian of a function f (x4, X5, ..., Xy,) is
given by the second derivative

o f Of > f |

ox,. oxox, oOxox,

o>f 8 f o f

V2 (X)X,) 1= ox,0x, ox,0 Ox,0x,
;f &f &

| Ox,0x; 0Ox,0x,) |

Returning to direct optimization...

Finding the minimum of a scalar
function of a multivariate input

* The optimum point is a turning point — the

gradient will be O

34

Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the derivative (or gradient)
equals to zero

Vi f(X)=0

2. Compute the Hessian Matrix V7 f(X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) ->to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

Closed Form Solutions are not always
1 available

f(X)

> X

 Often it is not possible to simply solve V,f(X) =0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained

f(X)

Iterative solutions

EE > X ’

Xo X1X; xf}x3
4

Iterative solutions
— Start from an initial guess X, for the optimal X

— Update the guess towards a (hopefully) “better” value of f(X)
— Stop when f(X) no longer decreases

Problems:
— Which direction to step in
— How big must the steps be

37

The Approach of Gradient Descent

E
NEGATIVE SLOPE
. POSITIVE SLOPE

A IB DAL :
._—.' 4—

* |terative solution:
— Start at some point
— Find direction in which to shift this point to decrease error

* This can be found from the derivative of the function
— A negative derivative = moving right decreases error
— A positive derivative 2 moving left decreases error

— Shift point in this direction

38

The Approach of Gradient Descent

E
NEGATIVE SLOPE

POSITIVE SLOPE

GLOBAL !
B 164000000 ;
..—.‘ 4—
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x°
= While f'(x*) # 0

. If sign (f’(xk)) is positive:

k+ k

xktl = xk — step

e Else

x**t1 = x* + step

— What must step be to ensure we actually get to the optimum?

The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x©

= While f'(x*) # 0
xR+l = x* — sign (f’(xk)) .step

* |dentical to previous algorithm

40

The Approach of Gradient Descent

E
NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x©

= While f'(x*) # 0
K+l — ok _ nkfl(xk)

» 1% is the “step size”

41

Gradient descent/ascent (multivariate)

* The gradient descent/ascent method to find the
minimum or maximum of a function f iteratively

— To find a maximum move in the direction of the
gradient

T
xR+l — ok 4 nkaf(xk)

— To find a minimum move exactly opposite the

direction of the gradient

xk+1 — X kV f(xk)

* Many solutions for step size n*

Gradient descent convergence criteria

* The gradient descent algorithm converges
when one of the following criteria is satisfied

UG RICH LTI

>

Iteration 3

e Or

Iteration 4

V. [<e,

Convergence

Value 43

Overall Gradient Descent Algorithm

* |nitialize:
. x0
" k=0
[do
kL — ok nkvxf(xk)T
sk=k+1
o| while [f(x**1) — f(x*)| > ¢

44

Convergence of Gradient Descent

* For appropriate step
size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

* For non-convex
functions it will find a
local minimum or an
inflection point

45

* Returning to our problem..

Problem Statement

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XTJ dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)
w.r.t W

* This is problem of function minimization

— An instance of optimization

Preliminaries

* Before we proceed: the problem setup

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)
= \/

| What are these input-output pairs?

Loss(W) = %2 div(f(X; W), d;)

49

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)i L (XT' dT)
= \/

| What are these input-output pairs?

1
Loss(W) = —2 div(f(X;; W), d;)

What is f() and
what are its
parameters W?

Problem Setup: Things to define

Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
= \/

What are these input-output pairs?

1
Lowdiv(ﬂxii W), d;)

What is the \A\lx\'rc‘xfai:efi(‘r)sand
divergence div()?

parameters W?

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

1
Loss(W) = —2 div(f(X;; W), d;)

What is f() and
what are its
parameters W?

52

What is f()? Typical network

Input _ _
P Hidden units
units g Output
= o =% ° =% units
o
= Z ;¥?; 3 jj#
.

* Multi-layer perceptron

* Adirected network with a set of inputs and
outputs

— No loops

53

The individual neurons

— — {_\—_
— N S
" - :
RS = R g, 7 e e output layer
) z G
o %
= N : :
e e
= ¥ ¥ 3 :
— i - v
e > - = = =
e e W e
py

* Individual neurons operate on a set of inputs and produce a single
output

— Standard setup: A continuous activation function applied to an affine
combination of the inputs

yzf(ZWixi+b>

— More generally: any differentiable function
y — f(xl’ xZ’ ""xN; W) 54

— {_\—_
= = ==
= _"‘!/ o <
= 4:; e OO el S output layer
o K : A
o
% 3 = %} % {
= R, o
SN 7 DS
N =S <
R X E

The individual neurons

Individual neurons operate on a set of inputs and produce a single

output

— Standard setup: A continuous activation function applied to an affine

combination of the input

YZf(ZWixH'b) —

— More generally: any differentiable function

y = f(xl'xZJ ey XN W)

We will assume this
unless otherwise
specified

Parameters are weights

w; and bias b

55

Activations and their derivatives

f'(2) = f(2)(A - f(2)

f(2) = 1+ exp(—2z)

/. f(@=tanh(z) f'@=Q0-f*@)

1,z=0

: . . _)% z=0 3 ! =
J[=5 V f(z) = {0, z<0 Fre) {O,Z <0

f(z) =log(1 + exp(z)) f@) = 1+ exp(—2z)

 Some popular activation functions and their
derivatives

Vector Activations

Input Hidden Layers
Layer) Output

— — —

- e = Layer

* We can also have neurons that have multiple coupled
outputs

[yl' Y2, ---;yl] — f(lexZJ ey X W)

— Function f () operates on set of inputs to produce set of
outputs

— Modifying a single parameter in W will affect all outputs s,

Vector activation example: Softmax

— > VI

X o 3+ Hho v

* Example: Softmax vector activation

Zi = z W]lX] ~+ bi
J

y:

Parameters are
WelghTS le'
C(nd biC(S bi

exp(z;)

% exp(z;)

58

Multiplicative combination: Can be
viewed as a case of vector activations

X z y

................ —
3]
b K3
-“ -~
- .~
= S5

B
SN I

S — ()C(li
yi = ‘ ‘ Z)
R

" oae *s B
RN l
L] A4 ..
a0 e

Parameters are
welghTS le'
and bias b;

* A layer of multiplicative combination is a special case of vector activatiog9

Typical network

Input

Hidden Layers

—

* |n a layered network, each layer of
perceptrons can be viewed as a single vector

activation

60

Notation

The input layer is the 0" layer

We will represent the output of the i-th perceptron of the k" layer as y.(k)

l
— Input to network: y.(o)

i =X

(V)

i

— Output of network: y; =
We will represent the weight of the connection between the i-th unit of

the k-1th layer and the jth unit of the k-th layer as Wl-(;c)

— The bias to the jth unit of the k-th layer is bj(k)

61

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)

* Minimize the following function

1
Loss(W) = —z div(f(X;; W), d;)
T \

What is f() and
what are its
parameters W?

62

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)
= \/

| What are these input-output pairs?

Loss(W) = %2 div(f(X; W), d;)

63

Input, target output, and actual output:
Vector notation

£y
xl E __;:—;’: \ = —— K —
—_:?
- el = output layer
= i %
- = 2
o Y1
x '
o YL
= ot =
o e -
X — T e
D p—

* Given a training set of input-output pairs (X;,d;), (X3, d,), ..., X7, dr)
o X, = [Xn1,Xn2 -, Xpp] " is the nth input vector
e d, =[dy1,dny, ...,dy.]" is the nth desired output

e Y, = [Vn1, Ynzs > YnL] ' is the nth vector of actual outputs of the network
— Function of input X,, and network parameters

We will sometimes drop the first subscript when referring to a specific
instance

64

Representing the input

Input

Lay

jer

Hidden Layers
Output

—— - — i

— AN Layer

* Vectors of numbers

(or may even be just a scalar, if input layer is of size 1)
E.g. vector of pixel values

E.g. vector of speech features

E.g. real-valued vector representing text

* We will see how this happens later in the course

Other real valued vectors

65

input layer

Representing the output

Input

Layer

Hidden Layers

"

R

z i =

2

If the desired output is real-valued, no special tricks are necessary

— Scalar Output : single output neuron

* d=scalar (real value)

— Vector Output : as many output neurons as the dimension of the

desired output

* d=[d, d,..d] (vector of real values)

66

Representing the output

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

— 1 =Yesit's a cat
— 0 =No it’s not a cat.

67

input layer

Representing the output

i 1

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

* Qutput activation: Typically a sigmoid
— Viewed as the probability P(Y = 1|X) of class value 1

* Indicating the fact that for actual data, in general a feature value X

may occur for both classes, but with different probabilities

e |s differentiable o

input layer

Representing the output

hidden layers

Input Hidden Output
layer layer layer

If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired
output

— 1=Yesit'sacat

— 0=Noit’s not a cat.

Sometimes represented by two outputs, one representing the desired output, the other
representing the negation of the desired output
— Yes: 2> [10]
— No:~>[01]
The output explicitly becomes a 2-output softmax
69

Multi-class output: One-hot
representations

Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat,
or a flower

We can represent this set as the following vector, with the classes arranged in a
chosen order:

[cat dog camel hat flower]”
For inputs of each of the five classes the desired output is:
cat: [10000]T
dog: [01000]T
camel: [00100]7
hat: [00010]T
flower: [00001]7

For an input of any class, we will have a five-dimensional vector output with four
zeros and a single 1 at the position of that class

This is a one hot vector

Multi-class networks

Input Hidden Layers
Layer e _ Output

—_—

)

———

S 7 3 . - o

For a multi-class classifier with N classes, the one-hot
representation will have N binary target outputs

— The desired output d is an N-dimensional binary vector

The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

More realistically, it will be a probability vector

— N probability values that sum to 1.

71

Multi-class classification: Output

Input Hidden Layers
Layer N Output

~S—— = P == Layer

.
- A

Softmax vector activation is often used at the output of multi-class
classifier nets

This can be viewed as the probability y; = P(class = i|X)

72

Inputs and outputs:
Typical Problem Statement

l,{

 We are given a number of “training” data instances

* E.g.images of digits, along with information about
which digit the image represents

e Tasks:
— Binary recognition: Is thisa “2” or not

— Multi-class recognition: Which digit is this?

73

Typical Problem statement:
binary classification

Training data

(3,0) (Z,1)
(2,1) (4,0~
(0,0) (2, 1)] e

pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

74

Typical Problem statement:
multiclass classification

Training data

(35,5) (2, 2)
(2, 2) (4, 4)
(0,0) (2, 2)

Input Hidden Layers
Layer ~ Output
*, = a .= o Layer

T e > ; - s
A ﬁ ; —
oty g ' o
e -
' .

Input: vector of Output: Class prob

pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

75

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

LOSS(VV;%ZWU(]C(XU w),d;)

What is the
divergence div()?

76

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

LOSS(VV;%ZWU(]C(XU w),d;)

What is the
divergence div()?

Note: For Loss(W) to be differentiable
w.r.t W, div() must be differentiable

Examples of divergence functions

—() = d1d2d3 d4

e !
el A\ i
; /
b

L, Div() Div

* For real-valued output vectors, the (scaled) L, divergence is popular

. 1 2 1 2
Div(Y,d) = > Y —d||? = EZ(YL’ —d;)
i

— Squared Euclidean distance between true and desired output
— Note: this is differentiable

dDiv(Y, d)
= (5 — dy)
dyl yl l

VyDiv(Y, d) = [yl - dl’ Yo — dz,]

78

For binary classifier

hidden layers

* For binary classifier with scalar output, Y € (0,1), d is 0/1, the Kullback Leibler (KL)
divergence between the probability distribution [V, 1 — Y] and the ideal output
probability [d, 1 — d] is popular

Div(Y,d) = —dlogY — (1 — d)log(1 —Y)

— Minimumwhend =Y

79

KLvs L2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 02 0.4 0.6 0.8 1 1.2
y Yy

L2(Y,d) = (y —d)?> KL(Y,d) = —dlogY — (1 — d)log(1 — Y)

Both KL and L2 have a minimum when y is the target value of d
KL rises much more steeply away from d
— Encouraging faster convergence of gradient descent

The derivative of KL is not equal to 0 at the minimum

— Itis O for L2, though
80

For binary classifier

hidden layers

input layer

For binary classifier with scalar output, Y € (0,1), dis 0/1, the Kullback Leibler (KL)
divergence between the probability distribution [V, 1 — Y] and the ideal output
probability [d, 1 — d] is popular

Div(Y,d) = —dlogY — (1 — d)log(1 —Y)

— Minimumwhend =Y

Derivative Note: wheny = d the
(derivative is not 0
dDiv(Y,d) —y Yd=
v) 1 Even though div() = 0
ifd=0 - B
1-Y (minimum) when y = d

81

For multi-class classification

S = d,d,d;d,
x ; ’r&%a v
' O KL Div() Div
= = ¢
&

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)
Actual output will be probability distribution [y,, V5, ... |
The KL divergence between the desired one-hot output and actual output:

Div(Y,d) = z d;logd; — z dilogy; = —logy,
i i

— Note),;d;logd; = 0 for one-hot d = Div(Y,d) = —};d;logy;

Derivative The slope is negative

W.rt. V.
. 1
dDiv(Y,d))—— forthe c — th component
ay, % Indicates increasing y,

0 for remaining component
. will reduce divergence
VyDiv(Y,d) = [0 0..—..0 0] 82

Cc

For multi-class classification

== O g d,d,d;d,

KL Div() Div

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual Ol.,ltput will be probability dis.tribution [V1, Vo, .] The slope is negative
The KL divergence between the desired one-hot output and actual output: w.rt. y
i A Y/

Div(Y,d) = — z d;logy, = —logy,
l. Indicates increasing vy,

will reduce divergence

Derivative
vy, d) 1 Note: wheny = d the
(Y, —— for the ¢ — th component TR
———=1 % ! P derivative is not O
‘ 0 for remaining component
7, Div(Y. d) [0 N 0] Even though div() =0
iv(Y,d) = e ..
! c (minimum) when y = d

KL divergence vs cross entropy

KL divergence between d and y:

KL(Y,d) = Z d;logd; — Z d; logy;
i i

Cross-entropy between d and y:

Xent(Y,d) = _Z d; log y;
i

The cross entropy is merely the KL - entropy of d
Xent(Y,d) = KL(Y,d) — Z d;logd; = KL(Y,d) — H(d)
i

The W that minimizes cross-entropy will minimize the KL divergence

— since d is the desired output and does not depend on the network, H(d) does not depend on
the net

— Infact, for one-hot d, H(d) = 0 (and KL = Xent)
We will generally minimize to the cross-entropy loss rather than the KL divergence

— The Xent is not a divergence, and although it attains its minimum when y = d, its minimum
value is not 0

“Label smoothing”

I S — d,d,d,d,
: AN
: O KL Div() Div

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €
“Label smoothing” -- aids gradient descent

The KL divergence remains:

Div(Y,d) = 2 d;logd; — 2 d;logy;
i i

Derivative
([1—(K—1)e
dDiv(Y,d) -) for the c — th component
—av,) e
l —— for remaining components
L Vi 85

“Label smoothing”

d,d,d;d,

KL Div()

Div

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €
“Label smoothing” -- aids gradient descent

The KL divergence remains:
Div(Y,d) = 2 d;logd; — 2 d; log y;
i i

Derivative

(11— (K—1)e

dDiv(Y,d) _ v,
in € . .
- — f or remaining components

L Yi

the ¢ — th component

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, ho?)

86

Problem Setup: Things to define

* Given a training set of input-output pairs
(Xl' dl)J (Xz, dZ)J L (XT' dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)

ALL TERMS HAVE BEEN DEFINED

87

Story so far

Neural nets are universal approximators

Neural networks are trained to approximate functions by adjusting their
parameters to minimize the average divergence between their actual output and
the desired output at a set of “training instances”

— Input-output samples from the function to be learned

— The average divergence is the “Loss” to be minimized

To train them, several terms must be defined

— The network itself
— The manner in which inputs are represented as numbers
— The manner in which outputs are represented as numbers

* As numeric vectors for real predictions
* As one-hot vectors for classification functions

— The divergence function that computes the error between actual and desired outputs
* L2 divergence for real-valued predictions
* KL divergence for classifiers

Problem Setup

* Given a training set of input-output pairs
(XlI dl)J (Xz, dZ)I L (XT' dT)

* The divergence on the it" instance is div(Y;, d;)
* The loss

1
Loss = Tz div(Y;, d;)

l
* Minimize Loss w.r.t {Wl-(;{), bj(k)}

89

Recap: Gradient Descent Algorithm

e |nitialize:
— WO
—k=0

To minimize any function L(W) w.r.t W

* do

_ Wk+1 — Wk _ T]kVL(Wk) T
~-k=k+1

» while [L(W*) — L(W*1)| > ¢

Recap: Gradient Descent Algorithm

In order to minimize L(W) w.r.t. W
Initialize:

— WO

k=0

do

— For every component i

k oL
— 1 Bw,
l

. Wik+1 — Wik Explicitly stating it by component

~k=k+1
while |[L(W*) — L(W*™1)| > ¢

91

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight

ij }

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {W

o 1, _ (k) dLos
Wi =W T G,®
LJ

e Until Loss has converged

92

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight
* [nitialize all weights {Wl-j }

* Do:
— For every layer k for all i, j, update:

. (k) _ (k) . dLoss
Wij =W TG, ®
L]

e Until Err has converged

93

The derivative

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

 Computing the derivative

Total derivative:

dLoss z dDiv(Y, d;)
T

(k) (k)
J

94

Training by gradient descent

* Initialize all weights {Wi(jk)}
* Do:

.. dLo
— Forall i, j, k, |n|t|aI|ze (k) =0
]

— Forallt = 1:T
* For every layer k for all i, j:

adDiv(Yd
— Compute (t t)
w®
Wi j
dLos lev(Yt dy)
w® w®

U l]

— For every Iayer k forall i, j:

W(k) _ W(k) n dLoss
i,j i,j TdW(k)

e Until Err has converged

95

The derivative

Total training Loss:

1
Loss = ?z Div(Y, d;)
t

Total derivative:
dLoss 1~ dDiv(Y: d;)

k)
dWi’ j T n

* So we must first figure out how to compute the
derivative of divergences of individual training
iInputs

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y=f(x)
with derivative
ay
the following must hold for sufficiently small ax =) A Y\
e followi old for icie all Ax ~ — Ax
g9 Y y dx
For any differentiable function
h y =l];(x1,x2, ...,XM)
with partial derivatives Both by the
9y 9y Oy definition

0x, 0x,” " Oxy

the following must hold for sufficiently small Ax;, Ax,, ..., Axy = VufAx

dy dy dy
Ay =~ ——Ax; + ——Axy + -+ ——A
V= 0x4 dx, 0x M

97

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

dy df dg(x)

dx dg(x) dx
: dy
Check - we can confirm that: Ay = d—Ax
X
z=gx) =) Az = 49 (x) Ax
dx
_ _df o df dg(x)
y=f@) = Ay = dz Az = dg(x) dx

oy

98

Calculus Refresher: Distributed Chain

rule
y = f(91(0), g1 (%), ., gu ()
dy __0f dgi(@) _Of dga® . 0f dgu(o)
dx 0d0g;(x) dx dg,(x) dx dgy(x) dx
. dy
Check: Ayngx LEtZi=gi(X)
af of af
Ay = —A —A o ——A
Y 074 Zl+az2 72T +82M M
_0fdz o 0fdz, L Of dzy
Ay = 0z, dx Ax+az2 dx Ax + +azM dx Ax

_ (3 dgi(®) _ Of dg(® ., 9f dgu®\ . |V
Ay _(aglm i o ok Bl ok)Ax

Calculus Refresher: Distributed Chain

rule
y = f(91(x), g1(x), ..., g (X))
dy __0f dgi(), 0f dg() . dgu(®)
dx 0d0g;(x) dx dg,(x) dx dgy(x) dx
dy
Check: Ay = -2
y dxAx
af af af
Ay = Ag.(x) + Ag,(x) + -+ A X
y agl(x) gl() agz(x) gZ() agM(x) gM()
_ _Of dgi(x) af dgx(x) of dgm(x)
A =50 ax M tagmm e T T agmm ax OF

_ (3 dgi(®) _ Of dg(® ., 9f dgu®\ . |V
Ay _(aglm i o ok Bl ok)Ax

Distributed Chain Rule: Influence
Diagram

y = f(9100), g1(x), ---,gM
Ny

* x affects y through each of g; ... gy

101

Distributed Chain Rule: Influence
Diagram

* Small perturbations in x cause small
perturbations in each of g4 ... g5, each of
which individually additively perturbs vy

102

Returning to our problem

dDiv(Y,d)

(k)
dwi’ i

* How to compute

103

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
X
1

D—fO)—>

1 1

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs

* Explicitly separating the weighted sum of inputs from the
activation

105

e Showing a tiny 2-input network for illustration
— Actual network would have many more neurons and inputs

* Expanded with all weights shown

e Lets label the other variables too...

106

Computing the derivative for a single

input
oD D
X Zl (1) Zl (1)
' D , - BL + Y2
1.2 [} @ w®

107

Computing the derivative for a single

input
. dDiv(¥,d)
ey e WhatIs: = e ®
s @ 0 @) =
Xl 21 (yl(l) 21 y(l)
D AL 1' t ’
Wiz \[} @ \ 3)
W11
’ ’ d

108

Computing the gradient

Wl 1 w
X1
Wl(,lz) 3
' d
((ov)
N
X w 2(1
X5 2 y ' -
o
W?E,ll) (1) 2
32
1

dDiv(Y,d)

* Note: computation of the derivative requires

dw
LJj
intermediate and final output values of the network in

response to the input 109

‘ Y

N
L~
)

%{? (%) ‘léw
.09
))~

|
W

?

X »
JON (A
S/,

i
N
)

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides

‘ Y

/
NV W X
Y

N (M i
OO
@@y

i
N
)

)

Setting yi(o = x; for notational convenience

Assuming wéf) = bj(k) and yék) = 1 -- assuming the bias is a weight and extending

the output of every layer by a constant 1, to account for the biases

L

/ *
A~ i

a2 aCav
N

i
OrZaON 2

@

(1) _ (1), (0)
Zy = Zwil Yi

y(O) = X

/ 2\t 1 (2) 2 3

A A
AR 0 A 0o AN
W OOy
AN () AN (%) A‘%

bid
I i 1
I e //

% The “forward pass”

Y

o<
N~ A~ A
- P -

(1) _ (1), (0)
Z; —Zwij Y;
i

y(o) = X %

NI SN gy S
N /A

M~ O~ X

i
v/;;sz Oavr
N S @ N
A5

]

‘M
/‘/»‘/A

Y = x Forward Computation

/ Z(l) y(l) 2(2) 6 y(3) Z(N_l) y(N-l)

v z(3)

—(,
YT
ﬁ\ollfAeAﬁ\l@A@Aﬁ%‘ vl

PN PN PN /el 5.
rOr-egre- -6~
WO g

ITERATE FOR k= 1IN g, j = 1:layer-width

0 (k) _ (k). (k=1)
yi() _ X; z; = ZWU- y;
i

(6]

Forward “Pass”

Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj = 1..D;, | D,is the size of the kth layer

o () _ yDPk-1 (K) (k-1)
2z = Xizo Wi ¥,

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

121

Computing derivatives

y(N-Z)

y(1)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives 122

Computing derivatives

Div(Y,d)

First, we compute the divergence between the output of the net y = y) and the
desired output d

Computing derivatives
yN-2) —

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

We then compute V7, v)div(.) the derivative of the divergence w.r.t. the pre-activation affine

combination zN) using the chain rule e

Computing derivatives

y(N-Z)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Computing derivatives

y(N-2) l

y(1)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute V, w-1)div(.) the derivative of the

divergence w.r.t. the output of the N-1th layer .

Computing derivatives

y(N-2) i
N-1

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

Backward Gradient Computation

* Lets actually see the math..

135

Computing derivatives

Div(Y,d)

Computing derivatives

yN-2) —
y(1)

Div(Y,d)

The derivative w.r.t the actual output of the

final layer of the network is simply the derivative | dDiv(Y,d) dDiv(Y,d)
w.r.t to the output of the network (N) —

ay; - 0y

137

Computing derivatives

Div(Y,d)

oD ay") D
N) N N
azf) azf >ay1()

Computing derivatives

Div(Y,d)

Already computed

dDiv 6y1(N)é)iv
(N) o (M5 (V)
0z, 0z, \le

Computing derivatives

Div(Y,d)

fi(4")

Derivative of

’(\N) activation function
dDiv éyl \giv

Computing derivatives

Computed in forward

asz) jyl(N) pass
~—

- ,
Derivative of
’(\N) activation function
dDiv éyl \gw
141

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

obiv 9z aDiv

ﬁwl(llv) - ﬁwl(llv) asz)

Computing derivatives

Div(Y,d)

oDiv _ 9z"(aDiv
ﬁwl(llv) - awl(llv azl(N) Just computed

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

Because
dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(N) (N) R, (N)
dw,, dwy, " Pz,

146

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)
—
Because
dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(N) N) j_ (V)
ow, ow, .’ Pz,

Computed in forward pass 147

Computing derivatives

Div(Y,d)

Computing derivatives

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

N
dDiv z 5Z]§N)ﬁ)iv >\’
1 _ Alread ted
(N 1) . (N 1 aZ(N) reagy compu

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)
—>
‘
aDi @(1{\ Because
iv : iv) _
N-1) — z (5\!—1) o) Wy Z]-(N) = Wl(}v)yl(N D 4 other terms
ayl j yl aZ]

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

-

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) yN
fy _
fn-2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fy
d
fn—2 fn-1

We continue our way backwards in the order shown

aDlv . ’ ((N—l)) aDlU
-1y ~ JN-1] —
azi(N 1) i ayi(zv 1)

155

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) y(N)
fy -
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1
We continue our way backwards in the order shown
dDiv _ ., (N-2) dDiv For the bias term yéN_z) =1

156

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 fr-1
z(N) yN
Uiy _
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn-2 fn-1

We continue our way backwards in the order shown

dDiv (n-1) ODiv
(N 2) ZW (N 1)

157

l y(N-2)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
frn—2 fr-1

We continue our way backwards in the order shown

aDlv . ’ ((N—Z)) aDlv
-2y~ JN-2] —
azi(N 2) i ayi(zv 2)

158

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 frn-1
z(N) yN
Uiy _
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1

We continue our way backwards in the order shown

dDiv Z (2) dDiv
- = w -
J

d yl(l) Y azj@

159

y(N-Z)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
frn—2 fr-1

We continue our way backwards in the order shown

aDlU e (Z(l)) aDlU
(1 /1
azi

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 frn-1
2(N) yiN
i
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fi
d
fn—2 fn-1

dDiv (0) dDiv

| =Y,
We continue our way backwards in the order shown aWi(jl) l azj(l)

Gradients: Backward Computation

S(k-1) ylk1) 7k

(O \Y/ (O
‘Aﬁx&f/"
TN
O -C

(O

av

(k) 2(N-1) y(N-l)

Z(N)

y(N)

(= BN 000

e)

%

Initialize: Gradient

w.r.t network output

dDiv

N —
8y

aDiv (Y, d)
dy;

dDiv _ k’(Z(N)) dDiv
82 3y

l

Fork = N—1..0

Fori = 1:layer width

aDlU _ (k+1)
® — £, Vi
Gyl. >

dDiv

Backward Pass

e Output layer (N) :

— Fori=1..Dy
0Div __ dDiv(Y,d)
ayi(N) dy;

0Div oDiv ., ((N))
° = Z.
aZi(zv) ayi(N) fn i

* Forlayerk =N —1downto 1
— Fori=1..Dy

dDiv —y (k+1) dDiv

= =
ayl.()

dDiv oDiv ., ((k))
° = yA
0z ay® fi\#

j Wij PECEY
j

d0Div (k) 0D .
—— =y ———— forj=1..D
aw](.i.“'l) yJ azi(k'”) J f

dDiv (0) ODiv .
_ — . fori=1..D
GW](.il) y] az.(l) J 0

l
163

Backward Pass

* Output layer (N) : Called "Backpropagation” because
the derivative of the loss is

— Fori=1..Dy v ,
propagated "backwards” through
6yl.(N) B dy;

, 9Div _ aDwf ((N))
020 — 2y N

* Forlayerk = N — ldownto 1l Very analogous to the forward pass:

— Fori=1..Dy
Backward weighted combination
. aDw . (k+1) _0Div_
oDiv _ DI Y, Backward equivalent of activation
2 = 3y fk()
DL — 00 9D fori=1..D,

aW](.;c+1) =Y azi("“)

oDiv (0) dDiv)
o =, fori=1..D
aW](_in Y azi(l)] 0
164

OPW¥A) ot (overdot represents derivative of Div w.r.t variable)

Using notation y =

ay
e Output layer (N) : Called "Backpropagation” because
—Fori=1..D the derivative of the loss is
N propagated "backwards” through
. »(N) _ 9D the network
‘ dy;

2 = 5O f ()

 Forlayerk = N — 1 downto 1 Very analogous to the forward pass:

~ For l(k:) 1 "'Dk(k+1) PP Backward weighted combination
-y =% w; } of next layer
Zi(k) _ yl_(k) f (Zl_(k))< Backward equivalent of activation
. % y](k) (k+1)for] =1..D
dDiv

0
PO (1)_3’() ()forj—l .Dy

]l

For comparison: the forward pass

again
Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj=1..D;

o B _ yNe (K (k=1)
27 = Yito Wy Y

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

166

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Will not discuss all of these in class, but explained in slides

— Will appear in quiz. Please read the slides o

Special Case 1. Vector activations

ylk1) 7k

y(k) yl1) z(k) y(k)
—

* Vector activations: all outputs are functions of
all inputs

168

Special Case 1. Vector activations

Scalar activation: Modifying a z;
only changes corresponding y;

(k-1)

\
o)

Vector activation: Modifying a
z; potentially changes all, y; ... vy,

p

169

“Influence” diagram

y(k)

Scalar activation: Each z; Vector activation: Each z;
influences one v; influences all, y; ... vy

170

The number of outputs

y(
oS *

y (k)

* Note: The number of outputs (y*)) need not be the

same as the number of inputs (z%)
 May be more or fewer

171

Scalar Activation: Derivative rule

aDiv _ dDiv dy,"”
k) k k
0z 9y dz

* In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

172

Derivatives of vector activation

yikD) 2 Yk
)) (k)
j oDiv Z dDiv 0Y;
N 0z0 L ay.(k) 0z
Div l J 7 l
-
Note: derivatives of scalar activations
are just a special case of vector
activations:
] _ . .
- = 0 fori #j

 For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

— Regardless of the number of outputs yj(k) s

Example Vector Activation: Softmax

(k)
Yl 7k Y RO exp (Zi)
—o Lo (k)
5 ()
P

174

Example Vector Activation: Softmax

Y1) 70

y (k)

Div

k) _ exp (Zi(k))

yl k
5 0m (")
dDiv Z aDiv 0y}
(k) (k) 5, (k)
0z, > ayj 0z,

175

Example Vector Activation: Softmax

Y1) 70

y (k)

k) _ exp (Zi(k))

yl k
5 0m (")
dDiv Z aDiv 0y}
(k) (k) 5, (k)
0z, ayj 0z,

J

k). (K) e+, -
—yl-()yj() if i #j

k k KD\ ip:_ .
ayj()_{yi()(l—yi()) ifi =j

(k)
azi

176

Example Vector Activation: Softmax

(k)
Yl 7k Y RO exp (Zi)
—o Lo (k)
50 (")
k
dDiv ~C dDiv 8y}
- 5,0 Z 5y 5,00
k k Y o
—0 ayj()_ yi()(l—yi()) ifi =j
070 Oy tiz]
B : :
dDiv _ z dDiv y(k) (6-- B y(k))
. l .
aZi(k) - ayj(k) L J J

 For future reference

* 0, isthe Kroneckerdelta: 0, =1 ifi=j, 0if i #j,,

Backward Pass for softmax output

layer d
y(N)
e OQOutput layer (N) : z(N)
— Fori=1..Dy
dDiv _ dDiv(Y,d) Div
oy Ay
dDiv dDiv(Y,d) (N) (N)
22 = =25 m Vi (6 — Y)
J
* Forlayerk = N —1downto 1
— Fori=1..D;
., 9Div _Z (k+1) O0Div
ay(k) 9] aZ](.k+1)
0Div (k) dDiv
Py (k) fk()ay_(k)
obiv. (k) O0Div

® =Y. — fOf':lD
aw](.i.‘“) Y aZi(k+1)] k

oDiv (0) ODiv .
a = . forj=1..D
aW](.fil) Y 5,] 0

i

178

Special cases

 Examples of vector activations and other
special cases on slides

— Please look up
— Will appear in quiz!

Vector Activations

YD) 2 Yk
—> k - (k
N e
() (0
LS y2 — f 2
9
(i) \ (i) /
5 Ym Zp
+
* |In reality the vector combinations can be anything

— E.g. linear combinations, polynomials, logistic (softmax),
etc.

180

Special Case 2: Multiplicative
networks

S(k-1) C ytked

W (k)

k k-1 k-1
Forward: 01-() =J{§-)Yz()

* Some types of networks have multiplicative combination

— |In contrast to the additive combination we have seen so far

 Seen in networks such as LSTMs, GRUs, attention models,
etc.

181

Backpropagation: Multiplicative
Networks

S(k-1) ytked
O T~ Forward:

wh *°*° (k) (k=D)L (k-1

_y] yl

dDi dDi
Backward: v z w970

aoi(k) - Lj aZ.(k+1)

oDiv Oo (k) oDiv ;) ODiv oDiv -1y ODIv

ay(k n ay(k D 3, (k) =V % i(k) - Y % i(k)

 Some types of networks have multiplicative
combination

Multiplicative combination as a case
of vector activations

Yy

.—h.
0
0

e
e
0

e
*e
0

YK
K k-1
|, Zi() =3’i()
(k) _ (k) _(k)
i = Z2i-1%2i

A layer of multiplicative combination is a special case of vector activation

183

Multiplicative combination: Can be
viewed as a case of vector activations

y

TS

y(k)

< -
.

=) Y, Div

2
5
- -
Fiheen e
3
g o

=3

(k). (k=1)
Wit Yj

(k)

16"

dy;

az.(k) o a]l

(k)

J

)

(ZJ'(R)) !

al—1

(k)

[Je

l#]

dDiv B

)

(k)
0z !

l

dDiv 6yi(k)

0y 0,0

* A layer of multiplicative combination is a special case of vector activatiollg4

Gradient5° Backward Computation

(k1) 7 y(kl) Z(k) E y(N-l)

‘ \\V// :: (N)E y(N)
‘Amr/A‘ ‘A"/ Div(Y,d)

W LN i ¢ Ve
OO O ®
E);

20

‘M‘ o

For k=N...1 If layer has vector activation Else if activation is scalar

; . , , k . : k
For i = 1:layer width | 9Div z dDiv 5371() | ODiv _ dDiv ay})
0z Liay™ a0z | |0z ay Y 9z

dDiv (k) ODiv
Z Wi; "m0
(k 1 az

Special Case : Non-differentiable

f(2)=0

activations
Z, o=
fQOF»y
y = RELU(Z) z, o
Z3 o—
Z, &

Yy = max z;

e Activation functions are sometimes not actually differentiable
— E.g. The RELU (Rectified Linear Unit)

* And its variants: leaky RELU, randomized leaky RELU

— E.g. The “max” function

* Must use “subgradients” where available

— Or “secants”

186

The subgradient

A
7

A subgradient of a function f (x) at a point x, is any vector v such that
(f () = f(x0)) = v" (x — xo)
— Any direction such that moving in that direction increases the function
Guaranteed to exist only for convex functions

— “bowl” shaped functions
— For non-convex functions, the equivalent concept is a “quasi-secant”

The subgradient is a direction in which the function is guaranteed to increase

If the function is differentiable at x, the subgradient is the gradient

— The gradient is not always the subgradient though
187

Subgradients and the RELU

fl(z) =1
f(z)=z
fl(z)=0 Z
, 10, z <0
re={y 15

 Can use any subgradient

— At the differentiable points on the curve, this is the
same as the gradient

— Typically, will use the equation given

188

Subgradients and the Max

Y = maxz;
]
Z, 0~
=Y (:
o 0y 1, [= argmax z;
— =< J
0z kO, otherwise
ZNQ—

* Vector equivalent of subgradient

— 1 w.r.t. the largest incoming input
* Incremental changes in this input will change the output

— O for the rest

* Incremental changes to these inputs will not change the output L

Subgradients and the Max

Z
. Y1 y; = argmax z;
- Y, lEcg]
3
(:
: : . 1, [= argmax z;
: "><h> : 9y _ €S
0z :
/1 Y { \O, otherwise

* Multiple outputs, each selecting the max of a different subset of
inputs
— Will be seen in convolutional networks
* Gradient for any output:

— 1 for the specific component that is maximum in corresponding input
subset

— 0 otherwise 190

Backward Pass: Recap

e Output layer (N) :

— Fori=1..Dy
dDiv _ dDiv(Y,d)
ayi(N) dyi
. () iy 9y
oD dDiv Jy; oDiv 9, ivati
Lt _ 9bw 9y R Y, Z—~—L_ (vector activation)

Tay™ oz

9z ay™ 9z

* Forlayerk =N —1downto 1
— Fori=1..Dy :
These may be subgradients

., 9Div _y (et _9Diw
ayi(k) — j Lj aZ](.k+1)

k
dDiv 6y](-)
J ay]§") PG

i

dDi __ 9dDiv ayi(k) OR ¥

= vector activation
aZi(k) ayi(k) aZi(k) ()

d0Div (k) ODiv .
=y ' —= forj=1..D
aW](.;c+1) Y aZi(k+1) J k

oDiv (0) dDiv .
— = V. fori=1..D
ow® 7T 5, J 0
ji i 191

Overall Approach

For each data instance

— Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation.

— Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

Actual loss is the sum of the divergence over all training instances

Loss = z Div(Y (X), d(X))

Actual gradient is the sum or average of the derivatives computed
for each training instance

7y Loss = ZVWDW(X) A(X)) W « W — T, Loss™

[{X3

Training by BackProp

* Initialize weights W for all layersk = 1..K
 Do: (Gradient descent iterations)

. 1. dLoss
— Initialize Loss = 0; Forall i, J, k, initialize —7 = 0
dw: .
LJ
— Forallt = 1:T (Iterate over training instances)
* Forward pass: Compute
— Output Y,
— Loss += Div(Y,, d;)
* Backward pass: For all i, j, k:
dDiv(Yydy)

(k)
dwi' j

— Compute

dLoss dDiv(Y¢,de)
— Compute +=
P G T

ij ij

— Forall i, J, k, update:

k) _ W(k) 3 QdLoss
ij — Vij (k)
T dWi,j

w

* Until Loss has converged -

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector
operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector
terms
— This is what is actually used in any real system

Vector formulation

. - (k)T - (k)
y y(1) X1 Zi) 3’1()
1 < = |*? () (k)
‘ Zp = |2 yi = | 2
(1) XD :
- (k) (k)
Xz _ZDk i _ka i
(k) (k) : (k) 1, (k)7
Wii Wy - Wp,_ 1 by
(k) k) . (k) (k)
w, =%z W2z ¢ Wp ;2 b, = b2.
oW (k)
(1) \Wip, Wap, 7 Wp,_. D Dp

 Arrange all inputs to the network in a vector x

* Arrange the inputs to neurons of the kth layer as a vector z;,

* Arrange the outputs of neurons in the kth layer as a vector yj
* Arrange the weights to any layer as a matrix W,

— Similarly with biases

Vector formulation

(1

X1

(1)
Wpbp

 The computation of a single layer is easily expressed in matrix

notation as (setting yo = X):

Zy = Wiyg—1 1 by

-Zik)
(k)
z), = |2
")
_ZDk J
(k) : (k)
W21 - Wp,_ 1
k) . (k)
Ws2 - Wp, 2
© W
Wob, " Wp,_.DpJ

Vi = fr(Zi)

Yk

e
()

(O

| "Dk+14

The forward pass: Evaluating the
network

The forward pass

The forward pass

y1 = f1(zy)
The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
V2 = f2(W2f1(Wix + b;) + by)

The forward pass

The Complete computation
zy = Wyfy-1(2L(W2 fi(Wix +by) +by) ...) + by 202

The forward pass

The Complete computation
Y = fiy(Wyfy-1(.. 2(Wo f1(Wix + by) +by)...) + by) 203

Forward pass

Forward pass:
Initialize

Fork =1to N:

Output

Yo =X

— Div

Z, = Wiyi—1 + by

Vi = fr(Zy)

Y=y

204

The Forward Pass

* Setyp, =X

* Recursion through layers:

— For layer k =1 to N:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

The backward pass

e The network is a nested function

Y = fy(Wy fy—1(Co fo(Wo fi(Wix + by) +by) ..) + by)
* The divergence for any X is also a nested function

Div(Y,d) = Div(fy(Wyfy-1(... (W f;(Wyx+by) +b;)...) +by),d)

Calculus recap 2: The Jacobian

* The derivative of a vector function w.r.t. vector input is called
a Jacobian

* |tis the matrix of partial derivatives given below

L o Oy Oy Oy
Y2 =f 2 dz; 0z, 9z

dy, 0dy, %
il A, W@ =2z, 3z, " 9z
Using vector notation
y = f(@) Iy OYu - m

| dzy 02z, d0zp

Check: | Ay = J,(z)Az

207

Jacobians can describe the derivatives
of neural activations w.r.t their input

dy;
— 0 0
dz,
dy,
]y(z) — O d_Zz cooe O
| dyp
0 0 @-

* For Scalar activations
— Number of outputs is identical to the number of inputs
e Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs
— Not showing the superscript “(k)” in equations for brevity 208

Jacobians can describe the derivatives
of neural activations w.r.t their input

vi = f(z;)
f'(z1) 0 0
pa=| 0 S0
0 0 f,(ZM)_

* For scalar activations (shorthand notation):
— Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs

209

For Vector activations

o
| 283
2, e,
‘.,
. .la
.

. RS
. o~
s o m
s e ay
- x n
I‘ 4y
20
- .

* 8 ':

* u as
P sad
sy v 8
s e
0. e
. apy s
. agte "
(X *0 E
:‘ 3
ae N %0
a s Ele
- v
s 0
‘ue "o
* ne W
L] "-
o
* ag®
& e
153 .
* gu
» g
.:0‘ e
-
Te %S
J -
» s
il !q
e *
ar .
~ .*
2

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

[0y,

0z,
Y2
0z,

5%y

9y,
0z,
9y,
0z,

5%y

| 0z,

0z,

dy; -

0z

dy;
0z

%Y

dzp

210

Special case: Affine functions

Z=Wy+b

4

]Z(Y) =W

* Matrix W and bias b operating on vector y to
produce vector z

* The Jacobian of z w.r.t y is simply the matrix W

211

Vector derivatives: Chain rule

e We can define a chain rule for Jacobians
* For vector functions of vector inputs:

z=g(x) |
y=f(2)

y=f(g (X))f‘ Jy(X) = Jy(z)],(x)
@ Check

Az = J,(x)Ax
Ay = Jy(z)Az

Ay = Jy(2)](x)Ax = Jy(X)AX

Note the order: The derivative of the outer function comes first

212

Vector derivatives: Chain rule

e The chain rule can combine Jacobians and Gradients

* For scalar functions of vector inputs (g () is vector):

D =f(g(x)

U

z = g(x)
D = f(z)

ViD = V;(D)],(x)

Check [7z = J,(x)Ax
AD = V,(D)Az

AD =V,(D)],(x)Ax = V,DAx

Note the order: The derivative of the outer function comes first 213

Special Case

e Scalar functions of Affine functions

Derivatives w.r.t
parameters

D = f(Wy + b) 7,D = ,(D)W
z=Wy+b "D = l(D)
VwD = yV,(D)
D = f(z) 1

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

214

The backward pass

\ 4

Y — Div

v

In the following slides we will also be using the notation VY to represent
the Jacobian Jy(z) to explicitly illustrate the chain rule

In general V/,b represents a derivative of b w.r.t. a and could be a the transposed gradient
(for scalar b) or a Jacobian (for vector b)

The backward pass

— Div

First compute the derivative of the divergence w.r.t.Y.
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative

216

The backward pass

v, Div = VyDiv.V, Y

Already computed New term

The backward pass

V,yDiv = VyDiv Jy(zy)

Already computed New fterm

The backward pass

Wy Div =V, Div.Vy Zy

Already computed New term

The backward pass

Vyy_,Div =V, Div Wy Vyn_ Div

Already computed New fterm

The backward pass

Y — Div

V,._,Div =V, Div Wy

Vw,Div = yy_1V;, Div
VbNDiU = |7ZNDiU

The backward pass

VZN_lDiU = VYN—lDiv' VZN_1YN—1

Already computed New term

— Div

The backward pass

Y — Div

O i .
Vay_ DIV = VYN—1Div]YN—1 (Zyn-1)

V. Div

The Jacobian will be a diagonal ZN-1
matrix for scalar activations

The backward pass

Wy, Div="V,, Div.l Zy_ 4

The backward pass

V,._,Div =", _Div Wy_4

The backward pass

d
Y — Div
V Div =yy_,V, _Div
V,. . Div="0, DivWy_ Wy 710 = YN=2"2y
Vby_ Div =V, Div

The backward pass

v, Div =V, Div], (z,)

The backward pass

Y — Div

Vw,Div = XV, Div | Insome problems we will also want to compute
. . the derivative w.r.t. the input
Vp, Div = 1 Div P

228

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:
— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass
— Backward recursion step:
V., Div =V, Div], (z)
.., Div =V, Div W
— Gradient computation:
Vkaiv — yk_1\7sziv
Vp, Div =V, Div

229

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:

— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass

— Backward recursion step: Note analogy to forward pass
V., Div ="V, Div], (z)
., Div =V, Div Wy,
— Gradient computation:
Vw, Div = y,_1V,, Div

kaDiU = \7ZkDiU

230

For comparison: The Forward Pass

* Setyp, =X

* Forlayerk=1toN:

— Forward recursion step:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

Neural network training algorithm

* Initialize all weights and biases (W;,b;,W,,b,, ..., Wy, by)
* Do:

— Loss =0

— Forall k, initialize Vyy, Loss = 0, I, Loss = 0

— Forallt = 1:T # Loop through training instances

* Forward pass : Compute
— Output Y (X;)
— Divergence Div(Y,, d;)
— Loss += Div(Y,, d;)
* Backward pass: For all kK compute:
- W, Div ="V, 1 Div Wy 44
- W, Div ="V, Div], (2)
— Vw Div(Yy, dy) = Y1V, Div; W, Div(Y,, d,) =V, Div
— Vw,Loss += Vy, Div(Yy, dy); Vp,Loss += WV, Div(Yy, dy)

— For all k, update:
T
Wk = Wk - g (VWRLOSS) ; bk = bk - g (VWRLOSS)T

* Until Loss has converged

232

Setting up for digit recognition

Training data

(5,0) (2, 1)
(‘:}, O) (:2, 1)

BT IAS

>0

Sigmoid output
neuron

Simple Problem: Recognizing “2” or “not 2”

Single output with sigmoid activation
— Y €(0,1)

— diseither Qor1

Use KL divergence

Backpropagation to learn network parameters 233

Recognizing the digit

Training data

(3,5) (%,2)
(& 2) (A 4)
(6,0) (Z,2)

* More complex problem: Recognizing digit
 Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
e Optional 11th is for none of the above

* Softmax output layer:
— |deal output: One of the outputs goes to 1, the others goto 0

* Backpropagation with KL divergence to learn network .

Story so far

Neural networks must be trained to minimize the average
divergence between the output of the network and the desired
output over a set of training instances, with respect to network
parameters.

Minimization is performed using gradient descent

Gradients (derivatives) of the divergence (for any individual
instance) w.r.t. network parameters can be computed using
backpropagation
— Which requires a “forward” pass of inference followed by a
“backward” pass of gradient computation

The computed gradients can be incorporated into gradient descent

Issues

Convergence: How well does it learn

— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Next up

* Convergence and generalization

