Neural Networks
Learning the network: Part 3

11-785, Fall 2020
Lecture 5

Recap : Training the network

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XTJ dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)
w.r.t W

* This is problem of function minimization

— An instance of optimization

Problem Setup: Things to define

Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
= \/

What are these input-output pairs?

1
Lowdiv(ﬂxii W), d;)

What is the \A\lx\'rc‘xfai:efi(‘r)sand
divergence div()?

parameters W?

What is f()? Typical network

Input))
P Hidden units
units " Output
= =t == units
ﬁ—(" 5 .': .
: > 5-;
“E_-.._-)—lt-\l - “:'\ i
il p W
- N

* Multi-layer perceptron
* Adirected network with a set of inputs and
outputs

* Individual neurons are perceptrons with
differentiable activations

Input, target output, and actual output:

x g Y
1~ R — 5
= :
- ; el 2 output layer
= i %
el et :
A V1
: YL
e B o -~
X S T TN
D p—

 Given a training set of input-output pairs (X;,d;), (X3, d,), ..., X7,d7)
e X,,: Typically a vector of reals

e d,:
— For real valued prediction: a vector of reals
— For classification: A one-hot vector representation of the label
* May be viewed as the ideal output a posteriori probability distribution of classes
e Y, :

— For real valued prediction: a vector of reals
— For classification: A probability distribution over labels

Recap : divergence functions

B d,d,d,d,

L, Div() Div

* For real-valued output vectors, the (scaled) L,
divergence is popular

. 1 2 1 2
Div(y,d) = IV —dlI? =5) (i —d)
L

— The derivative:
VyDiU(Y, d) — [yl - dl’ yz - dz,]

* For classification problems, the KL divergence

For binary classifier

hidden layers

input layer

For binary classifier with scalar output, Y € (0,1), dis 0/1, the Kullback Leibler (KL)
divergence between the probability distribution [V, 1 — Y] and the ideal output
probability [d, 1 — d] is popular
Div(Y,d) = —dlogY — (1 — d)log(1 —Y)
— Minimumwhend =Y

Derivative

1
dmmxd)_<—71fd—
dy

ifd=0

1-Y

KLvs L2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 02 0.4 0.6 0.8 1 1.2
y Yy

L2(Y,d) = (y —d)?> KL(Y,d) = —dlogY — (1 — d)log(1 — Y)

* Both KL and L2 have a minimum when y is the target value of d
e KL rises much more steeply away from d

— Encouraging faster convergence of gradient descent

* The derivative of KL is not equal to 0 at the minimum
— Itis O for L2, though

For binary classifier

hidden layers

input layer

For binary classifier with scalar output, Y € (0,1), dis 0/1, the Kullback Leibler (KL)
divergence between the probability distribution [V, 1 — Y] and the ideal output
probability [d, 1 — d] is popular

Div(Y,d) = —dlogY — (1 — d)log(1 —Y)

— Minimumwhend =Y

Derivative Note: wheny = d the
(derivative is not 0
dDiv(Y,d) —y Yd=
v) 1 Even though div() = 0
ifd=0 - B
1-Y (minimum) when y = d

For multi-class classification

S = d,d,d;d,
x ; ’r&%a v
' O KL Div() Div
= = ¢
&

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)
Actual output will be probability distribution [y,, V5, ... |
The KL divergence between the desired one-hot output and actual output:

Div(Y,d) = z d;logd; — z dilogy; = —logy,
i i

— Note),;d;logd; = 0 for one-hot d = Div(Y,d) = —};d;logy;

Derivative The slope is negative

W.rt. V.
. 1
dDiv(Y,d))—— forthe c — th component
ay, % Indicates increasing y,

0 for remaining component
. will reduce divergence
VyDiv(Y,d) = [0 0..—..0 0] 10

Cc

For multi-class classification

== O g d,d,d;d,

KL Div() Div

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual Ol.,ltput will be probability dis.tribution [V1, Vo, .] The slope is negative
The KL divergence between the desired one-hot output and actual output: w.rt. y
i A Y/

Div(Y,d) = — z d;logy, = —logy,
l. Indicates increasing vy,

will reduce divergence

Derivative
vy, d) 1 Note: wheny = d the
(Y, —— for the ¢ — th component TR
———=1 % ! P derivative is not O
‘ 0 for remaining component
7, Div(Y. d) [0 N 0] Even though div() =0
iv(Y,d) = e ..
! c (minimum) when y = d

KL divergence vs cross entropy

KL divergence between d and y:

KL(Y,d) = Z d;logd; — z d; logy;
i i

Cross-entropy between d and y:

Xent(Y,d) = —2 d; log y;
i

The W that minimizes cross-entropy will minimize the KL
divergence

— In fact, for one-hot d, };; d; logd; = 0 (and KL = Xent)
We will generally minimize to the cross-entropy loss rather than the
KL divergence

— The Xent is not a divergence, and although it attains its minimum
when y = d, its minimum value is not 0

“Label smoothing”

I S — d,d,d,d,
: AN
: O KL Div() Div

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €
“Label smoothing” -- aids gradient descent

The KL divergence remains:

Div(Y,d) = 2 d;logd; — 2 d;logy;
i i

Derivative
([1—(K—1)e
dDiv(Y,d) -) for the c — th component
—av,) e
l —— for remaining components
L Vi 13

“Label smoothing”

d,d,d;d,

KL Div()

Div

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €
“Label smoothing” -- aids gradient descent

The KL divergence remains:
Div(Y,d) = 2 d;logd; — 2 d; log y;
i i

Derivative

(11— (K—1)e

dDiv(Y,d) _ v,
in € . .
- — f or remaining components

L Yi

the ¢ — th component

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, ho?)

14

Problem Setup: Things to define

* Given a training set of input-output pairs
(Xl' dl)J (Xz, dZ)J L (XT' dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)

ALL TERMS HAVE BEEN DEFINED

15

Story so far

Neural nets are universal approximators

Neural networks are trained to approximate functions by adjusting their
parameters to minimize the average divergence between their actual output and
the desired output at a set of “training instances”

— Input-output samples from the function to be learned

— The average divergence is the “Loss” to be minimized

To train them, several terms must be defined

— The network itself
— The manner in which inputs are represented as numbers
— The manner in which outputs are represented as numbers

* As numeric vectors for real predictions
* As one-hot vectors for classification functions

— The divergence function that computes the error between actual and desired outputs
* L2 divergence for real-valued predictions
* KL divergence for classifiers

Problem Setup

* Given a training set of input-output pairs
(XlI dl)J (Xz, dZ)I L (XT' dT)

* The divergence on the i*" instance is div (Y}, d;)
* The loss

1
Loss = Tz div(Y;, d;)
i

e Minimize Loss w.rt W

17

Recap: Gradient Descent Algorithm

e |nitialize:
— WO
—k=0

To minimize any function L(W) w.r.t W

* do

_ Wk+1 — Wk _ T]kVL(Wk) T
~-k=k+1

» while [L(W*) — L(W*1)| > ¢

Recap: Gradient Descent Algorithm

In order to minimize L(W) w.r.t. W
Initialize:

— WO

k=0

do

— For every component i

k oL
— 1 Bw,
l

. Wik+1 — Wik Explicitly stating it by component

~k=k+1
while |[L(W*) — L(W*™1)| > ¢

19

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight

ij }

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {W

. (k) _ (k) _ dLoss
Wij = Wi T, ®
L]

e Until Loss has converged

20

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight
* [nitialize all weights {Wl-j }

* Do:
— For every layer k for all i, j, update:

. (k) _ (k) . dLoss
Wij =W TG, ®
L]

e Until Err has converged

21

The derivative

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

 Computing the derivative

Total derivative:

dLoss z dDiv(Y, d;)
T

(k) (k)
J

22

Training by gradient descent

* Initialize all weights {Wi(jk)}
* Do:

.. dLo
— Forall i, j, k, |n|t|aI|ze (k) =0
]

— Forallt = 1:T
* For every layer k for all i, j:

adDiv(Yd
— Compute (t t)
w®
Wi j
dLos lev(Yt dy)
w® w®

U l]

— For every Iayer k forall i, j:

W(k) _ W(k) n dLoss
i,j i,j TdW(k)

e Until Err has converged

23

The derivative

Total training Loss:

1
Loss = ?z Div(Y, d;)
t

Total derivative:
dLoss 1~ dDiv(Y: d;)

k)
dWi’ j T n

* So we must first figure out how to compute the
derivative of divergences of individual training
iInputs

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y=f(x)
with derivative
ay
the following must hold for sufficiently small ax =) A Y\
e followi old for icie all Ax ~ — Ax
g9 Y y dx
For any differentiable function
h y =l];(x1,x2, ...,XM)
with partial derivatives Both by the
9y 9y Oy definition

0x, 0x,” " Oxy

the following must hold for sufficiently small Ax;, Ax,, ..., Axy = VufAx

dy dy dy
Ay =~ ——Ax; + ——Axy + -+ ——A
V= 0x4 dx, 0x M

25

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

dy df dg(x)

dx dg(x) dx
: dy
Check - we can confirm that: Ay = d—Ax
X
z=gx) =) Az = 49 (x) Ax
dx
_ _df o df dg(x)
y=f@) = Ay = dz Az = dg(x) dx

oy

26

Calculus Refresher: Distributed Chain

rule
y = f(91(0), g1 (%), ., gu ()
dy __0f dgi(@) _Of dga® . 0f dgu(o)
dx 0d0g;(x) dx dg,(x) dx dgy(x) dx
. dy
Check: Ayngx LEtZi=gi(X)
af of af
Ay = —A —A o ——A
Y 074 Zl+az2 72T +82M M
_0fdz o 0fdz, L Of dzy
Ay = 0z, dx Ax+az2 dx Ax + +azM dx Ax

_ (3 dgi(®) _ Of dg(® ., 9f dgu®\ . |V
Ay _(aglm i o ok Bl ok)Ax

Calculus Refresher: Distributed Chain

rule
y = f(91(x), g1(x), ..., g (X))
dy __0f dgi(), 0f dg() . dgu(®)
dx 0d0g;(x) dx dg,(x) dx dgy(x) dx
dy
Check: Ay = -2
y dxAx
af af af
Ay = Ag.(x) + Ag,(x) + -+ A X
y agl(x) gl() agz(x) gZ() agM(x) gM()
_ _Of dgi(x) af dgx(x) of dgm(x)
A =50 ax M tagmm e T T agmm ax OF

_ (3 dgi(®) _ Of dg(® ., 9f dgu®\ . |V
Ay _(aglm i o ok Bl ok)Ax

Distributed Chain Rule: Influence
Diagram

y = f(9100), g1(x), ---,gM
Ny

* x affects y through each of g; ... gy

29

Distributed Chain Rule: Influence
Diagram

* Small perturbations in x cause small
perturbations in each of g4 ... g5, each of
which individually additively perturbs vy

30

Returning to our problem

dDiv(Y,d)

(k)
dwi’ i

* How to compute

31

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
X
1

D—fO)—>

1 1

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs

* Explicitly separating the weighted sum of inputs from the
activation

33

e Showing a tiny 2-input network for illustration
— Actual network would have many more neurons and inputs

* Expanded with all weights shown

e Lets label the other variables too...

34

Computing the derivative for a single

input
oD D
X Zl (1) Zl (1)
' D , - BL + Y2
1.2 [} @ w®

35

Computing the derivative for a single

input
. dDiv(Y,d)
ey e WhatIs: = e ®
v (1) " 2) -
Xl “1 (yl(l) “1 y(l)
D AL 1' t ’
1.2 [} @ w®

36

Computing the gradient

Wiy w
X1
Wl(,lz) 3
/ ’ :
 (oiv)]
X e
X2 Y \ Y ' X
o
W?E,ll) (1) 2
3,2
1
. : . dDiv(Y,d)
* Note: computation of the derivative (r.d) requires

(k)
dwi,j

intermediate and final output values of the network in
response to the input .

‘ Y

N
L~
)

%{? (%) ‘léw
.09
))~

|
W

?

X »
JON (A
S/,

i
N
)

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides

‘ Y

/
NV W X
Y

N (M i
OO
@@y

i
N
)

)

Setting yi(o = x; for notational convenience

Assuming wéf) = bj(k) and yék) = 1 -- assuming the bias is a weight and extending

the output of every layer by a constant 1, to account for the biases

L

/ *
A~ i

a2 aCav
N

i
OrZaON 2

@

(1) _ (1), (0)
Zy = Zwil Yi

y(O) = X

/ 2\t 1 (2) 2 3

A A
AR 0 A 0o AN
W OOy
AN () AN (%) A‘%

bid
I i 1
I e //

% The “forward pass”

Y

o<
N~ A~ A
- P -

(1) _ (1), (0)
Z; —Zwij Y;
i

y(o) = X %

NI SN gy S
N /A

M~ O~ X

i
v/;;sz Oavr
N S @ N
A5

]

‘M
/‘/»‘/A

Y = x Forward Computation

/ Z(l) y(l) 2(2) 6 y(3) Z(N_l) y(N-l)

v z(3)

—(,
YT
ﬁ\ollfAeAﬁ\l@A@Aﬁ%‘ vl

PN PN PN /el 5.
rOr-egre- -6~
WO g

ITERATE FOR k= 1IN g, j = 1:layer-width

0 (k) _ (k). (k=1)
yi() _ X; z; = ZWU- y;
i

()]

Forward “Pass”

Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj = 1..D;, | D,is the size of the kth layer

o () _ yDPk-1 (K) (k-1)
2z = Xizo Wi ¥,

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

49

Computing derivatives

y(N-Z)

y(1)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives 50

Computing derivatives

Div(Y,d)

First, we compute the divergence between the output of the net y = y) and the
desired output d

Computing derivatives
yN-2) —

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

We then compute V7, v)div(.) the derivative of the divergence w.r.t. the pre-activation affine

combination zN) using the chain rule .

Computing derivatives

y(N-Z)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Computing derivatives

y(N-2) l

y(1)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute V, w-1)div(.) the derivative of the

divergence w.r.t. the output of the N-1th layer -

Computing derivatives

y(N-2) i
N-1

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

Backward Gradient Computation

* Lets actually see the math..

63

Computing derivatives

Div(Y,d)

Computing derivatives

yN-2) —
y(1)

Div(Y,d)

The derivative w.r.t the actual output of the

final layer of the network is simply the derivative | dDiv(Y,d) dDiv(Y,d)
w.r.t to the output of the network (N) —

ay; - 0y

65

Computing derivatives

Div(Y,d)

oD ay") D
N) N N
azf) azf >ay1()

Computing derivatives

Div(Y,d)

Already computed

dDiv 6y1(N)é)iv
(N) o (M5 (V)
0z, 0z, \le

Computing derivatives

Div(Y,d)

fi(4")

Derivative of

’(\N) activation function
dDiv éyl \giv

Computing derivatives

Computed in forward

asz) jyl(N) pass
~—

- ,
Derivative of
’(\N) activation function
dDiv éyl \gw
69

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

obiv 9z aDiv

ﬁwl(llv) - ﬁwl(llv) asz)

Computing derivatives

Div(Y,d)

oDiv _ 9z"(aDiv
ﬁwl(llv) - awl(llv azl(N) Just computed

Computing derivatives

Div(Y,d)

Because

dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(V) V) {,, (V)
dw,,” \ dw , Pz,

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)
—
Because
dDiv 5Z§N) Div yl(N_l) sz) = Wl(llv)yl(N_l) + other terms
(N) N) j_ (V)
ow, ow, .’ Pz,

Computed in forward pass 75

Computing derivatives

Div(Y,d)

Computing derivatives

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)

N
dDiv z 5Z]§N)ﬁ)iv >\’
1 _ Alread ted
(N 1) . (N 1 aZ(N) reagy compu

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)
—>
‘
aDi @(1{\ Because
iv : iv) _
N-1) — z (5\!—1) o) Wy Z]-(N) = Wl(}v)yl(N D 4 other terms
ayl j yl aZ]

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

-

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) yN
fy _
fn-2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fy
d
fn—2 fn-1

We continue our way backwards in the order shown

aDlv . ’ ((N—l)) aDlU
-1y ~ JN-1] —
azi(N 1) i ayi(zv 1)

83

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) y(N)
fy -
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1
We continue our way backwards in the order shown
dDiv _ ., (N-2) dDiv For the bias term yéN_z) =1

84

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 fr-1
z(N) yN
Uiy _
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn-2 fn-1

We continue our way backwards in the order shown

aDlU (N—l) aDlU
= E W S —

(N=-2) Lj (N-1)
ay; > 0z

85

l y(N-2)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
frn—2 fr-1

We continue our way backwards in the order shown

aDlv . ’ ((N—Z)) aDlv
-2y~ JN-2] —
azi(N 2) i ayi(zv 2)

86

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 frn-1
z(N) yN
Uiy _
fn—2 frn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1

We continue our way backwards in the order shown

dDiv Z (2) dDiv
- = w -
J

d yl(l) Y azj@

87

y(N-Z)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
frn—2 fr-1

We continue our way backwards in the order shown

aDlU e (Z(l)) aDlU
(1 /1
azi

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 frn-1
2(N) yiN
i
fn—2 frn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fi
d
fn—2 fn-1

dDiv (0) dDiv

| =Y,
We continue our way backwards in the order shown aWi(jl) l azj(l)

Gradients: Backward Computation

S(k-1) ylk1) 7k

(O \Y/ (O
‘Aﬁx&f/"
TN
O -C

(O

av

(k) 2(N-1) y(N-l)

Z(N)

y(N)

(= BN 000

e)

%

Initialize: Gradient

w.r.t network output

dDiv

N —
8y

aDiv (Y, d)
dy;

dDiv _ k’(Z(N)) dDiv
82 3y

l

Fork = N—1..0

Fori = 1:layer width

aDlU _ (k+1)
® — £, Vi
Gyl. >

dDiv

Backward Pass

Output layer (N) :

— Fori=1..Dy
0Div __ dDiv(Y,d)
ayi(N) dy;

0Div oDiv ., ((N))
° = Z.
aZi(zv) ayi(N) fn i

For layerk = N — 1 downto 1
— Fori=1..Dy

dDiv —y (k+1) dDiv

= =
ayl.()

dDiv oDiv ., ((k))
° = yA
0z ay® fi\#

j Wij PECEY
j

obiv (k) O0Div
ow(D — Vi 5,0

forj =1..Dy

dDiv (0) ODiv .
_ — . fori=1..D
GW](.il) y] az.(l) J 0

l

91

Backward Pass

* Output layer (N) : Called "Backpropagation” because
the derivative of the loss is

— Fori=1..Dy v ,
propagated "backwards” through
6yl.(N) B dy;

, 9Div _ aDwf ((N))
020 — 2y N

* Forlayerk = N — ldownto 1l Very analogous to the forward pass:

— Fori=1..Dy
Backward weighted combination
. 00w _ ¥ ow Y S 00w, — of next layer

ay® ~ IR

_ opiv _ 9D ((k)) L Backward equivalent of activation

azi(k) (k) fk

dDiv (k) ODiv .
s —— =y’ ———— forj=1..D
aW](.;c+1) Y aZi(k+1) J) k

oDiv (0) dDiv .
— = . forj =1..D
aW](_in Y azi(l)] 0
92

OPW¥A) ot (overdot represents derivative of Div w.r.t variable)

Using notation y =

ay
e Output layer (N) : Called "Backpropagation” because
—Fori=1..D the derivative of the loss is
N propagated "backwards” through
. »(N) _ 9D the network
‘ dy;

2 = 5O f ()

 Forlayerk = N — 1 downto 1 Very analogous to the forward pass:

~ For l(k:) 1 "'Dk(k+1) PP Backward weighted combination
-y =% w; } of next layer
Zi(k) _ yl_(k) f (Zl_(k))< Backward equivalent of activation
. % y](k) (k+1)for] =1..D
dDiv

0
PO (1)_3’() ()forj—l .Dy

]l

For comparison: the forward pass

again

Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 :
—yj()=xj, j=1..D;

(k=1...N)

Yo

=XO=1

Forlayerk =1..N
— Forj=1..D;

o B _ yNe (K (k=1)
27 = Yito Wy Y

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

94

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Will not discuss all of these in class, but explained in slides

— Will appear in quiz. Please read the slides .

Special Case 1. Vector activations

ylk1) 7k

y(k) yl1) z(k) y(k)
—

* Vector activations: all outputs are functions of
all inputs

96

Special Case 1. Vector activations

(k-1)

(k-1)

_x(k)
¥
=0
¥
Scalar activation: Modifying a z; Vector activation: Modifying a
only changes corresponding y; z; potentially changes all, y; ... yy
e)
(k) (k) yl(| /Zl(| \
- : k k
Vi f(zl) YZ():f zé)

.k :k
Yol o]/

“Influence” diagram

Scalar activation: Each z;
influences one v;

y(k)

Vector activation: Each z;
influences all, y; ... vy

98

The number of outputs

y(
oS *

y (k)

* Note: The number of outputs (y*)) need not be the

same as the number of inputs (z%)
 May be more or fewer

99

Scalar Activation: Derivative rule

aDiv _ dDiv dy,"”
k) k k
0z 9y dz

* In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

100

Derivatives of vector activation

yikD) 2 Yk
)) (k)
j oDiv Z dDiv 0Y;
N 0z0 L ay.(k) 0z
Div l J 7 l
-
Note: derivatives of scalar activations
are just a special case of vector
activations:
] _ . .
- = 0 fori #j

 For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

— Regardless of the number of outputs yj(k) o

Example Vector Activation: Softmax

(k)
Yl 7k Y RO exp (Zi)
—o Lo (k)
5 ()
P

102

Example Vector Activation: Softmax

Y1) 70

y (k)

Div

k) _ exp (Zi(k))

yl k
5 0m (")
dDiv Z aDiv 0y}
(k) (k) 5, (k)
0z, > ayj 0z,

103

Example Vector Activation: Softmax

Y1) 70

y (k)

k) _ exp (Zi(k))

yl k
5 0m (")
dDiv Z aDiv 0y}
(k) (k) 5, (k)
0z, ayj 0z,

J

k). (K) e+, -
—yl-()yj() if i #j

k k KD\ ip:_ .
ayj()_{yi()(l—yi()) ifi =j

(k)
azi

104

Example Vector Activation: Softmax

(k)
Yl 7k Y RO exp (Zi)
—o Lo (k)
50 (")
k
dDiv ~C dDiv 8y}
- 5,0 Z 5y 5,00
k k Y o
—0 ayj()_ yi()(l—yi()) ifi =j
070 Oy tiz]
B : :
dDiv _ z dDiv y(k) (6-- B y(k))
. l .
aZi(k) - ayj(k) L J J

 For future reference

* 0, isthe Kroneckerdelta: 0; =1 ifi =j, 0if i #j,,

Backward Pass for softmax output

layer d
y(N)
e OQOutput layer (N) : z(N)
— Fori=1..Dy
dDiv _ dDiv(Y,d) Div
oy Ay
dDiv dDiv(Y,d) (N) (N)
22 = =25 m Vi (6 — Y)
J
* Forlayerk = N —1downto 1
— Fori=1..D;
., 9Div _Z (k+1) O0Div
ay(k) 9] aZ](.k+1)
0Div (k) dDiv
Py (k) fk()ay_(k)
obiv. (k) O0Div

® =Y. — fOf':lD
aw](.i.‘“) Y aZi(k+1)] k

oDiv (0) ODiv .
a = . forj=1..D
aW](.fil) Y 5,] 0

i

106

Special cases

 Examples of vector activations and other
special cases on slides

— Please look up
— Will appear in quiz!

Vector Activations

YD) 2 Yk
—> k - (k
N e
() (0
LS y2 — f 2
9
(i) \ (i) /
5 Ym Zp
+
* |In reality the vector combinations can be anything

— E.g. linear combinations, polynomials, logistic (softmax),
etc.

108

Special Case 2: Multiplicative
networks

S(k-1) C ytked

W (k)

k k-1 k-1
Forward: 01-() =J{§-)Yz()

* Some types of networks have multiplicative combination

— |In contrast to the additive combination we have seen so far

 Seen in networks such as LSTMs, GRUs, attention models,
etc.

109

Backpropagation: Multiplicative
Networks

S(k-1) ytked
O T~ Forward:

wh *°*° (k) (k=D)L (k-1

_y] yl

dDi dDi
Backward: v z w970

aoi(k) - Lj aZ.(k+1)

oDiv Oo (k) oDiv ;) ODiv oDiv -1y ODIv

ay(k n ay(k D 3, (k) =V % i(k) - Y % i(k)

 Some types of networks have multiplicative
combination

Multiplicative combination as a case
of vector activations

Yy

.—h.
0
0

e
e
0

e
*e
0

YK
K k-1
|, Zi() =3’i()
(k) _ (k) _(k)
i = Z2i-1%2i

A layer of multiplicative combination is a special case of vector activation

111

Multiplicative combination: Can be
viewed as a case of vector activations

y

TS

y(k)

< -
.

=) Y, Div

2
5
- -
Fiheen e
3
g o

=3

(k). (k=1)
Wit Yj

(k)

16"

dy;

az.(k) o a]l

(k)

J

)

(ZJ'(R)) !

al—1

(k)

[Je

l#]

dDiv B

)

(k)
0z !

l

dDiv 6yi(k)

0y 0,0

* A layer of multiplicative combination is a special case of vector activatioll?2

Gradient5° Backward Computation

(k1) 7 y(kl) Z(k) E y(N-l)

‘ \\V// :: (N)E y(N)
‘Amr/A‘ ‘A"/ Div(Y,d)

W LN i ¢ Ve
OO O ®
E);

20

‘M‘ o

For k=N...1 If layer has vector activation Else if activation is scalar

; . , , k . : k
For i = 1:layer width | 9Div z dDiv 5371() | ODiv _ dDiv ay})
0z Liay™ a0z | |0z ay Y 9z

dDiv (k) ODiv
Z Wi; "m0
(k 1 az

Special Case : Non-differentiable

f(2)=0

activations
Z, o=
fQOF»y
y = RELU(Z) z, o
Z3 o—
Z, &

Yy = max z;

e Activation functions are sometimes not actually differentiable
— E.g. The RELU (Rectified Linear Unit)

* And its variants: leaky RELU, randomized leaky RELU

— E.g. The “max” function

* Must use “subgradients” where available

— Or “secants”

114

The subgradient

A
7

A subgradient of a function f (x) at a point x, is any vector v such that
(f () = f(x0)) = v" (x — xo)
— Any direction such that moving in that direction increases the function
Guaranteed to exist only for convex functions

— “bowl” shaped functions
— For non-convex functions, the equivalent concept is a “quasi-secant”

The subgradient is a direction in which the function is guaranteed to increase

If the function is differentiable at x, the subgradient is the gradient

— The gradient is not always the subgradient though
115

Subgradients and the RELU

fl(z) =1
f(z)=z
fl(z)=0 Z
, 10, z <0
re={y 15

 Can use any subgradient

— At the differentiable points on the curve, this is the
same as the gradient

— Typically, will use the equation given

116

Subgradients and the Max

Y = maxz;
]
Z, 0~
=Y (:
o 0y 1, [= argmax z;
— =< J
0z kO, otherwise
ZNQ—

* Vector equivalent of subgradient

— 1 w.r.t. the largest incoming input
* Incremental changes in this input will change the output

— O for the rest

* Incremental changes to these inputs will not change the output -

Subgradients and the Max

Z
. Y1 y; = argmax z;
- Y, lEcg]
3
(:
: : . 1, [= argmax z;
: "><h> : 9y _ €S
0z :
/1 Y { \O, otherwise

* Multiple outputs, each selecting the max of a different subset of
inputs
— Will be seen in convolutional networks
* Gradient for any output:

— 1 for the specific component that is maximum in corresponding input
subset

— 0 otherwise g

Backward Pass: Recap

e Output layer (N) :

— Fori=1..Dy
dDiv _ dDiv(Y,d)
ayi(N) dyi
. () iy 9y
oD dDiv Jy; oDiv 9, ivati
Lt _ 9bw 9y R Y, Z—~—L_ (vector activation)

Tay™ oz

9z ay™ 9z

* Forlayerk =N —1downto 1
— Fori=1..Dy :
These may be subgradients

., 9Div _y (et _9Diw
ayi(k) — j Lj aZ](.k+1)

k
dDiv 6y](-)
J ay]§") PG

i

(f)

oDi oDiv 0y; ivati
iv iv 0y; OR Y (vector activation)

02 ~ 2y 970

d0Div (k) ODiv .
=y ' —= forj=1..D
aW](.;c+1) Y aZi(k+1) J k

oDiv (0) dDiv .
— = V. fori=1..D
ow® 7T 5, J 0
Jt l 119

Overall Approach

For each data instance

— Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation.

— Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

Actual loss is the sum of the divergence over all training instances

Loss = z Div(Y (X), d(X))

Actual gradient is the sum or average of the derivatives computed
for each training instance

7y Loss = ZVWDW(X) A(X)) W « W — T, Loss™

[{X3

Training by BackProp

* Initialize weights W for all layersk = 1..K
 Do: (Gradient descent iterations)

. 1. dLoss
— Initialize Loss = 0; Forall i, J, k, initialize —7 = 0
dw: .
LJ
— Forallt = 1:T (Iterate over training instances)
* Forward pass: Compute
— Output Y,
— Loss += Div(Y,, d;)
* Backward pass: For all i, j, k:
dDiv(Yydy)

(k)
dwi' j

— Compute

dLoss dDiv(Y¢,de)
— Compute +=
P G T

ij ij

— Forall i, J, k, update:

k) _ W(k) 3 QdLoss
ij — Vij (k)
T dWi,j

w

* Until Loss has converged 1

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector
operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector
terms
— This is what is actually used in any real system

Vector formulation

. - (k)T - (k)
y y(1) X1 Zi) 3’1()
1 < = |*? () (k)
‘ Zp = |2 yi = | 2
(1) XD :
- (k) (k)
Xz _ZDk i _ka i
(k) (k) : (k) 1, (k)7
Wii Wy - Wp,_ 1 by
(k) k) . (k) (k)
w, =%z W2z ¢ Wp ;2 b, = b2.
oW (k)
(1) \Wip, Wap, 7 Wp,_. D Dp

 Arrange all inputs to the network in a vector x

* Arrange the inputs to neurons of the kth layer as a vector z;,

* Arrange the outputs of neurons in the kth layer as a vector yj
* Arrange the weights to any layer as a matrix W,

— Similarly with biases

Vector formulation

(1

X1

(1)
Wpbp

 The computation of a single layer is easily expressed in matrix

notation as (setting yo = X):

Zy = Wiyg—1 1 by

-Zik)
(k)
z), = |2
")
_ZDk J
(k) : (k)
W21 - Wp,_ 1
k) . (k)
Ws2 - Wp, 2
© W
Wob, " Wp,_.DpJ

Vi = fr(Zi)

Yk

e
()

(O

| "Dk+14

The forward pass: Evaluating the
network

The forward pass

The forward pass

y1 = f1(zy)
The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
y1 = f1i(Wix+by)

The forward pass

The Complete computation
V2 = f2(W2f1(Wix + b;) + by)

The forward pass

The Complete computation
zy = Wyfy-1(2L(W2 fi(Wix +by) +by) ...) + by 130

The forward pass

The Complete computation
Y = fiy(Wyfy-1(.. 2(Wo f1(Wix + by) +by)...) + by) 131

Forward pass

Forward pass:
Initialize

Fork =1to N:

Output

Yo =X

— Div

Z, = Wiyi—1 + by

Vi = fr(Zy)

Y=y

132

The Forward Pass

* Setyp, =X

* Recursion through layers:

— For layer k =1 to N:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

The backward pass

e The network is a nested function

Y = fy(Wy fy—1(Co fo(Wo fi(Wix + by) +by) ..) + by)
* The divergence for any X is also a nested function

Div(Y,d) = Div(fy(Wyfy-1(... (W f;(Wyx+by) +b;)...) +by),d)

Calculus recap 2: The Jacobian

* The derivative of a vector function w.r.t. vector input is called
a Jacobian

* |tis the matrix of partial derivatives given below

L o Oy Oy Oy
Y2 =f 2 dz; 0z, 9z

dy, 0dy, %
il A, W@ =2z, 3z, " 9z
Using vector notation
y = f(@) Iy OYu - m

| dzy 02z, d0zp

Check: | Ay = J,(z)Az

135

Jacobians can describe the derivatives
of neural activations w.r.t their input

dy;
— 0 0
dz,
dy,
]y(z) — O d_Zz cooe O
| dyp
0 0 @-

* For Scalar activations
— Number of outputs is identical to the number of inputs
e Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs
— Not showing the superscript “(k)” in equations for brevity 136

Jacobians can describe the derivatives
of neural activations w.r.t their input

vi = f(z;)
f'(z1) 0 0
pa=| 0 S0
0 0 f,(ZM)_

* For scalar activations (shorthand notation):
— Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs

137

For Vector activations

o
| 283
2, e,
‘.,
. .la
.

. RS
. o~
s o m
s e ay
- x n
I‘ 4y
20
- .

* 8 ':

* u as
P sad
sy v 8
s e
0. e
. apy s
. agte "
(X *0 E
:‘ 3
ae N %0
a s Ele
- v
s 0
‘ue "o
* ne W
L] "-
o
* ag®
& e
153 .
* gu
» g
.:0‘ e
-
Te %S
J -
» s
il !q
e *
ar .
~ .*
2

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

[0y,

0z,
Y2
0z,

5%y

9y,
0z,
9y,
0z,

5%y

| 0z,

0z,

dy; -

0z

dy;
0z

%Y

dzp

138

Special case: Affine functions

Z=Wy+b

4

]Z(Y) =W

* Matrix W and bias b operating on vector y to
produce vector z

* The Jacobian of z w.r.t y is simply the matrix W

139

Vector derivatives: Chain rule

e We can define a chain rule for Jacobians
* For vector functions of vector inputs:

y = f(z(x))

) /,x) =/ (@),

Check

Ay = Jy(z)Az

Az = J,(x)Ax

Ay =]y(z)]z(X)AX —]y(X)AX

Note the order: The derivative of the outer function comes first 140

Vector

derivatives: Chain rule

e The chain rule can combine Jacobians and Gradients

* For scalar functions of vector inputs (g () is vector):

D = f(z(x))

m) 7D =V,(D),(x)

Check | AD = 7,(D)Az

Az =],(x)Ax

AD =V,(D)J,(x)Ax = V, DAx

Note the order: The derivative of the outer function comes: first

Special Case

e Scalar functions of Affine functions

Derivatives w.r.t
parameters

D = f(Wy + b) 7,D = ,(D)W
z=Wy+b "D = l(D)
VwD = yV,(D)
D = f(z) 1

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

142

The backward pass

\ 4

v

— Div

In the following slides we will also be using the notation VY to represent
the Jacobian Jy(z) to explicitly illustrate the chain rule

In general V,b represents a derivative of b w.r.t. a

The backward pass

— Div

First compute the derivative of the divergence w.r.t.Y.
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative

144

The backward pass

v, Div = VyDiv.V, Y

Already computed New term

The backward pass

V,yDiv = VyDiv Jy(zy)

Already computed New fterm

The backward pass

Wy Div =V, Div.Vy Zy

Already computed New term

The backward pass

Vyy_,Div =V, Div Wy Vyn_ Div

Already computed New fterm

The backward pass

Y — Div

V,._,Div =V, Div Wy

Vw,Div = yy_1V;, Div
VbNDiU = |7ZNDiU

The backward pass

VZN_lDiU = VYN—lDiv' VZN_1YN—1

Already computed New term

— Div

The backward pass

Y — Div

O i .
Vay_ DIV = VYN—1Div]YN—1 (Zyn-1)

V. Div

The Jacobian will be a diagonal ZN-1
matrix for scalar activations

The backward pass

Wy, Div="V,, Div.l Zy_ 4

The backward pass

V,._,Div =", _Div Wy_4

The backward pass

d
Y — Div
V Div =yy_,V, _Div
V,. . Div="0, DivWy_ Wy 710 = YN=2"2y
Vby_ Div =V, Div

The backward pass

v, Div =V, Div], (z,)

The backward pass

Y — Div

Vw,Div = XV, Div | Insome problems we will also want to compute
. . the derivative w.r.t. the input
Vp, Div = 1 Div P

156

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:
— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass
— Backward recursion step:
V., Div =V, Div], (z)
.., Div =V, Div W
— Gradient computation:
Vkaiv — yk_1\7sziv
Vp, Div =V, Div

157

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute I, Div = VyDiv

* For layer k = N downto 1:

— Compute Jy, (z;)
* Will require intermediate values computed in the forward pass

— Backward recursion step: Note analogy to forward pass
V., Div ="V, Div], (z)
., Div =V, Div Wy,
— Gradient computation:
Vw, Div = y,_1V,, Div

kaDiU = \7ZkDiU

158

For comparison: The Forward Pass

* Setyp, =X

* Forlayerk=1toN:

— Forward recursion step:
Z = Wiyr—1 + by
Vi = fr(zk)
* Qutput:
Y=yy

Neural network training algorithm

* Initialize all weights and biases (W;,b;,W,,b,, ..., Wy, by)
* Do:

— Loss =0

— Forall k, initialize Vyy, Loss = 0, I, Loss = 0

— Forallt = 1:T # Loop through training instances

* Forward pass : Compute
— Output Y (X;)
— Divergence Div(Y,, d;)
— Loss += Div(Y,, d;)
* Backward pass: For all kK compute:
- W, Div ="V, 1 Div Wy 44
- W, Div ="V, Div], (2)
— Vw Div(Yy, dy) = Y1V, Div; W, Div(Y,, d,) =V, Div
— Vw,Loss += Vy, Div(Yy, dy); Vp,Loss += WV, Div(Yy, dy)

— For all k, update:
T
Wk = Wk - g (VWRLOSS) ; bk = bk - g (VWRLOSS)T

* Until Loss has converged

160

Setting up for digit recognition

Training data

(5,0) (2, 1)
(‘:}, O) (:2, 1)

BT IAS

>0

Sigmoid output
neuron

Simple Problem: Recognizing “2” or “not 2”

Single output with sigmoid activation
— Y €(0,1)

— diseither Qor1

Use KL divergence

Backpropagation to learn network parameters 161

Recognizing the digit

Training data

(3,5) (%,2)
(& 2) (A 4)
(6,0) (Z,2)

* More complex problem: Recognizing digit
 Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
e Optional 11th is for none of the above

* Softmax output layer:
— |deal output: One of the outputs goes to 1, the others goto 0

* Backpropagation with KL divergence to learn network o

Story so far

Neural networks must be trained to minimize the average
divergence between the output of the network and the desired
output over a set of training instances, with respect to network
parameters.

Minimization is performed using gradient descent

Gradients (derivatives) of the divergence (for any individual
instance) w.r.t. network parameters can be computed using
backpropagation
— Which requires a “forward” pass of inference followed by a
“backward” pass of gradient computation

The computed gradients can be incorporated into gradient descent

Issues

Convergence: How well does it learn

— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Next up

* Convergence and generalization

