Neural Networks

Hopfield Nets and Boltzmann Machines

- At each time each neuron receives a "field" $\sum_{j \neq i} w_{ji} y_j + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

Recap: Energy of a Hopfield Network

$$y_i = \Theta\left(\sum_{j\neq i} w_{ji}y_j + b_i\right)$$

 $\Theta(z) = \begin{cases} +1 \ if \ z > 0 \\ -1 \ if \ z \le 0 \end{cases}$

$$E = -\sum_{i,j$$

- The system will evolve until the energy hits a local minimum
- In vector form
 - Bias term may be viewed as an extra input pegged to 1.0

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Recap: Hopfield net computation

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate until convergence $y_i(t+1) = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right), \qquad 0 \le i \le N-1$

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

$$E = -\sum_{i} \sum_{j>i} w_{ji} y_j y_i$$

does not change significantly any more

Recap: Evolution

• The network will evolve until it arrives at a local minimum in the energy contour

Recap: Content-addressable memory

- Each of the minima is a "stored" pattern
 - If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a content addressable memory

Recall memory content from partial or corrupt values

• Also called *associative memory*

Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/

Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/

Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/

Training a Hopfield Net to "Memorize" target patterns

• The Hopfield network can be *trained* to remember specific "target" patterns

– E.g. the pictures in the previous example

This can be done by setting the weights W appropriately

Random Question: Can you use backprop to train Hopfield nets?

Hint: Think unwrapping...

Training a Hopfield Net to "Memorize" target patterns

- The Hopfield network can be *trained* to remember specific "target" patterns
 - E.g. the pictures in the previous example
- A Hopfield net with N neurons can designed to store up to N target N-bit memories
 - But can store an exponential number of unwanted "parasitic" memories along with the target patterns
- Training the network: Design weights matrix W such that the energy of ...
 - Target patterns is minimized, so that they are in energy wells
 - Other untargeted potentially parasitic patterns is maximized so that they don't become parasitic

Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

Simpler: Focus on confusing patterns

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P} \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^{T} \right)$$

- Lower energy at valid memories
- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it

More efficient training

- Really no need to raise the entire surface, or even every valley
- Raise the *neighborhood* of each target memory
 - Sufficient to make the memory a valley
 - The broader the neighborhood considered, the broader the valley

Problem with Hopfield net

• Why is the recalled pattern not perfect?

A Problem with Hopfield Nets

- Many local minima
 - Parasitic memories
- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases..
 - Particularly if the increase in energy is small

Recap – Analogy: Spin Glasses

Total field at current dipole:

$$f(p_i) = \sum_{j \neq i} J_{ij} x_j + b_i$$

Response of current diplose

$$x_{i} = \begin{cases} x_{i} \text{ if } sign(x_{i} f(p_{i})) = 1 \\ -x_{i} \text{ otherwise} \end{cases}$$

• The total energy of the system

$$E(s) = C - \frac{1}{2} \sum_{i} x_{i} f(p_{i}) = -\sum_{i} \sum_{j>i} J_{ij} x_{i} x_{j} - \sum_{i} b_{i} x_{j}$$

- The system *evolves* to minimize the energy
 - Dipoles stop flipping if flips result in increase of energy

Revisiting Thermodynamic Phenomena

- Is the system actually in a specific state at any time?
- No the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
- What is actually being characterized is the *probability* of the state at equilibrium
 - The system "prefers" low energy states
 - Evolution of the system favors transitions towards lower-energy states

- A thermodynamic system at temperature *T* can exist in one of many states
 - Potentially infinite states
 - At any time, the probability of finding the system in state sat temperature T is $P_T(s)$
- At each state s it has a potential energy E_s
- The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_{s} P_T(s) E_s$$

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$H_T = -\sum_s P_T(s) \log P_T(s)$$

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

$$F_T = U_T + kTH_T$$

$$=\sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved
- The probability distribution of the states at steady state is known as the *Boltzmann distribution*

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

• Minimizing this w.r.t $P_T(s)$, we get

$$P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)$$

- Also known as the Gibbs distribution
- -Z is a normalizing constant
- Note the dependence on T
- A T = 0, the system will always remain at the lowestenergy configuration with prob = 1.

Revisiting Thermodynamic Phenomena

- The evolution of the system is actually *stochastic*
- At equilibrium the system visits various states according to the Boltzmann distribution
 - The probability of any state is inversely related to its energy

• and also temperatures:
$$P(s) \propto exp\left(\frac{-E_s}{kT}\right)$$

• The most likely state is the lowest energy state

- Many local minima
 - Parasitic memories
- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases..
 - Particularly if the increase in energy is small

The Hopfield net as a distribution

Visible Neurons

$$E(S) = -\sum_{i < j} w_{ij} s_i s_j - b_i s_i$$

$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

- Mimics the Spin glass system
- The stochastic Hopfield network models a *probability distribution* over states
 - Where a state is a binary string
 - Specifically, it models a *Boltzmann distribution*
 - The parameters of the model are the weights of the network
- The probability that (at equilibrium) the network will be in any state is P(S)
 - It is a generative model: generates states according to P(S)

The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = +1 and S' has i-th bit = -1

$$P(S) = P(s_{i} = 1 | s_{j \neq i}) P(s_{j \neq i})$$

$$P(S') = P(s_{i} = -1 | s_{j \neq i}) P(s_{j \neq i})$$

$$logP(S) - logP(S') = logP(s_{i} = 1 | s_{j \neq i}) - logP(s_{i} = -1 | s_{j \neq i})$$

$$logP(S) - logP(S') = log \frac{P(s_i = 1 | s_{j \neq i})}{1 - P(s_i = 1 | s_{j \neq i})}$$

The field at a single node

 Let S and S' be the states with the ith bit in the +1 and -1 states

$$\log P(S) = -E(S) + C$$

$$E(S) = -\frac{1}{2} \left(E_{not i} + \sum_{j \neq i} w_{ij} s_j + b_i \right)$$

$$E(S') = -\frac{1}{2} \left(E_{not i} - \sum_{j \neq i} w_{ij} s_j - b_i \right)$$

• $logP(S) - logP(S') = E(S') - E(S) = \sum_{j \neq i} w_{ij}s_j + b_i$

The field at a single node

$$log\left(\frac{P(s_{i}=1|s_{j\neq i})}{1-P(s_{i}=1|s_{j\neq i})}\right) = \sum_{j\neq i} w_{ij}s_{j} + b_{i}$$

• Giving us

$$P(s_{i} = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-(\sum_{j \neq i} w_{ij}s_{j} + b_{i})}}$$

 The probability of any node taking value 1 given other node values is a logistic

Redefining the network

- First try: Redefine a regular Hopfield net as a stochastic system
- Each neuron is *now a stochastic unit* with a binary state s_i, which can take value 0 or 1 with a probability that depends on the local field
 - Note the slight change from Hopfield nets
 - Not actually necessary; only a matter of convenience

The Hopfield net is a distribution

$$z_i = \sum_j w_{ij} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution
- The *conditional* distribution of individual bits in the sequence is a logistic

Running the network

$$z_i = \sum_j w_{ij} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or 0 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until "convergence"), sample the individual neurons

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate
$$0 \le i \le N - 1$$

$$P = \sigma \left(\sum_{j \ne i} w_{ji} y_j \right)$$

$$y_i(t+1) \sim Binomial(P)$$

Assuming T = 1

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate
$$0 \le i \le N - 1$$

$$P = \sigma \left(\sum_{j \ne i} w_{ji} y_j \right)$$

$$y_i(t+1) \sim Binomial(P)$$

- When do we stop?
- What is the final state of the system

– How do we "recall" a memory?

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate
$$0 \le i \le N - 1$$

$$P = \sigma \left(\sum_{j \ne i} w_{ji} y_j \right)$$

$$y_i(t+1) \sim Binomial(P)$$

- When do we stop?
- What is the final state of the system

– How do we "recall" a memory?
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate $0 \le i \le N - 1$ $P = \sigma \left(\sum_{j \ne i} w_{ji} y_j \right)$ $y_i(t+1) \sim Binomial(P)$ Assuming T = 1

- Let the system evolve to "equilibrium"
- Let $\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$ be the sequence of values (L large)
- Final predicted configuration: from the average of the final few iterations

$$\mathbf{y} = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} \mathbf{y}_t\right) > 0?$$

- Estimates the probability that the bit is 1.0.
- If it is greater than 0.5, sets it to 1.0

Evolution of the stochastic network

1. Initialize network with initial pattern

 $y_i(0) = x_i, \qquad 0 \le i \le N - 1$

2. For $T = T_0$ down to T_{min}

Noisy pattern completion: Initialize the entire network and let the entire network evolve

Pattern completion: Fix the "seen" bits and only let the "unseen" bits evolve

- Let the system evolve to "equilibrium"
- Let $\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$ be the sequence of values (L large)
- Final predicted configuration: from the average of the final few iterations

$$\mathbf{y} = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} \mathbf{y}_t\right) > 0?$$

Including a "Temperature" term

 $z_i = \frac{1}{T} \sum_{j \neq i} w_{ij} y_j$ $P(y_i = 1) = \sigma(z_i)$ $P(y_i = 0) = 1 - \sigma(z_i)$

- Including a temperature term in computing the local field
 This is much more in accord with Thermodynamic models
- At $T = \infty$ the energy "surface" will be flat. At T = 1 the surface will be the usual energy surface
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

The field quantifies the energy difference obtained by flipping the current unit

- Including a temperature term in computing the local field
 - This is much more in accord with Thermodynamic models
- At $T = \infty$ the energy "surface" will be flat. At T = 1 the surface will be the usual energy surface
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

 $z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j$ $P(y_i = 1) = \sigma(z_i)$ The field quantifies the energy difference obtained by flipping the current unit

Including a temperature term in computing the local field
 If the difference is not large, the probability of flipping approaches 0.5
 — mis is much more in accord with mermodynamic models

- At T = ∞ the energy "surface" will be flat. At T = 1 the surface will be the usual energy surface
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

 $P(y_i = 1) = \sigma(z_i)$ The field quantifies the energy difference obtained by flipping the current unit

 Including a temperature term in computing the local field If the difference is not large, the probability of flipping approaches 0.5 — mis is much more in accord with memodynamic models
 T is a "temperature" parameter: increasing it moves the probability of the bits towards 0.5
 At T=1.0 we get the traditional definition of field and energy
 At T = 0, we get deterministic Hopfield behavior

This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

 $z_i = \frac{1}{T} \sum w_{ji} y_j$

Annealing

1. Initialize network with initial pattern $y_i(0) = x_i, \quad 0 \le i \le N - 1$ 2. For $T = T_0$ down to T_{min} i. For iter 1..L a) For $0 \le i \le N - 1$ $P = \sigma \left(\frac{1}{T} \sum_{j \ne i} w_{ji} y_j\right)$ $y_i(t+1) \sim Binomial(P)$

- Let the system evolve to "equilibrium"
- Let $\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$ be the sequence of values (L large)
- Final predicted configuration: from the average of the final few iterations

$$\mathbf{y} = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} \mathbf{y}_t\right) > 0?$$

Evolution of a stochastic Hopfield net

- 1. Initialize network with initial pattern $y_i(0) = x_i, \quad 0 \le i \le N - 1$ 2. For $T = T_0$ down to T_{min} i. For iter 1...L a) For $0 \le i \le N - 1$ $P = \sigma \left(\frac{1}{T} \sum_{j \ne i} w_{ji} y_j\right)$ $y_i(t + 1) \sim Binomial(P)$
- When do we stop?
- What is the final state of the system

– How do we "recall" a memory?

 $P\big(y_i=1|y_{j\neq i}\big)=\sigma(z_i)$

- The probability of each neuron is given by a *conditional* distribution
- What is the overall probability of *the entire set* of neurons taking any configuration y

The overall probability

$$z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j$$

 $P(y_i = 1 | y_{j \neq i}) = \sigma(z_i)$

 The probability of any state y can be shown to be given by the *Boltzmann distribution*

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{-E(\mathbf{y})}{T}\right)$$

– Minimizing energy maximizes log likelihood

The overall probability

- Stop when the running average of the log probability of patterns stops increasing
 - I.e. when the (running average) of the energy of the patterns stops decreasing

The Hopfield net is a distribution

$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y}$$
$$P(\mathbf{y}) = Cexp\left(-\frac{E(\mathbf{y})}{T}\right)$$

- $-\,$ The parameter of the distribution is the weights matrix W
- The *conditional* distribution of individual bits in the sequence is a logistic
- We will call this a Boltzmann machine

The Boltzmann Machine

$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- The entire model can be viewed as a generative model
- Has a probability of producing any binary vector **y**:

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y}$$
$$P(\mathbf{y}) = Cexp\left(-\frac{E(\mathbf{y})}{T}\right)$$

Training the network

$$E(S) = -\sum_{i < j} w_{ij} s_i s_j$$
$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

$$P(S) = \frac{exp\left(\sum_{i < j} w_{ij} s_i s_j\right)}{\sum_{s'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)}$$

- Training a Hopfield net: Must learn weights to "remember" target states and "dislike" other states
 - "State" == binary pattern of all the neurons
- Training Boltzmann machine: Must learn weights to assign a desired probability distribution to states
 - (vectors y, which we will now calls S because I'm too lazy to normalize the notation)
 - This should assign more probability to patterns we "like" (or try to memorize) and less to other patterns

Training the network

- Must train the network to assign a desired probability distribution to states
- Given a set of "training" inputs S_1, \ldots, S_N
 - Assign higher probability to patterns seen more frequently
 - Assign lower probability to patterns that are not seen at all
- Alternately viewed: *maximize likelihood of stored states*

Maximum Likelihood Training

$$\log(P(S)) = \left(\sum_{i < j} w_{ij} s_i s_j\right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)\right)$$

$$\mathcal{L} = \frac{1}{N} \sum_{S \in \mathbf{S}} \log(P(S))$$
 Average log likelihood of training vectors (to be maximized)

$$= \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j \right) - \log \left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j \right) \right)$$

- Maximize the average log likelihood of all "training" vectors S = {S₁, S₂, ..., SN}
 - In the first summation, s_i and s_j are bits of S
 - In the second, s_i' and s_j' are bits of S'

Maximum Likelihood Training

$$\mathcal{L} = \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j \right) - \log \left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j \right) \right)$$

$$\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j - ???$$

- We will use gradient ascent, but we run into a problem..
- The first term is just the average s_is_j over all training patterns
- But the second term is summed over *all* states
 - Of which there can be an exponential number!

$$\frac{d\log\left(\sum_{s, exp}\left(\sum_{i < j} w_{ij} s_{i}' s_{j}'\right)\right)}{dw_{ij}} = \frac{1}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s_{i}' s_{j}''\right)} \frac{d\log\sum_{s, exp}\left(\sum_{i < j} w_{ij} s_{i}' s_{j}'\right)}{dw_{ij}}$$
$$= \frac{1}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s_{i}' s_{j}''\right)} \sum_{s'} exp\left(\sum_{i < j} w_{ij} s_{i}' s_{j}'\right) s_{i}' s_{j}'}$$
$$\frac{d\log\left(\sum_{s, exp}\left(\sum_{i < j} w_{ij} s_{i}' s_{j}'\right)\right)}{dw_{ij}} = \sum_{s'} \frac{exp\left(\sum_{i < j} w_{ij} s_{i}' s_{j}'\right)}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s_{i}' s_{j}''\right)} s_{i}' s_{j}'}$$

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)\right)}{dw_{ij}} = \frac{1}{\sum_{S''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} \frac{d\log\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)}{dw_{ij}}$$

$$= \frac{1}{\sum_{S''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} \sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right) s'_{i} s'_{j}}$$

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_{i} s''_{j}\right)\right)}{dw_{ij}} = \sum_{S''} \frac{exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)}{\sum_{S''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} s'_{i} s'_{j}}$$

$$\frac{d\log\left(\sum_{s'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)\right)}{dw_{ij}} = \frac{1}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} \frac{d\log\sum_{s'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)}{dw_{ij}}$$
$$\frac{\left[= \frac{1}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} \sum_{s'} exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right) s'_{i} s'_{j}}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s''_{i} s''_{j}\right)} \right]$$
$$\frac{d\log\left(\sum_{s'} exp\left(\sum_{i < j} w_{ij} s'_{i} s''_{j}\right)\right)}{dw_{ij}} = \sum_{s'} \frac{exp\left(\sum_{i < j} w_{ij} s'_{i} s'_{j}\right)}{\sum_{s''} exp\left(\sum_{i < j} w_{ij} s'_{i} s''_{j}\right)} s'_{i} s'_{j}}$$

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)\right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j$$

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)\right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j$$

- The second term is simply the *expected value* of *s_is_j*, over all possible values of the state
- We cannot compute it exhaustively, but we can compute it by sampling!

Estimating the second term

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)\right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j$$

$$\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in \mathbf{S}_{samples}} s'_i s'_j$$

- The expectation can be estimated as the average of samples drawn from the distribution
- Question: How do we draw samples from the Boltzmann distribution?
 - How do we draw samples from the network?

The simulation solution

- Initialize the network randomly and let it "evolve"
 - By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be

$$\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \dots, S_{simul,M}\}$$

The simulation solution for the second term

$$\frac{d\log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j\right)\right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j$$

$$\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

 The second term in the derivative is computed as the average of sampled states when the network is running "freely"

Maximum Likelihood Training

Sampled estimate

$$\frac{d\langle \log(P(\mathbf{S}))\rangle}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

$$w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}}$$

• The overall gradient ascent rule

Overall Training

- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- Iterate

Overall Training

Note the similarity to the update rule for the Hopfield network

Adding Capacity to the Hopfield Network / Boltzmann Machine

- The network can store up to N N-bit patterns
- How do we increase the capacity

Expanding the network

Add a large number of neurons whose actual values you don't care about!

Expanded Network

- New capacity: $\sim (N + K)$ patterns
 - Although we only care about the pattern of the first N neurons
 - We're interested in *N-bit* patterns

Terminology

- Terminology:
 - The neurons that store the actual patterns of interest: Visible neurons
 - The neurons that only serve to increase the capacity but whose actual values are not important: *Hidden neurons*
 - These can be set to anything in order to store a visible pattern

Training the network

- For a given pattern of *visible* neurons, there are any number of *hidden* patterns (2^K)
- Which of these do we choose?
 - Ideally choose the one that results in the lowest energy
 - But that's an exponential search space!

The patterns

- In fact we could have *multiple* hidden patterns coupled with any visible pattern
 - These would be multiple stored patterns that all give the same visible output
 - How many do we permit
- Do we need to specify one or more particular hidden patterns?
 - How about *all* of them
 - What do I mean by this bizarre statement?

Boltzmann machine without hidden

- This basic framework has no hidden units
- Extended to have hidden units

With hidden neurons

- Now, with hidden neurons the complete state pattern for even the *training* patterns is unknown
 - Since they are only defined over visible neurons

$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

$$P(S) = P(V, H)$$

$$P(V) = \sum_{H} P(S)$$

- We are interested in the *marginal* probabilities over *visible* bits ۲
 - We want to learn to represent the visible bits
 - The hidden bits are the "latent" representation learned by the network
- S = (V, H)

Visible

- -V = visible bits
- H = hidden bits
With hidden neurons Hidden Neurons

- We are interested in the marginal probabilities over visible bits
 - We want to learn to represent the visible bits
 - The hidden bits are the "latent" representation learned by the network

-H = hidden bits

 $P(S) = \frac{exp(-E(S))}{\sum_{s}, exp(-E(S'))}$

$$P(S) = P(V, H)$$

$$P(V) = \sum_{H} P(S)$$

- We are interested in the *marginal* probabilities over *visible* bits
 - We want to learn to represent the visible bits
 - The hidden bits are the "latent" representation learned by the network
- S = (V, H)

Visible

Neurons

- V = visible bits
- H = hidden bits

Must train to maximize probability of desired patterns of *visible* bits

Training the network

- Must train the network to assign a desired probability distribution to visible states
- Probability of visible state sums over all hidden states

Maximum Likelihood Training

$$\log(P(V)) = \log\left(\sum_{H} exp\left(\sum_{i < j} w_{ij}s_is_j\right)\right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij}s'_is'_j\right)\right)$$

 $\mathcal{L} = \frac{1}{N} \sum_{V \in \mathbf{V}} \log(P(V))$ (to be maximized)

$$= \frac{1}{N} \sum_{V \in \mathbf{V}} \log \left(\sum_{H} exp\left(\sum_{i < j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j \right) \right)$$

- Maximize the average log likelihood of all visible bits of "training" vectors $\mathbf{V} = \{V_1, V_2, \dots, V_N\}$
 - The first term also has the same format as the second term
 - Log of a sum
 - Derivatives of the first term will have the same form as for the second term

Maximum Likelihood Training

$$\mathcal{L} = \frac{1}{N} \sum_{V \in \mathbf{V}} \log \left(\sum_{H} exp\left(\sum_{i < j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s_i' s_j' \right) \right)$$

$$\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in \mathbf{V}} \sum_{H} \frac{exp\left(\sum_{k < l} w_{kl} s_k s_l\right)}{\sum_{H'} exp\left(\sum_{k < l} w_{kl} s_k^{"} s_l^{"}\right)} s_i s_j - \sum_{S'} \frac{exp\left(\sum_{k < l} w_{kl} s_k^{'} s_l^{'}\right)}{\sum_{S''} exp\left(\sum_{k < l} w_{ij} s_k^{"} s_l^{"}\right)} s_i' s_j'$$

$$\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in \mathbf{V}} \sum_{H} P(S|V) s_i s_j - \sum_{S'} P(S') s'_i s'_j$$

- We've derived this math earlier
- But now *both* terms require summing over an exponential number of states
 - The first term fixes visible bits, and sums over all configurations of hidden states for each visible configuration in our training set
 - But the second term is summed over *all* states

The simulation solution

$$\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in \mathbf{V}} \sum_{H} P(S|V) s_i s_j - \sum_{S'} P(S') s'_i s'_j$$
$$\sum_{H} P(S|V) s_i s_j \approx \frac{1}{K} \sum_{H \in \mathbf{H}_{simul}} s_i s_j$$
$$\sum_{H} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

- The first term is computed as the average sampled *hidden* state with the visible bits fixed
- The second term in the derivative is computed as the average of sampled states when the network is running "freely"

More simulations

- Maximizing the marginal probability of V requires summing over all values of H
 - An exponential state space
 - So we will use simulations again

- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training $\mathbf{S} = \{S_{1,1}, S_{1,2}, \dots, S_{1K}, S_{2,1}, \dots, S_{N,K}\}$

Step 2

 Now unclamp the visible units and let the entire network evolve several times to generate

$$\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \dots, S_{simul,M}\}$$

Gradients

$$\frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{\mathbf{S}} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

 Gradients are computed as before, except that the first term is now computed over the *expanded* training data

Overall Training

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

Boltzmann machines

- Stochastic extension of Hopfield nets
- Enables storage of many more patterns than Hopfield nets
- But also enables computation of probabilities of patterns, and completion of pattern

Boltzmann machines: Overall

$$\frac{\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{\mathbf{S}} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$
$$w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}}$$

- **Training:** Given a set of training patterns
 - Which could be repeated to represent relative probabilities
- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

Boltzmann machines: Overall

- Running: Pattern completion
 - "Anchor" the known visible units
 - Let the network evolve
 - Sample the unknown visible units
 - Choose the most probable value

Applications

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- Filling out patterns
- Denoising patterns
- Computing conditional probabilities of patterns
- Classification!!

- How?

Boltzmann machines for classification

- Training patterns:
 - $[f_1, f_2, f_3,, class]$
 - Features can have binarized or continuous valued representations
 - Classes have "one hot" representation
- Classification:
 - Given features, anchor features, estimate a posteriori probability distribution over classes
 - Or choose most likely class

Boltzmann machines: Issues

- Training takes for ever
- Doesn't really work for large problems
 - A small number of training instances over a small number of bits

Solution: *Restricted* Boltzmann Machines

- Partition visible and hidden units
 - Visible units ONLY talk to hidden units
 - Hidden units ONLY talk to visible units
- Restricted Boltzmann machine..
 - Originally proposed as "Harmonium Models" by Paul Smolensky

Solution: *Restricted* Boltzmann Machines

- Still obeys the same rules as a regular Boltzmann machine
- But the modified structure adds a big benefit..

Solution: *Restricted* Boltzmann Machines

DEN
$$Z_i = \sum_j w_{ji}v_i + b_i$$
 $P(h_i = 1) = \frac{1}{1 + e^{-z_i}}$

$$y_i = \sum_j w_{ji}h_i + b_i$$
 $P(v_i = 1) = \frac{1}{1 + e^{-y_i}}$

HIDDEN

VISIBLE

Recap: Training full Boltzmann machines: Step 1

- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training $\mathbf{S} = \{S_{1,1}, S_{1,2}, \dots, S_{1K}, S_{2,1}, \dots, S_{N,K}\}$

Sampling: Restricted Boltzmann machine $z_i = \sum_{w_{ini}} w_{ini}$

- For each sample:
 - Anchor visible units
 - Sample from hidden units
 - No looping!!

 Now unclamp the visible units and let the entire network evolve several times to generate

$$\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \dots, S_{simul,M}\}$$

Sampling: Restricted Boltzmann machine

- For each sample:
 - Iteratively sample hidden and visible units for a long time
 - Draw final sample of both hidden and visible units

Pictorial representation of RBM training

- For each sample:
 - Initialize V_0 (visible) to training instance value
 - Iteratively generate hidden and visible units
 - For a very long time

Pictorial representation of RBM training

 Gradient (showing only one edge from visible node *i* to hidden node *j*)

$$\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty$$

<*v_i*, *h_j*> represents average over many generated training samples

Recall: Hopfield Networks

- Really no need to raise the entire surface, or even every valley
- Raise the *neighborhood* of each target memory
 - Sufficient to make the memory a valley
 - The broader the neighborhood considered, the broader the valley

A Shortcut: Contrastive Divergence

- Sufficient to run one iteration! $\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1$
- This is sufficient to give you a good estimate of the gradient

Restricted Boltzmann Machines

- Excellent generative models for binary (or binarized) data
- Can also be extended to continuous-valued data
 - "Exponential Family Harmoniums with an Application to Information Retrieval", Welling et al., 2004
- Useful for classification and regression
 - How?
 - More commonly used to *pretrain* models

Continuous-values RBMs

Hidden units may also be continuous values

Other variants

- Left: "Deep" Boltzmann machines
- Right: Helmholtz machine

 Trained by the "wake-sleep" algorithm

Topics missed..

- Other algorithms for Learning and Inference over RBMs
 - Mean field approximations
- RBMs as feature extractors
 - Pre training
- RBMs as generative models
- More structured DBMs