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Story so far

• Neural networks for computation

• All feedforward structures

• But what about..

2



Consider this loopy network

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

The output of a neuron
affects the input to the
neuron
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• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖

Consider this loopy network
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Hopfield Net

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖
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Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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𝑦𝑖 → −𝑦𝑖

if 𝑦𝑖 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 < 0



Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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𝑦𝑖 → −𝑦𝑖

if 𝑦𝑖 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 < 0

A neuron “flips” if weighted sum of other 
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!



Example

• Red edges are +1,  blue edges are -1

• Yellow nodes are -1, black nodes are +1
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Example
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• Red edges are +1,  blue edges are -1

• Yellow nodes are -1, black nodes are +1



Example
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• Red edges are +1,  blue edges are -1

• Yellow nodes are -1, black nodes are +1



Example
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• Red edges are +1,  blue edges are -1

• Yellow nodes are -1, black nodes are +1



Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

» And so on…
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20 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

A neuron “flips” if 
weighted sum of other 
neuron’s outputs is of 
the opposite sign

But this may cause
other neurons to flip!

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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120 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”
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Loopy network

• If the sign of the field at any neuron opposes 
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to 

flip…

• Will this behavior continue for ever??
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Loopy network

• Let 𝑦𝑖
− be the output of the i-th neuron just before it responds to the 

current field

• Let 𝑦𝑖
+ be the output of the i-th neuron just after it responds to the current 

field

• If 𝑦𝑖
− = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 ,  then 𝑦𝑖

+ = 𝑦𝑖
−

– If the sign of the field matches its own sign, it does not flip

𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 0

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

17



Loopy network

• If 𝑦𝑖
− ≠ 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 ,  then 𝑦𝑖

+ = −𝑦𝑖
−

𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 2𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase 

𝑦𝑖 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Globally

• Consider the following sum across all nodes

𝐷 𝑦1, 𝑦2, … , 𝑦𝑁 =෍

𝑖

𝑦𝑖 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

= ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 +෍

𝑖

𝑏𝑖𝑦𝑖

– Assume 𝑤𝑖𝑖 = 0

• For any unit 𝑘 that “flips” because of the local field

∆𝐷 𝑦𝑘 = 𝐷 𝑦1, … , 𝑦𝑘
+, … , 𝑦𝑁 − 𝐷 𝑦1, … , 𝑦𝑘

−, … , 𝑦𝑁
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Upon flipping a single unit

∆𝐷 𝑦𝑘 = 𝐷 𝑦1, … , 𝑦𝑘
+, … , 𝑦𝑁 − 𝐷 𝑦1, … , 𝑦𝑘

−, … , 𝑦𝑁

• Expanding

∆𝐷 𝑦𝑘 = 𝑦𝑘
+ − 𝑦𝑘

− ෍

𝑗≠𝑘

𝑤𝑗𝑘𝑦𝑗 + 𝑏𝑘

– All other terms that do not include 𝑦𝑘 cancel out

• This is always positive!

• Every flip of a unit results in an increase in 𝐷
20



Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of 

𝐷 = ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 +෍

𝑖

𝑏𝑖𝑦𝑖

• 𝐷 is bounded

𝐷𝑚𝑎𝑥 = ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗 +෍

𝑖

𝑏𝑖

• The minimum increment of 𝐷 in a flip is

∆𝐷𝑚𝑖𝑛= min
𝑖, {𝑦𝑖, 𝑖=1..𝑁}

2 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• Any sequence of flips must converge in a finite number of steps 21



The Energy of a Hopfield Net

• Define the Energy of the network as

𝐸 = − ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −෍

𝑖

𝑏𝑖𝑦𝑖

– Just the negative of 𝐷

• The evolution of a Hopfield network 

constantly decreases its energy
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Story so far

• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the 
weighted combination of outputs of other neurons

– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to 
align themselves in this manner

– Causing the field at other  neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of 
the network

– The energy is lower bounded and the decrements are upper bounded, so the 
network is guaranteed to converge to a stable state in a finite number of steps

23



The Energy of a Hopfield Net

• Define the Energy of the network as

𝐸 = − ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −෍

𝑖

𝑏𝑖𝑦𝑖

– Just the negative of 𝐷

• The evolution of a Hopfield network 

constantly decreases its energy

• Where did this “energy” concept suddenly sprout 

from?
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Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material

• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles

– Which may flip

• Which changes the field at the current dipole…
25



Analogy: Spin Glasses

• 𝑝𝑖 is vector position of 𝑖-th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction 𝐽

– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924) 

Total field at current dipole:

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

intrinsic external
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• A Dipole flips if it is misaligned with the field 
in its location

Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

27
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Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Dipoles will keep flipping

– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole

• Which may flip

– Etc..

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

28
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• When will it stop???

Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖
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• The “Hamiltonian” (total energy) of the system

𝐸 = −
1

2
෍

𝑖

𝑥𝑖𝑓 𝑝𝑖 = −෍

𝑖

෍

𝑗>𝑖

𝐽𝑗𝑖𝑥𝑖𝑥𝑗 −෍

𝑖

𝑏𝑖𝑥𝑖

• The system evolves to minimize the energy

– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Spin Glasses

• The system stops at one of its stable configurations

– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable 
configuration

– I.e. the system remembers its stable state and returns to it

state

PE
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Hopfield Network

𝐸 = − ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −෍

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −෍

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

Typically will not utilize bias:  The bias is similar to having
a single extra neuron that is pegged to 1.0

Removing the bias term does not affect the rest of the
discussion in any manner

But not RIP,  we will bring it back later in the discussion
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Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for 

conformity with thermodynamic system

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

state
PE
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Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it 
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

36



Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

Image pilfered from
unknown source

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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Evolution

• The network will evolve until it arrives at a local minimum in the 
energy contour

• We proved that every change in the network will result in decrease 
in energy

– So path to energy minimum is monotonic

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

38



Evolution

• For threshold activations the energy contour is only 
defined on a lattice

– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

39
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𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖



Evolution

• For threshold activations the energy contour is only 
defined on a lattice

– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗
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𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖



Evolution

• For threshold activations the energy contour is only defined on a 
lattice

– Corners of a unit cube

• For tanh activations it will be a continuous function 

– With output in [-1 1]

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

In matrix form

Note the 1/2

41

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners

– Blue arc shows a typical trajectory for tanh activation
42



“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners

– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because −
1

2
𝐲𝑇𝐖𝐲 = −

1

2
(−𝐲)𝑇𝐖(−𝐲)

If ො𝐲 is a local minimum, so is −ො𝐲
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3-neuron net

• 8 possible states

• 2 stable states (hard thresholded network)

44



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/45



Hopfield net examples
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Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

𝐸 = −෍

𝑖

෍

𝑗>𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

does not change significantly any more

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦𝑖 𝑡 + 1 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1
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Story so far
• A Hopfield network is a loopy binary network with symmetric 

connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will 
evolve until the “energy” of the network achieves a local minimum

– The evolution will be monotonic in total energy

– The dynamics of a Hopfield network mimic those of a spin glass

– The network is symmetric: if a pattern 𝑌 is a local minimum, so is –𝑌

• The network acts as a content-addressable memory

– If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

– Effectively “recalling” the correct pattern, from a damaged/incomplete 
version 48



Issues

• How do we make the network store a specific 
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

49
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pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

50



How do we remember a specific 
pattern?

• How do we teach a network
to “remember” this image

• For an image with 𝑁 pixels we need a network 
with 𝑁 neurons

• Every neuron connects to every other neuron

• Weights are symmetric (not mandatory)

•
𝑁(𝑁−1)

2
weights in all

51



Storing patterns: Training a network

• A network that stores pattern 𝑃 also naturally stores –𝑃

– Symmetry  𝐸(𝑃) = 𝐸(−𝑃) since 𝐸 is a function of yiyj

𝐸 = −෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

-1

1

1

1 -1

1

-1

-1

-1 1
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A network can store multiple patterns

• Every stable point is a stored pattern

• So we could design the net to store multiple patterns

– Remember that every stored pattern 𝑃 is actually two stored patterns, 
𝑃 and −𝑃

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1
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Storing a pattern

• Design {𝑤𝑖𝑗} such that the energy is a local 
minimum at the desired 𝑃 = {𝑦𝑖}

𝐸 = −෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖
1

-1

-1

-1 1

1

1

-1

1 -1
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Storing specific patterns

• Storing 1 pattern:  We want

𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

1

-1

-1

-1 1
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Storing specific patterns

• Storing 1 pattern:  We want

𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖1

-1

-1

-1 1
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Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1
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Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

The pattern is stationary
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Storing specific patterns

𝐸 = −෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = −෍

𝑖

෍

𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= −෍

𝑖

෍

𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1
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Storing specific patterns

𝐸 = −෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = −෍

𝑖

෍

𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= −෍

𝑖

෍

𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

The pattern is STABLE
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Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored.   Right: Energy map

• Stored pattern has lowest energy

• Gradation of energy ensures stored pattern (or its ghost) is recalled 
from everywhere 61



Storing multiple patterns

• To store more than one pattern

𝑤𝑗𝑖 = ෍

𝐲𝑝∈{𝐲𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

• {𝐲𝑝} is the set of patterns to store

• Super/subscript 𝑝 represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1
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How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can 
store up to ~0.15𝑁 patterns through Hebbian
learning

– Provided they are “far” enough 

• Where did this number come from?

63



The limits of Hebbian Learning

• Consider the following: We must store 𝐾 𝑁-bit patterns of the form

𝐲𝑘 = 𝑦1
𝑘 , 𝑦2

𝑘 , … , 𝑦𝑁
𝑘 , 𝑘 = 1…𝐾

• Hebbian learning (scaling by 
1

𝑁
for normalization, this does not affect 

actual pattern storage):

𝑤𝑖𝑗 =
1

𝑁
෍

𝑘

𝑦𝑖
𝑘𝑦𝑗

𝑘

• For any pattern 𝐲𝑝 to be stable:

𝑦𝑖
𝑝
෍

𝑗

𝑤𝑖𝑗𝑦𝑗
𝑝
> 0 ∀𝑖

𝑦𝑖
𝑝 1

𝑁
෍

𝑗

෍

𝑘

𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝
> 0 ∀𝑖
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The limits of Hebbian Learning
• For any pattern 𝐲𝑝 to be stable:

𝑦𝑖
𝑝 1

𝑁
෍

𝑗

෍

𝑘

𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝
> 0 ∀𝑖

𝑦𝑖
𝑝 1

𝑁
෍

𝑗

𝑦𝑖
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝
+ 𝑦𝑖

𝑝 1

𝑁
෍

𝑗

෍

𝑘≠𝑝

𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝
> 0 ∀𝑖

• Note that the first term equals 1 (because 𝑦𝑗
𝑝
𝑦𝑗
𝑝
= 𝑦𝑖

𝑝
𝑦𝑖
𝑝
= 1) 

– i.e. for 𝐲𝑝 to be stable the requirement is that the second crosstalk term:

𝑦𝑖
𝑝 1

𝑁
෍

𝑗

෍

𝑘≠𝑝

𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝
> −1 ∀𝑖

• The pattern will fail to be stored if the crosstalk

𝑦𝑖
𝑝 1

𝑁
෍

𝑗

෍

𝑘≠𝑝

𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝
< −1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖
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The limits of Hebbian Learning
• For any random set of K patterns to be stored, the probability of the 

following must be low

𝐶𝑖
𝑝
=
1

𝑁
෍

𝑗

෍

𝑘≠𝑝

𝑦𝑖
𝑝
𝑦𝑖
𝑘𝑦𝑗

𝑘 𝑦𝑗
𝑝

< −1

• For large 𝑁 and K the probability distribution of 𝐶𝑖
𝑝

approaches a 

Gaussian with 0 mean, and variance 𝐾/𝑁

– Considering that individual bits 𝑦𝑖
𝑙 ∈ {−1,+1} and have variance 1

• For a Gaussian, 𝐶~𝑁 0,𝐾/𝑁

– 𝑃(𝐶 < −1 | 𝜇 = 0, 𝜎2 = 𝐾/𝑁) < 0.004 for 𝐾/𝑁 < 0.14

• I.e.  To have less than 0.4% probability that stored patterns will not 
be stable,  𝐾 < 0.14𝑁
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How many patterns can we store?

• A network of 𝑁 neurons trained by Hebbian learning can store up to 
~0.14𝑁 patterns with low probability of error

– Computed assuming 𝑝𝑟𝑜𝑏(𝑏𝑖𝑡 = 1) = 0.5

• On average no. of matched bits in any pair = no. of mismatched bits

• Patterns are “orthogonal” – maximally distant – from one another

– Expected behavior for non-orthogonal patterns?

• To get some insight into what is stored, lets see some examples
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Hebbian learning: One 4-bit pattern

• Left: Pattern stored.   Right: Energy map

• Note: Pattern is an energy well, but there are other local minima

– Where?

– Also note “shadow” pattern
68

Topological representation on a Karnaugh map



Storing multiple patterns: 
Orthogonality

• The maximum Hamming distance between two 𝑁-bit 
patterns is 𝑁/2

– Because any pattern 𝑌 = −𝑌 for our purpose

• Two patterns 𝑦1and 𝑦2 that differ in 𝑁/2 bits are 
orthogonal

– Because   𝑦1
𝑇𝑦2 = 0

• For 𝑁 = 2𝑀𝐿, where 𝐿 is an odd number, there are at most 
2𝑀 orthogonal binary patterns

– Others may be almost orthogonal
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Two orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)

– No other local minima exist

– But patterns perfectly confusable for recall
70



Two non-orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)

– No other local minima exist

– Actual wells for patterns

• Patterns may be perfectly recalled!

– Note K > 0.14 N 71



Three orthogonal 4-bit patterns

• All patterns are local minima (stationary)

– But recall from perturbed patterns is random
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Three non-orthogonal 4-bit patterns

• Patterns in the corner are not recalled

– They end up being attracted to the -1,-1 pattern

– Note some “ghosts” ended up in the “well” of other patterns

• So one of the patterns has stronger recall than the other two
73



Four orthogonal 4-bit patterns

• All patterns are stationary, but none are stable

– Total wipe out
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Four nonorthogonal 4-bit patterns

• One stable pattern

– “Collisions” when the ghost of one pattern occurs 

next to another
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How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can store up to 
0.14𝑁 patterns

• Apparently a fuzzy statement

– What does it really mean to say “stores” 0.14N patterns?
• Stationary? Stable? No other local minima?

• N=4 may not be a good case (N too small)
76



A 6-bit pattern

• Perfectly stationary and stable

• But many spurious local minima..

– Which are “fake” memories
77

“Unrolled” 3D Karnaugh map



Two orthogonal 6-bit patterns

• Perfectly stationary and stable

• Several spurious “fake-memory” local minima..

– Figure overstates the problem: actually a 3-D Kmap
78



Two non-orthogonal 6-bit patterns

79

• Perfectly stationary and stable

• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”

– Fewer spurious minima than for the orthogonal case



Three non-orthogonal 6-bit patterns

80

• Note: Cannot have 3 or more orthogonal 6-bit patterns..

• Patterns are perfectly stationary and stable (K > 0.14N)

• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”

– Fewer spurious minima than for the orthogonal 2-pattern case



Four non-orthogonal 6-bit patterns

81

• Patterns are perfectly stationary for K > 0.14N

• Fewer spurious minima than for the orthogonal 2-
pattern case

– Most fake-looking memories are in fact ghosts..



Six non-orthogonal 6-bit patterns

82

• Breakdown largely due to interference from “ghosts”

• But multiple patterns are stationary, and often stable

– For K >> 0.14N



More visualization..

• Lets inspect a few 8-bit patterns

– Keeping in mind that the Karnaugh map is now a 
4-dimensional tesseract
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One 8-bit pattern

84

• Its actually cleanly stored, but there are a few 

spurious minima



Two orthogonal 8-bit patterns

85

• Both have regions of attraction

• Some spurious minima



Two non-orthogonal 8-bit patterns

86

• Actually have fewer spurious minima

– Not obvious from visualization..



Four orthogonal 8-bit patterns

87

• Successfully stored



Four non-orthogonal 8-bit patterns

88

• Stored with interference from ghosts..



Eight orthogonal 8-bit patterns

89

• Wipeout



Eight non-orthogonal 8-bit patterns

90

• Nothing stored

– Neither stationary nor stable



Observations

• Many “parasitic” patterns

– Undesired patterns that also become stable or 
attractors

• Apparently a capacity to store more than 
0.14N patterns
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Parasitic Patterns

• Parasitic patterns can occur because sums of odd numbers 
of stored patterns are also stable for Hebbian learning:

– 𝐲𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒 = 𝑠𝑖𝑔𝑛 𝐲𝑎 + 𝐲𝑏 + 𝐲𝑐

• They are also from other random local energy minima from 
the weights matrices themselves
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Capacity

• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are 
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• Patterns that are non-orthogonal easier to remember

– I.e. patterns that are closer are easier to remember than 
patterns that are farther!!

• Can we attempt to get greater control on the process than 
Hebbian learning gives us?

– Can we do better than Hebbian learning?

• Better capacity and fewer spurious memories?
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Story so far
• A Hopfield network is a loopy binary net with symmetric connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will evolve until 
the “energy” of the network achieves a local minimum

– The network acts as a content-addressable memory
• Given a damaged memory, it can evolve to recall the memory fully

• The network must be designed to store the desired memories

– Memory patterns must be stationary and stable on the energy contour

• Network memory can be trained by Hebbian learning

– Guarantees that a network of N bits trained via Hebbian learning can store 0.14N 
random patterns with less than 0.4% probability that they will be unstable

• However, empirically it appears that we may sometimes be able to store more 
than 0.14N patterns 
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Bold Claim

• I can always store (upto) N orthogonal 
patterns such that they are stationary!

– Why?

• I can avoid spurious memories by adding 
some noise during recall!

95



96


