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ABSTRACT
Fundamental developments in feedforward artificial neural networks from the past
thirty years are reviewed. The central theme of this paper is a description of the
history, origination, operating characteristics, and basic theory of several supervised
neural network training algorithms including the Perceptron rule, the LMS algorithm,
three Madaline rules,; and the backpropagation technique. These methods were
developed independently, but with the perspective of history they can all be related to’
each other. The concept which underlies these algorithms is the "minimal disturban-
‘ce principle", which suggests that during training it is advisable to inject new informa-
tion into a network in a manner which disturbs stored information to the smallest
extent possible. A ‘
"Learning algorithms used in artificial neural networks are probably not represent
tive of learning processes in living neural systems. However, study of these algorith-
ms may give neurobiologists and psychologists some clues of what to look for when
studying cognition, pattern classification, and locomotion.

1. INTRODUCTION
More than 30 years have passed since the development of two of the earliest and
most important rules for training adaptive elements. The Perceptron rule and the LMS
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algorithm were both first published in 1960. In the years following these discovéries,
many new techniques have been developed in the field of neural networks, and the
discipline has grown rapidly. One early development was Steinbuch’s Learning
Matrix (1), a pattern recognition machine based on linear discriminant functions. In
the same time frame, Widrow and his students devised Madaline Rule | (MRI), the
earliest bopular learning rule for neural networks with multiple adaptive elements (2).
Other early work included the "mode-seeking“ technique of Stark, Okajima, and
Whipple (3). This was probably the first example of competitive learning in the litera-
ture, though it could be argued that earlier work by Rosenblatt on "spontaneous lear-
ning" (4, 5) deserves this distinction. Further pioneering work on competitive learning
and self-organization was performed in the 1970's by von der Malsburg (6) and
Grossberg (7). Fukushima explored related ideas with his biologically inspired
Cognitron and Neocognitron models (8 9).

In the mid-1960’s, Widrow devised a reinforcement learning algorithm called
"punish/reward" or "bootstrapping" (10 11). This can be used to solve problems when
uncertainty about the error signal cahses supetrvised training methods to be imprac-
tical. A related reinforcement Iearr;ﬁing approach was later explored in a classic
paper by Barto, Sutton, and Andersofn on the "credit assignment" problem (12). Barto
et al's technique is also somewhat réminiscent of Albus’s adaptive CMAC, a distribu-
ted table-lookup system based on models of human memory (13, 14).

In the 1970’s Grossberg developed his Adaptive Resonance Theory (ART), a num-
ber of novel hypotheses about underlying principles which govern biological neural
systems (15). These ideas served as the basis for later work by Carpenter and
Grossberg involving three classes of ART architectures: ART 1 (16), ART 2 (17), and
ART 3 (18). These are self-organizing neural implemeniations of pattern clustering
algorithms. Other important theory on self-organizing systems was pioneered by
Kohonen with his work on feature maps (19, 20).

In the early 1980’s, Hopfield and others introduced outer product rules as well as
equivalent approaches based on the early work of Hebb (21) for training a class of
recurrent (signal feedback) networks now called Hopfield models (22, 23). More
recently, Kosko extended some of the ideas of HOpfield and Grossberg to develop his
adaptive Bidirectional Associative Memory (BAM) (24), a network model employing
differential as well as Hebbian and competitive learning laws. Other significant
models from the past decade include probabilistic ones such as Hinton, Sejnowski,
and Ackley’s Boltzmann Machine (25, 26), which to oversimplify, is a Hopfield model
that settles into solutions by a simulated annealing process governed by Boltzmann
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statistics. The Boltzmann Machine is rained by a clever two-phase Hebbian-based
technique. : -

While these developments were taking place, adaptive systems research at
Stanford traveled an independent path. After devising their Madaline | rule, Widrow
and his students developed uses for the Adaline and Madaline. Early applications
included, among others, speech and pattern recognition (27), weather forecasting
(28), and adaptive controls (29). Work then switched to adaptive filtering and adaptive
signal processing (30) after attempts to develop learning rules for networks with mul-
tiple adaptive layers were unsuccessful. Adaptive signal processing proved to be a
fruitful avenue for research with applications involving adaptive antennas (31), adapti-
ve inverse controls (32), adaptive noise cancelling (33), and seismic signal proces-
sing (30). Outstanding work by R.W. Lucky and others at Bell Laboratories led to
major commercial applications of adaptive filters and the LMS algorithm to adaptive
equalization in high speed modems (34, 35) and to adaptive echo cancellers for long
distance telephone and satellite circuits (36). After 20 years of research in adaptive
signal processing, the work in Widrow’s laboratory has once again returned to neural
networks. '

The first major extension of the feedforward neural network beyond Madaline |
took place in 1971 when Werbos developed a backprbpagation training algorithm
which, in 1974, he first published in his doctoral dissertation (37)

Remark 1: We should note, however, that in the field of variational calculus the idea of
error backpropagation through nonlinear systems existed centuries before Werbos
first thought to apply this concept to neural networks. In the past 25 years, these
methods have been used widely in the the field of optimal control, as discussed by Le
Cun (38).

Unfortunately, Werbos’s work remained almost unknown in the scientific communi-
ty. In 1982, Parker rediscovered the technique (39) and in 1985, published a report
on it at MIT (40). Not long after Parker published his findings, Rumelhart, Hinton, and
Williams (41, 42) also rediscovered the technique and, largely as a result of the clear
framework within which they presented their ideas, they finally succeeded in making it
widely known.

The elements used by Rumelhart et al in the backpropagation network differ from
those used in the earlier Madaline architectures. The adaptive elements in the origi-
nal Madaline structure used hard-limiting quantizers (signums), while the elements in
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the backpropagation network use only differentiable nonlinearities, or "sigmoid" func-
tions. '

Remark 2: The term sigmoid is usually used in reference to monotonically increasing
"S-shaped" functions, such as the hyperbolic tangent. In this paper, however, we
generally use the term to denote any smooth nonlinear functions at the output of a

~  linear adaptive element. In other papers, these nonlinearities go by a variety of

names, such as "squashing functions", "activation functions", “transfer characteri-
stics", or "threshold functions".

In digital implementations, the hard-limiting quantizer is more easily computed
than any of the differentiable nonlinearities used in backpropagation networks. In
1987, Widrow and Winter looked back at the original Madaline | algorithm with the
goal of developing a new technique that could adapt multiple layers of adaptive ele-
ments which use the simpler hard-limiting quantizers. The result was Madaline Rule I
(43).

David Andes of U.S. Naval Weapons Center of China Lake, CA, modified
Madaline Il in 1988 by replacing the hard-limiting quantizers in the Adaline with sig-
moid functions, thereby inventing Madaline Rule Il (MRIll). Widrow and his students
were first to recognize that this rule is mathematically equivalent to backpropagation.

The outline above gives only a partial view of the discipline, and many landmark
discoveries have not been mentioned. Needless to say, the field of neural networks is
quickly becoming a vast one, and in one short survey we could not hope to cover the
entire subject in any detail. Consequently, many significant developments, including
some of those mentioned above, will not be discussed in this paper. The algofithms
described will bellimited primarily to those developed in our laboratory at Stanford,
and to related techniques developed elsewhere, the most important of which is the
backpropagation algorithm. The section headings indicate the range and coverage of
the paper:

Introduction

Fundamental Concepts

Adaptation—The Minimal Disturbance Principle
Error Correction Rules—Single Threshold Element
Error Correction Rules—Multi-Element Networks
Steepest-Descent Rules—Single Threshold Element

R
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7. Steepest-Descént Rules—Multi-Element Networks
8. A Network Topology for Pattern Recognition
9. Summary

Information about the neural network paradigms not discussed in this paper can be
obtained from a number of other sources, such as the concise survey by Richard
Lippmann (44), and the collection of classics by Anderson and Rosenfeld (45). Much
of the early work in the field from the 1960’s is carefully reviewed in Nilsson’s mono-
graph (46). A good view of some of the more recent results is presented in Rumelhart
and McClelland’s popular three-volume set (47). A paper by Moore (48) presents a
clear discussion about ART 1 and some of Grossberg’s terminology. Another resour-
ce is the DARPA Study report (49) which gives a very comprehensive and readable
“snapshot" of the field in 1988. : ~

2. FUNDAMENTAL CONCEPTS

Today we can build computers and other machines which perform a variety of well-
defined tasks with celerity and reliability unmatched by humans. No human can invert
matrices or solve systems of differential equations at speeds which rival modern
workstations. Nonetheless, there are still many problems which have yef to be solved
to our satisfaction by any man-made machine, but are easily disentangled by the per-
ceptual or cognitive powers of humans, and often lower mammals, or even fish and
insects. No computer vision system can rival the human ability to recognize visual
images formed by objects of all shapes and orientations under a wide range of condi-
tions. Humans effortlessly recognize objects in diverse environments and lighting
conditions, even when obscured by dirt, or occluded by other objects. Likewise, the
performance of current speech recognition technology pales when compared to the
performance of the human adult who easily recognizes words spoken by different
people, at different rates, pitches, and volumes, even in the presence of distortion or
background noise.

The problems solved more effectively by the brain than by the digital computer
typically have two characteristics: they are generally ill-defined, and they usually
require an enormous amount of processing. Recognizing the character of an object
from its image on television, for instance, involves resolving ambiguities associated
with distortion and lighting. It also involves filling in informationabout a three-dimen-
sional scene which is missing from the two-dimensional image on the screen. There
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are an infinite number of three-dimensional scenes which can be projected into a two-
dimensional image. Nonetheless, the brain deals well with this ambiguity, and using
learned cues usually has little difficulty correctly determining the role played by the
missing dimension.

As anyone who has performed even simple filtering operations on images is
aware, processing high resolution images requires a great deal of computation. Our
brains accomplish this by utilizing massive parallelism, with millions and even billions
of'neurons in parts of the brain working together to solve complicated problems.
Because solid state ‘operational amplifiers and logic gates can compute many orders
of magnitude faster than current estimates of the computational speed of neurons in
the brain, we may soon be able to build relatively inexpensive machines with the abi-
lity to process as much information as the human brain. This enormous processing
power will do little to help us solve problems, however, unless we can utilize it effec-
tively. For instance, coordinating many thousands of processors which must efficient-
ly cooperate to solve a problem is not a simple task. If each processor must be
programmed separately, and if all contingencies associated with various ambiguities
must be designed into the software, even a relatively simple problem can quickly
become unmanageable. The slow progress over the past 25 years or so in machine
vision and other areas of artificial intelligence is testament to the difficulties associa-
ted with solving ambiguous and computationally intensive problems on von Neumann
computers and related architectures.

Thus, there is some reason to consider attacking certain problems by designing
naturally parallel computers which process information and learn by principles borro-
wed from the nervous systems of biological creatures. This does not necessarily
mean we should attempt to copy the brain part for part. Although the bird served to
inspire development of the airplane, birds do not have propellers, and airplanes do
not operate by flapping feathered wings. The primary parallel between biological ne
vous systems and artificial neural networks is that each typically consists of a large
number of simple elements that learn and are able to collectively solve complicated
and ambiguous problems.

Today, most artificial neural network research and application is accomplished by
simulating networks on serial computers. Speed limitations keep such networks rela-
tively small, but even with small networks some surprisingly difficult problems have
been tackled. Networks with fewer than 150 neural elements have been used suc-
cessfully in vehicular control simulations (50), speech generation (51, 52), and under-
sea mine detection (49). Small networks have also been used successfully in airport
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explosive detection (53), expert systems (54, 55), and scores of other applications.
Furthermore, efforts to develop parallel neural network hardware are being met with
some success, and such hardware should be available in the future for attacklng
more difficult problems like speech recognition (56, 57). ;

Whether implemented in parallel hardware or simulated on a computer, all neural
networks consist of a collection of simple elements that work together to solve pro-
blems. A basic building block of nearly all artificial neural networks, and most other
adaptive systems, is the adaptive linear combiner.

2.1 The Adaptive Linear Combiner

The adaptive linear combiner is diagrammed in Fig. 1. Its output is a linear combinati-
on of its inputs. In a digital implementation, this element receives at time k an input
signal vector or input pattern vector Xy=[xq, X1k, Xok;---» xnk]T, and a desired respon-
se dX a special input used to effect learning. The components of the input vector are
weighted by a set of coefficients, the weight vector Wy =[wg,, Wik, Wok,..., Wnk]T-
The sum of the weighted inputs is then computed, producing a linear output, the inner

Input
Pattern
Vector

Xk

Weight Vector Desired Response

Figure 1: Adaptive linear combiner

product sk=XI W,.. The components of Xj may be either continuous analog values or
binary values. The weights are essentially continuously variable, and can take on
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negative as well as positive values. During the training process, input patterns and
corresponding desired responses are presented to the linear combiner. An adaptati-
on algorithm automatically adjusts the weights so that the output responses to the
input patterns will be as close as possible to their respective desired responses. In
signal processing applications, the most popular method for adapting the weights is
the simple LMS (least mean square) algorithm (58, 59), often called the Widrow-Hoff
Delta Rule (42). This algorithm minimizes the sum of squares of the linear errors over
the training set. The linear error g is defined to be the difference between the desired
response dy and the linear output sy, dUring presentation k. Having this error signal is
necessary for adapting the weights. When the adaptive linear combiner is embedded
in a multi-element neural network, however, an error signal is often not directly avail-
able for each individual linear combiner and more complicated procedures must be
devised for adapting the weight vectors. These procedures are the main focus of this

paper.

2.2 A Linear Classifier—The Single Threshold Element
The basic building block used in many neural networks is the "adaptive linear ele-
ment", or Adaline (58), shown in Fig. 2.

Remark 3: In the neural network literature, such elements are often referred to as _
"adaptive neurons". However, in a conversation between David Hubel of Harvard
Medical School and Bernard Widrow, Dr. Hubel pointed out that the Adaline differs
from the biological neuron since it contains not only the neural cell body, but also the
input synapses and a mechanism for training them.

This is an adaptive threshold logic element. It consists of an adaptive linear com-
biner cascaded with a hard-limiting quantizer which is used to produce a binary +/- 1
output, yk=sgn(sy). The bias weight wqy which is connected to a constant input,
xo=+1, effectively controls the threshold level of the quantizer.

In single-element neural networks, an adaptive algorithm (such as the LMS algo-
rithm, or the Perceptron rule) is often used to adjust the weights of the Adaline so that
it responds correctly to as many patterns as possible in a training set which has
binary desired responses. Once the weights are adjusted, the responses of the trai-
ned element can be tested by applying various input patterns. If the Adaline responds
corre tly with high probability to input patterns that were not included in the training
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set, it is said that generalization has taken place. Learning and generalization are
among the most useful attributes of Adalines and neural networks.

Input o o L e e e e e e — - - - i

i
| Xk Algorithm
e

Pattern :- 4 Xox=+1 BiasInput |
Vector |
X | Weights I
k | Wi Threshold |
X . Wik Weight I
1k ¥ ) IS
I W Xy Linear
X o | 2k | Output
2k | . :
‘l e
r w. M R k,, Binary
x3k- L 3k —a | Output
! {+1,-1}
! : Threshold !
| . Device !
] Wnk |
X :
} Linear |
| Error - |
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ADALINE |

Desired Response Input
(training signal)

Figure 2: An adaptive linear element (Adaline).

Linear Separability: n binary inputs and one binary output, a single Adaline of the
type shown in Fig. 2 is capable of implementing certain logic functions. There are 2n
possible input patterns. A general logic implementation would be capable of classify-
ing each pattern as either +1 or -1, in accord with the desired response. Thus, there
are 22n possible logic functions connecting n inputs to a single binary output. A single
Adaline is capable of realizing only a small subset of these functions, known as the
linearly separable logic functions or threshold logic functions (60). These are the set
of logic functions that can be obtained with all possible weight variations.

The linear classifier is limited in the number of distinct patterns it can learn correct-
ly. The Adaline’s pattern capacity is limited roughly to twice the number of adaptive
weights in the classifier(61, 62). To achieve higher pattern capacities, or to solve pro-
blems which are not linearly separable, nonlinear classifiers must be used.
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2.3 Nonlinear Classifiers

Many nonlinear classifiers are simple extensions of the Adaline. Two of the most
common are described here. The first is a fixed preprocessing network connected to
a single adaptive element, and the other is the multi-element feedforward neural net-
work. The pattern capacities of both structures can be approximated by the number of
weights in the classifier divided by the number of output nodes.

Polynomiai Discriminant Functions: Nonlinear functions of the inputs applied to
the single Adaline can yield nonlinear decision boundaries. Useful nonlinearities

include the polynomial functions. Consider the system illustrated in Fig.3 which con- ‘

tains only linear and quadratic input functions. The critical thresholding condition for
this system is ‘

S = wo+Twy + 33311)11 + Z1T2wyg +
:cgwu + zowy =0 , (1)
Input
Pattern
Vector
X —{i Sq.
X o Binary
1@ Output
=X T I
i {+1"1}
X; 0 signum
_-> Sqo
Polynomial Linear Error
Proprocessor d {+1,-1)

Desired Response

Figure 3: An Adaline with inputs mapped through nonlinearities

With proper choice of the weights, the separating boundary in pattern space can
be established as shown, for example, in Fig. 4. This represents a solution for the
Exclusive NOR, a function which is not linearly separable. Of course, all of the linear-
ly separable functions are also realizable. The use of such nonlinearities can be
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generalized for more inputs than two and for higher degree polynomial functions of
the inputs. Some of the first work in this area was done by D. F. Specht (63, 64, 65) at .
Stanford in the 1960’s when he successfully applied polynomial discriminants to the
classification and analysis of electrocardiographic signals. Work on this topic has also
been done by Barron (66, 67, 68) and by A. G. lvankhnenko (69) in the Soviet Union.

Separating
{ Boundary
A X2

+1,+1) @

Adaline
Y Output = +1

(+1,-1)

Adaline
Output = -1

Figure 4: An elliptical separating boundary for realizing a function which is not linearly
separable.

The polynomial approach offers great simplicity and beauty. Through it one can
realize a wide variety of adaptive nonlinear discriminant functions by adapting only a
single Adaline element. Several methods have been developed for training the poly-
nomial discriminant function. Specht developed a very efficient noniterative (i.e.,
single pass through the training set) training procedure, the Polynomial Discriminant
Method (PDM), which allows the polynomial discriminant function to implement a
nonparametric classifier based on the Bayes decision rule. Other methods for training
the system include iterative error correction rules such as the Perceptron o-LMS
rules, and iterative gradient descent procedures such as the pu-LMS and SER (also
called RLS) algorithms (30). Gradient descent with a single adaptive element is typi-
cally much faster than with a layered neural network. Furthermore, as we shall see,
when the single Adaline is trained by a gradient descent procedure, it will converge to




144 B. Widrow, M.A. Lehr

a unique global solution. After the polynomial discriminant function has been trained
by a gradient descent procedure, the weights of the Adaline will represent an approxi-
mation to the coefficients in a multi-dimensional Taylor series expansion of the desi-
red response function.

Likewise, if appropriate trigonometric terms are used in place of the polynomialpre-
processor, the Adaline’s weight solution will approximate the terms in the (truncated)
multi-dimensional Fourier series decomposition of a periodic version of the desired
response function. The choice of preprocessing functions determines how well a net-
work will generalize for patterns outside the training set. Determining "good" functions
remains a focus of current research (70, 71). ’

Experience seems to indicate that unless the nonlinearities are chosen with care to

- suit the problem at hand, often better generalization can be obtained from networks
with more than one adaptive layer. In fact, one can view multi-layer networks as
single-layer networks with trainable preprocessors which are essentially self-optimi-
zing.

Madaline I: One of the earliest trainable layered neural networks with multiple adapti-
ve elements was the Madaline | structure of Widrow and Hoff (2, 72). Mathematical
analyses of Madaline | were developed in the Ph.D. theses of Ridgway (73), Hoff
(72), and Glanz (74). In the early 1960’s, a 1000-weight Madaline | was built out of
hardware (75) and used in pattern recognition research. The weights in this machine
were memistors, electrically variable resistors developed by Widrow and Hoff which
are adjusted by electroplating a resistive link (76).

Madaline | was configured in the following way. Retinal inputs were connected to a
layer of adaptive Adaline elements, the outputs of which were connected to a fixed
logic device that generated the system output. Methods for adapting such systems
were developed at that time. An example of this kind of network is shown in Fig. 5.
Two Adalines are connected to an AND logic device to provide an output.

With weights suitably chosen, the separating boundary in pattern space for the
system of Fig. 5 would be as shown in Fig. 6. This separating boundary also imple-
ments the Exclusive NOR function.

Madalines were constructed with many more inputs, with many more Adaline ele-
ments in the first layer, and with various fixed logic devices such as AND, OR, and
Majority vote-taker elements in the second layer. Those three functions, illustrated in
Fig. 7, are all threshold logic functions. The given weight values will implement these
three functions, but the weight choices are not unique.
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Figure 5: A two-Adaline form of Madaline
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Figure 6: Separating lines for Madaline of Fig. 5
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Figure 7: Fixed-weight Adaline implementations of AND, OR, and MAJ logic functions

Feedforward Networks: The Madalines of the 1960°s had adaptive first layers and
fixed threshold functions in the second (output) layers (73, 46). The feedforward neu-
ral networks of today often have many layers, and usually all layers are adaptve.The
backpropagation networks of Rumelhart et al (47) are perhaps the best-known exam-
ples of multi-layer networks.
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Remark 4: In Rumelhart et al’'s terminology, this would be called a 4-layer network,
following Rosenblatt’s convention of counting layers of signals, including the input
layer. For our purposes, we find it more useful to count only layers of computing ele-
ments. We do not count as a layer the set of input terminal points.

A fully-connected three-layer feedforward adaptive network is illustrated in Fig. 8.
In a fully-connected layered network, each Adaline receives inputs from every output
in the preceding layer.

Output
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Pattern 1K\ / \\\ Vector
Vector N7 NS
S S\ 'l""@ e Yk
X, XN X
kX oK) ,,fl,‘:@ A\.‘-‘S,’e 7 ;@ y
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X o\ VD). X2
: ZASRN
=/ T
Xox 4
output-layer
Xok Adalines
first-layer second-layer
Adalines Adalines

Figure 8: A three-layer adaptive neural network

During training, the response of each output element in the network is compared
with a corresponding desired response. Error signals associated with the output ele-
ments are readily computed, so adaptation of the output layer is straightforward. The
fundamental difficulty associated with adapting a layered network lies in obtaining
"error signals” for hidden layer Adalines, that is, for Adalines in layers other than the
output layer. The backpropagation and Madaline Il algorithms contain methods for
establishing these error signals.

A network’s capacity is of little utility unless it is accompanied by useful generaliza-
tions to patterns not presented during training. In fact, if generalization is not needed,
we can simply store the associations in a look-up table, and will have little need for a
neural network. The relationship between generalization and pattern capacity repre-
sents a fundamental tradeoff in neural network applications: reduced capacity transla-
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tes to improved generalization. The fact that the Adaline is unable to realize all func-
tions is in a sense a strength rather than the fatal flaw envisioned by some critics of
neural networks (77) because it helps limit the capacity of the device and thereby
improves its ability to generalize.

For good generalization, the training set should contain a number of patterns at
least several times larger than the network’s capacity. This can be understood intuiti-
vely by noting that if the number of degrees of freedom in a network (i.e. the number
of weights) is larger than the number of constraints associated with the desired res-
ponse function (i.e., the product of the number of patterns and the number of out-
puts), the training procedure will be unable to completely constrain the weights in the
network. A detailed analysis of generalization performance of signum networks as a
function of training set size is described in (78).

There is no reason why a feedforward network must have the layered structure of
Fig. 8. In Werbos’s development of the backpropagation algorithm (37), in fact, the
Adalines are ordered and each receives signals directly from each input component
and from the output of each preceding Adaline. Many other variations of the feedfor-
ward network are possible. An interesting area of current research involves a genera-
lized backpropagation method which can be used to train "high order" or “sigma-pi*
networks that incorporate a polynomial preprocessor for each Adaline (47, 79).

A Nonlinear Classifier Application: Neural networks have been used successfully
in a wide range of applications. To gain some insight about how neural networks are
trained and what they can be used to compute, it is instructive to consider Sejnowski-
and Rosenberg’s 1986 NETtalk demonstration (51, 52). With the exception of work on
the traveling salesman problem with Hopfield networks (80), this was the first neural
network application since the 1960’s to draw widespread attention. NETtalk is a two-
layer feedforward sigmoid network with 80 Adalines in the first layer and 26 Adalines
in the second layer. The network is trained to convert text into phonetically correct
speech, a task well suited to neural implementation. The pronunciation of most
words follows general rules based upon spelling and word context, but there are
many exceptions and special cases. Rather than programming a system to respond
properly to each case, the network can learn the general rules and special cases by
example. »

One of the more remarkable characteristics of NETtalk is that it learns to pronoun-
ce words in stages suggestive of the learning process in children. When the output of
NETtalk is connected to a voice synthesizer, the system makes babbling noises
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during the early stages of the training process. As the network learns, it next con-
quers the general rules, and like a child, tends to make a lot of errors by using these
rules even when not appropriate. As the training continues, however, the network
eventually abstracts the exceptions and special cases and is able to produce intelli-
gible speech with few errors. '

The operation of NETtalk is surprisihgly simple. Its input is a vector of seven cha-
racters (including spaces) from a transcript of text, and its output is phonetic informa-
tion corresponding to the pronunciation of the the center (fourth) character in the
seven-character input field. " The other six characters provide context which helps
determine the desired phoneme. To read text, the seven character window is scan-
ned across a document in computer memory and the network generates a sequence
of phonetic symbols which can be used to control a speech synthesizer. Each of the
seven characters at the network’s input is a 29-component binary vector, with each
component representing a different alphabetic character or punctuation mark. A one
is placed in the component associated with the represented character while all other
components are set to zero.

The system’s 26 outputs correspond to 23 articulatory features and 3 additional
features which encode stress and syllable boundaries. When training the network,
the desired response vector has zeros in all components except those which corres-
pond to the phonetic features associated with the center character in the input field.
In one experiment, Sejnowski and Rosenberg had the system scan a 1024-word tran-
script of phonetically transcribed continuous speech. With the presentation of each
seven-character window, the system’s weights were trained by the backpropagation
algorithm in response to the network’s output error. After roughly 50 presentations of
the entire training set, the network was able to produce accurate speech from data
the network had not been exposed to during training.

Back‘propagation is not the only technique that might be used to train NETtalk. In
other experiments, the slower Boltzmann learning method was used, and, in fact,
Madaline Rule Il could be used as well. Likewise, if the sigmoid network was repla-
ced by a similar signum network, Madaline Rule Il would also work, although more
first-layer Adalines would likely be needed for comparable performance.

The remainder of this paper develops and compares various adaptive algorithms
for training Adalines and artificial neural networks to solve classification problems
such as NETtalk. These same algorithms can be used to train networks for other pro-
blems such as those involving nonlinear control (50), system identification (50, 81),
signal processing (30), or decision making (55). '
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3. ADAPTATION - THE MINIMAL DISTURBANCE PRINCIPLE

The iterative algorithms described in this paper are all designed in accord with a
single underlying principle. These techniques - the two LMS algorithms, Mays’s
rules, and the Perceptron procedure for training a single Adaline, the MRI rule for trai-
ning the simple Madaline, as well as MRII, MRIIl, and backpropagation techniques for
training multi-layer Madalines - all rely upon the principle of minimal disturbance: {\it
Adapt to reduce the output error for the current training pattern, with minimal distur-
bance to responses already learned. Unless this principle is practiced, it is difficult to
simultaneously store the required pattern responses. The minimal disturbance princi-
ple is intuitive. It was the motivating idea that led to the discovery of the LMS algo-
rithm and the Madaline rules. In fact, the LMS algorithm had existed for several
months as an error reduction rule before it was discovered that the algorithm uses an
instantaneous gradient to follow the path of steepest descent and minimize the mean-
square-error of the training set. It was then given the name "LMS" (Least Mean
Square) algorithm.

4. ERROR CORRECTION RULES - SINGLE THRESHOLD ELEMENT

As adaptive algorithms evolved, principally two kinds of on-line rules have come to
exist. One kind, error correction rules, alter the weights of a network to correct a cer-
tain proportion of the error in the output response to the present input pattern. The
other kind, gradient rules, alter the weights of a network during each pattern presen-
tation by gradient descent with the objective of reducing mean-square-error, aver-
aged over all training patterns. Both types of rules invoke similar training procedures.
Because they are based upon different objectives, however, they can have signifi-
cantly different learning characteristics. -

Error correction rules, of necessity, often tend to be ad hoc. They are most often
used when training objectives are not easily quantified, or when a problem does not
lend itself to tractable analysis. A common application, for instance, concerns training
neural networks that contain discontinuous functions. An exception is the a-LMS
algorithm, an error correction rule which has proven to be an extremely useful techni-
que for finding solutions to well-defined and tractable linear problems.

We begin‘ with error correction rules applied initially to single Adaline elements,
and then to networks of Adalines.

B N S S
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4.1 Linear Rules

Linear error correction rules alter the weights of the adaptive threshold element with
each pattern presentation to make an error correction which is proportional to the
error itself. The one linear rule, a-LMS, is described next.

The o~-LMS algorithm: The o-LMS algorithm or Widrow-Hoff delta rule applied to the
adaptation of a single Adaline (Fig. 2) embodies the minimal disturbance principle.
The weight update equation for the original form of the algorithm can be written as

P (2)

The time index or adaptation cycle number is k. Wy, 4 is the next value of the weight
vector, Wy is the present value of the weight vector, and X is the present input pat-
tern vector. The present linear error g, is defined to be the difference between the
desired response dy and the linear output sk£W?(F Xk before adaptation:

€k é dk - W{Xk

(3)
Changing the weights yields a corresponding change in the error:
Aey = A(dy — WTX,) = -XTAW,. a (4)
In accordance with the a-LMS rule of Eq. (2), the weight change is as f,oilows:
AWk = Wk+] - Wk = afﬁl;. ‘ - .
1 Xk | . (5)
Combining Egs. (4) and (5), we obtain
T
Aek —(Xckxk ?k = —Q€L.
el (6)

Therefore, the error is reduced by a factor of o as the weights are changed while hol-




152 B. Widrow, M.A. Lehr

ding the input pattern fixed. Presenting a new input pattern starts the next adaptation
cycle. The next error is then reduced by a factor of a, and the process continues. The
initial weight vector is usually chosen to be zero and is adapted until convergence. In
nonstationary environments, the weights are generally adapted continually.

The choice of a controls stability and speed of convergence (30). For statistically
stationary input distributions, stability is ensured if

O<a<?2 , (7)

Making o greater than 1 generally does not make sense, since the error would be
over corrected. Total error correction comes with o = 1. A practical range for a. is

0.1<a<1.0 - (8)

This algorithm is self-normalizing in the sense that the choice of o. does not depend
on the magnitude of the input signals. The weight update is collinear with the input
pattern and of a magnitude inversely proportional to IXkIQ. With binary +/- 1 inputs,
IXkl2 is equal to the number of weights and does not vary from pattern to pattern. If
the binary inputs are the usual 1 and 0, no adaptation occurs for weights with 0
inputs, while with +/- 1 inputs, all weights are adapted each cycle and convergence
tends to be faster. For this reason, the symmetric inputs +1 and -1 are generally pre-
ferred.

The a-LMS algorithm corrects error and if all input patterns are all of equal length, it
minimizes mean-square-error (30). The algorithm is best known for this property.

4.2 Nonlinear Rules

The a-LMS algorithm is a linear rule which makes error corrections that are proportio-
nal to the error. It is known (82) that in some cases this linear rule may fail to separa-
te training patterns that are linearly separable. Where this creates difficulties,
nonlinear rules may be used. In the next sections, we describe early nonlinear rules
which were devised by Rosenblatt (83, 5) and Mays (82). These nonlinear rules also
make weight vector changes collinear with the input pattern vector (the direction
which causes minimal disturbance), changes which are based on the linear error but
are not directly proportional to it.

T RS N R S
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The Perceptron Learning Rule: The Rosenblatt a-Perceptron (83, 5), diagrammed
in Fig. 9, processed input patterns with a first layer of sparse randomly-connected
fixed logic devices. The outputs of the fixed first layer fed a second layer which consi-
sted of a single adaptive linear threshold element. Other than the convention that its
input signals were {1,0} binary, and that no bias weight was included, this element is
equivalent to the Adaline element. The learning rule for the a-Perceptron is very simi-
lar to LMS, but its behavior is in fact quite different.

Fixed Random
Inputs to

Weights
Adaptive
X Element
o1 /

Analog-
Yalued
Retina Output
Input Decision
Patterns Yy
{+1,-1}
Adaptive
d Threshold
Desired Response Element
(+1,'1}
Sparse Random Fixed Threshold
Connections Elements

Figure 9: Rosenblatt’s a-Perceptron

It is interesting to note that Rosenblatt’s Perceptron learning rule was first presen-
ted in 1960 (83), and Widrow and Hoff's LMS rule was first presented the same year,
a few months later (59). These rules were developed independently in 1959.

The adaptive threshold element of the a-Perceptron is shown in Fig. 10. Adapting
with the Perceptron rule makes use of the "quantiZer error* gy, defined to be the dif-
ference between the desired response and the output of the quantizer

€x= dx — Y.
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Figure 10: The adaptive threshold element of the Perceptron

The Perceptron rule, sometimes called the Perceptron Convergence Procedure,
does not adapt the weights if the output decision yy is correct, i.e. if g=0 If the output
decision disagrees with the binary desired response dy, however, adaptation is effec-
ted by adding the input vector to the weight vector when the error gy is positive, or
subtracting the input vector from the weight vector when the error g is negative.
Thus, half the product of the input vector and the quantizer error ¢ is added to the
weight vector. The Perceptron rule is identical to the a-LMS algorithm, except that
with the Perceptron rule, half of the quantizer error, g,/2, is used in place of the nor-
malized linear error ak/le12 of the a-LMS rule. The Perceptron rule is nonlinear in
contrast to the LMS rule which is linear (compare Figs. 2 and 10). Nonetheless, the
Perceptron rule can be written in a form which is very similar to the a-LMS rule of Eq.

(2):
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~

[
Wiy = Wi+ a 5 Xk-‘ (10)

Rosenblatt normally set o to one. In contrast to a-LMS, the choice of o does not
affect the stability of the Perceptron algorithm, and it affects convergence time only if
the initial weight vector is nonzero. Also, while a-LMS can be used with either analog
or binary desired responses, Rosenblatt’s rule can be used only with binary desired
responses.

The Perceptron rule stops adapting when the training patterns are correctly sepa-
rated. There is no restraining force controlling the magnitude of the weights, howe-
ver. The direction of the weight vector, not its magnitude, determines the decision
function. The Perceptron rule has been proven to be capable of separating any linear-
ly separable set of training patterns (5, 84, 46, 82). If the training patterns are not
linearly separable, the Perceptron algorithm goes on forever, and often does not yield
a low-error solution, even if one exists. In most cases, if the training set is not sepa-
rable, the weight vector tends to gravitate toward zero

Remark 5: This results because the length of the weight vector decreases with each
adaptation that does not cause the linear output sy to change sign and assume a
magnitude greater than that before adaptation. Although there are exceptions, for
most problems this situation occurs only rarely if the weight vector is much longer
than the weight increment vector.

so that even if o is very small, each adaptation can dramatically affect the swit-
ching function implemented by the Perceptron.

This behavior is very different from that of the a-LMS algorithm. Continued use of
a-LMS does not lead to an unreasonable weight solution if the pattern set is not
linearly separable. Nor, however, is this algorithm guaranteed to separate any linear-
ly separable pattern set. a-LMS typically comes close to achieving such separation,
but its objective is different, i.e. error reduction at the linear output of the adaptive
element. '

Rosenblatt also introduced variants of the fixed-increment rule that we have dis-
cussed thus far. A popular one was the absolute-correction version of the Perceptron.
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Remark 6: The terms "fixed-increment" and "absolute correction" are due to Nilsson
(46). Rosenblatt referred to methods of these types, respectively, as quantized and
non-quantized learning rules.

This rule is identical to that stated in Eq. (10) except the increment size o is chosen
with each presentation to be the smallest integer which corrects the output error in
one presentation. If the training set is separable, this variant has all the characteri-
stics of the fixed-increment version with a set to 1, except that it usually reaches a
solution in fewer presentations.

Mays’s Algorithms: In his Ph.D. thesis, (82), C. H. Mays described an "increment
adaptation" rule

Remark 7: The increment adaptation rule was proposed by others before Mays,
though from a different perspective (84)

and a "modified relaxation adaptation” rule. The fixed-increment version of the
Perceptron rule is a special case of the increment adaptation rule.

Increment adaptation, in its general form, involves the use of a "dead zone" for the
linear output s equal to +/- y about zero. All desired responses are +/- 1. Refer to
Fig. 10. If the linear output sy falls outside the dead zone (Isy| > v) , adaptation follo-
ws a normalized variant of the fixed-increment Perceptron rule (with a/le12 used in
place of a). If the linear output falls within the dead zone, whether or not the output
response yy is correct, the weights are adapted by the normalized variant of the
Perceptron rule as though the output response y, had been incorrect. The weight
update rule for Mays'’s increment adaptation algorithm can be written mathematically
as

Wk+aé7c2|_§il—z if [sg| > 7
Wk+1=

Wi + adkl—x-)—(:F if [sk‘ <7

(1)

where g is the quantizer error of Eq. (9).
-With the dead zone y = 0, Mays's increment adaptation algorithm reduces to a nor-
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malized version of the Perceptron rule (10). Mays proved that if the training patterns
are linearly separable, increment adaptation will always converge and separate the
patterns in a finite number of steps. He also showed that use of the dead zone redu-
ces sensitivity to weight errors. If the training set is not linearly separable, Mays’s
increment adaptation rule typically performs much better than the Perceptron rule
because a sufficiently large dead zone tends to cause the weight vector to adapt
away from zero when any reasonably good solution exists. In such cases, the weight
vector may sometimes appear to meander rather aimlessly, but it will typically remain
in a region associated with relatively low average error. :

The increment adaptation rule changes the weights with increments that generally
are not proportional to the linear error, g. The other Mays rule, modified relaxation, is
closer to a-LMS in its use of the linear error g,. Refer to Fig. 2. The desired response
and the quantizer output levels are binary +/- 1. If the quantizer output yj is wrong or
if the linear output s falls within the dead zone +/- v, adaptation foilows a-LMS to
reduce the linear error. If the quantizer output yy is correct and the linear output sy
falls outside the dead zone, the weights are not adapted. The weight update rule for
this algorithm can be written as

W, if €4= 0 and [s;| > v

Wi =

. X '
Wi + aekp(fﬁ otherwise (12)

where, €k is the quantizer error of Eq. (9).

If the dead zone vy is set to aq this algorithm reduces to the a-LMS algorithm (2)
Mays showed that, for dead zone 0 <y < 1, and learning rate 0 < . < 2, this algorithm
will converge and separate any linearly separable input set in a finite number of
steps. If the training set is not linearly separable, this algorithm performs much like
Mays’s increment adaptation rule.

Mays's two algorithms achieve similar pattern separation results. The choice of o
does not affect stability, although it does affect convergence time. The two rules differ
in their convergence properties but there is no consensus on which is the better algo-
rithm. Algorithms like these can be quite useful, and we feel that there are many more
to be invented and analyzed. The a-LMS algorithm, the Perceptron procedure, and
Mays'’s algorithms can all be used for adapting the single Adaline element or they can
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be incorporated into procedures for adapting networks of such elements. Multi-layer

network adaption procedures which use some of these aIgdrithms will be discussed

below.

5. ERROR CORRECTION RULES - MULTI-ELEMENT NETWORKS

The algorithms discussed next are the Widrow-Hoff Madaline rule from the early
1960’s, now called Madaline Rule | (MRI), and Madaline Rule ll, (MRII) developed by
Widrow and Winter in 1987.

5.1 Madaline Rule |

The MRI rule allows the adaptation of a first layer of hard-limited (signum) Adaline
elements whose outputs provide inputs to a second layer, consisting of a single fixed
threshold logic element which may be, for example, the OR gate, AND gate, or
Majority Vote Taker discussed previously. The weights of the Adalines are initially set
to small random values. '

Fig. 11 shows a Madaline | architecture with five fully connected first-layer
Adalines. The second layer is a Majority element (MAJ). Because the second-layer
logic element is fixed and known, it is possible to determine which first-layer Adalines
can be adapted to correct an output error. The Adalines in the first layer assist each
other in solving problems by automatic Ioad-Sharing.

One procedure for training the network in Fig. 11 follows. A pattern is presented,
and if the output response of the Majority element matches the desired response, no
adaptation takes place. However, if, for instance, the desired response is +1 and
three of the five Adalines read -1 for a given input pattern, one of the latter three must
be adapted to the +1 state. The element that is adapted by MRI is the one whose
linear output sy is closest to zero - i.e., the one whose analog response is closest to
the desired response. If more of the Adalines were originally in the -1 state, enough of
them are adapted to the +1 state to make the majority decision equal +1. The ele-
ments adapted are those whose linear outputs are closest to zero. A similar procedu-
re is followed when the desired response is -1 When adapting a given element, the
weight vector can be moved in the LMS direction far enough to reverse the Adaline’s
output (absolute correction or "fast" learning), or it can be adapted by the small incre-
ment determined by the a-LMS algorithm (statistical or "slow" learning). The one
desired response, dy, is used for all Adalines that are adapted. The procedure can
also be modified to allow one of Mays's rules to be used. In that event, for the case
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we have considered (Majority output element), adaptations take place if at least half
of the Adalines either have outputs which differ from the desired response or have
analog outputs which are in the dead zone. By setting the dead zone of Mays’s incre-
ment adaptation rule to zero, the weights can also be adapted by Rosenblatt’s
Perceptron rule.

Adalines
Input @ 4—-—-—{‘191}
Pattern
Vector \
X , \ {-1,1} y Output
{ B Decision
AD}— A
Linear
N - Outputs
of the
A} Adalines
Training :
— I~ Job
Command .
Signals Assigner
Desired
Response
d L1

Figure 11: A five-Adaline example of the Madaline I architecture

Differences in initial conditions and the results of subsequent adaptation cause the
various elements to take "responsibility" for certain parts of the training problem. The
basic principle of load sharing is summarized thus: Assign responsibility to the
Adaline or Adalines that can most easily assume it.

In Fig. 11, the "job assigne”, a purely mechanized process, assigns responsibility
during training by transferring the appropriate adapt commands and desired respon-
se signals to the selected Adalines. The job assigner utilizes linear-output informati-
on. Load sharing is important, since it results in the various adaptive elements
developing individual weight vectors. If all the weights vectors were the same, there
would be no point in having more than one element in the first layer.

When training the Madaline, the pattern presentation sequence should be random.
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Experimenting with this, Ridgway (79) found that cyclic presentation of the patterns
could lead to cycles of adaptation. These cycles would cause the weights of the enti-
re Madaline to cycle, preventing convergence.

The MRI rule obeys the "minimal disturbance principle" in the following sense. No
more Adaline elements are adapted than necessary to correct the output decision
and any dead-zone constraint. The elements whose linear outputs are nearest to
zero are adapted because they require the smallest weight changes to reverse their
output responses. Furthermore, whenever an Adaline is adapted, the weights are
changed in the direction of its input vector, providing the requisite error correction with
minimal weight change.

5.2 Madaline Rule I

The MRI rule was recently extended to allow the adaptation of multi-layer binary net-
works by Winter and Widrow with the introduction of Madaline Rule Il (MRIl) (43, 85,
86). A typical two-layer MRII network is shown in Fig. 12. The weights in both layers
are adaptive.

Input
Pattern Perturbation
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V§t0r Output
Vector
i =5 | Y,
~ -
= L i
x2k1“.’ .
Sum Squared
Error2
Xa\/ '—'F €k
(4 x Hamming
Error)
XK
= - -
' = 1 {+1,-1} Y
x .
* = dir d

Desired Responses
{+1,-1}

Figure 12: Typical two-layer Madaline Il architecture
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Training with the MRII rule is similar to training with the MRI algorithm. The weights
are initially set to small random values. Training patterns are presented in a random
sequence. If the network produces an error during a training presentation, we begin
by adapting first-layer Adalines. By the "minimal disturbance principl", we select the
first-layer Adaline with the smallest linear output magnitude and perform a "trial adap-
tation" by inverting its binary output. This can be done without adaptation by adding a
perturbation As of suitable amplitude and polarity to the Adaline’s sum (refer to Fig. -
(12)). If the output Hamming error is reduced by this bit inversion, i.e. if the number of
output errors is reduced, the perturbation As is removed and the weights of the selec-

~ ted Adaline element are changed by a-LMS in a direction collinear with the corre-

sponding input vector - the direction which reinforces the bit reversal with minimal
disturbance to the weights. Conversely, if the trial adaptation does not improve the
network response, no weight adaptation is performed.

After finishing with the first element, we perturb and update other Adalines in the
first layer which have "sufficiently small* linear-output magnitudes. Further error
reductions can be achieved, if desired, by reversing pairs, triples, etc., up to some
predetermined limit. After exhausting possibilities with the first layer, we move on to
the next layer and proceed in a like manner. When the final layer is reached, each of
the output elements is adapted by a-LMS. At this point, a new training pattern is sel-
ected at random and the procedure is repeated. The goal is to ,reduce Hamming
error with each presentation, thereby hopefully minimizing the average Hamming
error over the training set. Like MRI, the procedure can be modified so that adaptati-
ons follow an absolute correction rule or one Mays’s rules rather than a-LMS. Like
MRI, MRII can "hang up" on local optima.

6. STEEPEST-DESCENT RULES - SINGLE THRESHOLD ELEMENT

Thus far, we have described a variety of adaptation rules that act to reduce a given
proportion of the error with the presentation of each training pattern. Often, however,
the objective of adaptation is to reduce error averaged in some way over the training
set. The most common error function is mean-square-error (MSE), although in some
situations other error criteria may be more appropriate (87, 88, 89). The most popular
approaches to mean-square-error reduction in both single-element and multi-element
networks are based upon the method of steepest descent. More sophisticated gradi-
ent approaches such as quasi-Newton (30, 90, 91, 92) and conjugate gradient (92,
93) techniques often have better convergence properties, but the conditions under
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which the additional complexity is warranted are not generally known. The discussi-
on that follows is restricted to minimization of MSE by the method of steepest descent
(94, 95). More sophisticated learning procedures usually require many of the same
computations used in the basic steepest-descent procedure.

Adaptation of a network by steepest-descent starts with an arbitrary initial value
W for the system’s weight vector. The gradient of the mean-square-error function is
measured and the weight vector is altered in the direction corresponding to the nega-
tive of the measured gradient. This procedure is repeated, causing the MSE to be
successively reduced on average and causing the weight vector to approach a locally
optimal value. The method of steepest descent can be described by the relation

Wi = Wk+l‘(—vk) , (13)

where p is a parameter that controls étability and rate of convergence, and V¥ is the
value of the gradient at a point on the MSE surface corresponding to W = Wy.

To begin, we derive rules for steepest-descent minimization of the MSE assocuated
with a single Adaline element. These rules are then generallzed to apply to full-blown
neural networks. Like error correction rules, the most practical and efficient steepest-
descent rules typically work with one pattern at a time. They minimize mean-square-
error, approximately, averaged over the entire set of training patterns.

6.1 Linear Rules

Steepest-descent rules for the single threshold element are said to be linear if weight
changes are proportional to the linear error, the difference between the desired res-
ponse dy and the linear output of the element, s,..

Mean-Square-Error Surface of the Linear Combiner: In this section we demonstra-
te that the MSE surface of the linear combiner of Fig. 1 is a quadratic function of the
weights, and is thus easily traversed by gradient descent.

Let the input pattern Xy and the associated desired response dj. be drawn from a
statistically stationary population. During adaptation, the weight vector varies so that
even with stationary inputs, the output sy and error g will generally be nonstationary.
Care must be taken in defining the mean-square-error since it is time-varying. The
only possibility is an ensemble average, defined below.
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At the kih iteration, let the Weight vector be Wy.. Squaring and expanding Eq. (3)
yields

¢ = (d—XIW,)" (14)

= di -2 XTW, + WIX, XTw, (15)
Now assume an ensemble of identical adaptive linear combiners, each having the
same weight vector W at the kth iteration. Let each combiner have individual inputs
Xk and dy derived from stationary ergodic ensembles. Each combiner will produce

an individual error g represented by Eq. (15). Averaging Eq. (15) over the ensemble
yields

E[ei]wzwk = E|[d}] - 2E [:XT]| W, +

WIE [X.XT| W, (16)

Defining the vector P as the cross correlation between the desired response (a
scalar) and the X-vector

Remark 8: We assume here that X includes a bias component Xok=+1

then yields

PT é E [dkx,f] =F [d;‘,d;‘:z:u, S d},.’tnle
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The input correlation matrix R is defined in terms of the ensemble average

R £ E[XX]]

-
1 Trk e Tk
Tk T1xT1k «-. Z1kTpi
= FE
Tnk ZTokTik --- -’Bnk-'c;k J
- (18)

This matrix is real, symmetric, and positive definite, or in rare cases, positive semi-
definite. The mean-square-error g can thus be expressed as

>

€k

[Ci] w=w,

E
= E [d?‘] - 2PTW[¢ + W{RWk (19)

Note that the mean-square-error is a quadratic function of the weights. It is a con-
vex hyperparaboloidal surface, a function that never goes negative. Fig. 13-shows a
typical mean-square-error surface for a linear combiner with two weights. The positi-
on of a point on the grid in this figure represents the value of the Adaline’s two
weights. The height of the surface at each point represents the mean-square-error
over the training set when the Adaline’s weights are fixed at the values associated
with the grid point. Adjusting the weights involves descending along this surface
toward the unique minimum point (“the bottom of the bowl") by the method of stee-
pest descent. ' , )

The gradient ¥ of the mean-square-error function with W = W,_is obtained by ditf-
ferentiating Eq. (19):

8E|c:|

Bwqy

S
>

= —2P + 2RW,
BElczI

Bwng W=W, | (20)
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Figure 13: Typical mean-square-error surface of a linear combiner

This is a linear function of the weights. The optimal weight vector W*, generally
called the Wiener weight vector, is obtained from Eq. (20) by setting the gradient to
zero:

W = RP 1)

This is a matrix form of the Wiener-Hopf equation (96, 97, 98). In the next section
we examine u-LMS, an algorithm which enables us to obtain an accurate estimate of
W* without first computing R1andP.

The p-LMS Algorithm: The p-LMS algorithm works by performing approximate stee-
pest descent on the mean-square-error surface in weight space. Because itis a qua-
dratic function of the weights, this surface is convex and has a unique (global)
minimum.

Remark 9: Unless the autocorrelation matrix of the pattern vector set has m zero
eigenvalues, in which case the minimum MSE solution will be an m dimensional sub-
space in weight space (30).
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An instantaneous gradient based upon the square of the instantaneous linear error is

g
52 Fwox
e € _
V= aw, T
%
3“’»& (22)

LMS works by using this crude gradient estimate in place of the true gradient ¥ of
Eq. (20). Making this replacement into Eq. (13) yields

2
O¢€}

Wi = Wetn ("v")zw"—"awk (23)

The instantaneous gradient is used because it is readily available from a single
data sample. The true gradient is generally difficult to obtain. Computing it would
involve averaging the instantaneous gradients associated with all patterns in the trai-
ning set. This is usually impractical and almost always inefficient.

Performing the differentiation in Eq. (23) and replacing the linear error by definition
(3) gives

7]
Wk+1 = Wk—-2;1.6k5‘%
C W._s 9 (de — WIX,) ,
= k p,ck awk (24) .

Noting that dy and X are independent of Wy, yields

Wi = Wk+2peka (25)

This is the u-LMS algorithm. The learning constant p determines stability and con-
vergence rate. When the input distribution is stationary, which is guaranteed if the
training patterns are presented in random order, convergence of the mean and vari-
ance of the weight vector is ensured (99, 30) if and only if
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1
0<p< trace[R] (26)

where trace [R] = Z (diagonal elements of R) is the average signal power of the X -
vectors, i.e. E(XTX). With p set within this range,

Remark 10: A more restrictive range exists which ensures convergence of the weight
vector’s mean, but fails to guarantee convergence of its variance (30)

the p-LMS algorithm converges in the mean to W*, the optimal Wiener solution dis-
cussed above. A proof of this can be found in (30).

In the u-LMS algorithm, and other iterative steepest-descent procedures, use of
the instantaneous gradient is perfectly justified if the step size is small. For small U,
W will remain essentially constant over a relatively small number of training presenta-
tions, K. The total weight change during this period will be proportional to

_Ki:lﬁe_’%i ~ K lKE—I%
=o Wiy — K oW,

=0
o (152,
= '—I(a"w' X ("K— l=zo €k+l>
23
~ K ,

where £ denotes the mean-square-error function. Thus, on average the weights
follow the true gradient. It is shown in (30) that the instantaneous gradient is an
unbiased estimate of the true gradient.

Comparison of u-LMS and o-LMS: We have now presented two forms of the LMS
algorithm, o-LMS (2) in Section 4.1 and p-LMS (25) in the last section. They are very
similar algorithms, both using the LMS instantaneous gradient. a-LMS is self-norma-
lizing, with the parameter o determining the fraction of the instantaneous error to be
corrected with each adaptation. u-LMS is a constant-coefficient linear algorithm
which is considerably easier to analyze than a-LMS. Comparing the two, the a-LMS
algorithm is like the u-LMS algorithm with a continually variable learning constant.
Although o-LMS is somewhat more difficult to implement and analyze, it has been
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demonstrated experimentally to be a better algorithm than p-LMS when the eigenva-
lues of the input autocorrelation matrix, R, are highly disparate, giving faster conver-
gence for a given level of gradient noise

Remark 11: Gradient noise is the difference between the gradient estimate and the
true gradient

propagated into the weights. It will be shown next that u-LMS has the advantage
that it will always converge in the mean to the minimum mean-square-error solution,
while o-LMS may converge to a somewhat biased solution. We begin with o-LMS of

Eq. (20):

X
Wiy = Wk-!-a%—‘—';-
. (28)

Replacing the error with its definition (\ref{eq:errordef}) and rearranging terms yields

(de — W,{Xk)Xk
X[ ' (29)
de r Xk ) Xk
G wr Bk ) Bk
(X« 1kl ) 1 (30)

Wi = Wita

= Wk-l-a(

We define a new training set of pattern vectors and desired responses, {Xy,dk}, by
normalizing elements of the original training set as follows,

-

Remark 12: The idea of a normalized training set was suggested by Derrick Nguyen

= A Xk
Xy = —
T

~ A di
de = =

Eq. (30) then becomes

~

Wi = Wita (ik -wW{ ik) Xk (32)
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This is the p-LMS rule of Eq. (25) with 2u replaced by a. The weight adaptations cho-
sen by the a-LMS rule are equivalent to those of the pu-LMS algorithm presented with
a different training set.-.the normalized training set defined by (31). The solution that
will be reached by the pu-LMS algorithm is the Wiener solution of this training set,

W =(R)"P | (33)
where
~ ~ ~T ; : : »

is the input correlation matrix of the normalized traihing set and the vector

l%= E[‘iik] (35)

is the cross-correlation between the normalized input and the normalized desired
response. Therefore a-LMS converges in the mean to the Wiener solution of the nor-
malized training set. When the input vectors are binary with +/- 1 components, all
input vectors have the same magnitude and the two algorithms are equivalent. For
non-binary training patterns, however, the Wiener solution of the normalized training
set generally is no longer equal to that of the original problem, so a-LMS converges in
the mean to a somewhat biased version of the optimal least squares solution.

The idea of a normalized training set can also be used to relate the stable ranges
for the learning constants o and p in the two algorithms. The stable range for o in the
a-LMS algorithm given in Eq. (7) can be computed from the corresponding range for
K given in Eq. (26) by replacing R and p in Eq. (26) by R and o/2, respectively, and
then noting that trace [ﬁ] is equal to one: '

2
0 < a< —=-, Or
trace[R)

0 < a<‘ 2. . (36)
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6.2 Nonlinear Rules .
The Adaline elements considered thus far use at their outputs either hard-limiting
quantizers (signums), or no nonlinearity at all. The input-output mapping of the hard-
limiting quantizer is y=sgn(sy). Other forms of nonlinearity have come into use in the
past two decades, primarily of the sigmoid type. These nonlinearities provide satura-
tion for decision making, yet they have differentiable input-output characteristics that
facilitate adaptivity. We generalize the definition of the Adaline element to include the -
possible use of a sigmoid in place of the signum, and then determine suitable adapta-
tion algorithms.

Fig. 14 shows a "Sigmoid Adaline" element which incorporates a sigmoidal nonli-
nearity. The input-output relation of the sigmoid can be denoted by y,=sgm(sk). A
typical sigmoid function is the hyperbolic tangent:

— e~ 23k
yr = tanh(sg) = (}———i———)

1+ e2s @7)
‘Input Pattern
Vector Weight Vector
Linear
Output
- . Sigmoid
sigmoid Output
Linear
Error
Lo
Desired Response
Figure 14: Adaline with sigmoidal nonlinearity , 7

We shall adapt this Adaline with the objective of minimizing the mean square of the
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sigmoid error gy, defined as
€k é dk — Yk = dk — sgm(sk) - - (38)

Backpropagation for the Sigmoid Adaline: Our objective is to minimize E[(ek,)Z],
averaged over the set of training patterns, by proper choice of the weight vector:. To
accomplish this, we shall derive a backpropagation algorithm for the Sigmoid Adaline
element. An instantaneous gradient is obtained with each input vector presentation,
and the method of steepest descent is used to minimize error as was done with the p-
LMS algorithm of Eq. (25). ) ' ,

Referring to Fig. (14), the instantaneous gradient estimate obtained during presen-
tation of the kth input vector Xy is given by

_ 9(&)* — 2z, 0éx

vk . : Tl

Differentiating Eq. (38) yields

9%, dsgm(s) . Osi |
oW, = ow, ~ 9™ CHaw, |  40)
We may note that
s = XIW, (41)
Therefore,
aavss;k = X | | 42)

Substituting into Eq. (40) gives

agk _ ’
6Wk = —sgm (Sk)Xk . IR (43)
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Inserting this into Eq. (39) yields
Vk = —2€k3gm'(sk)xk (44)

Using this gradient estimate with the method of steepest descent provides a
means for minimizing the mean-square-error even after the summed signal sy goes
through the nonlinear sigmoid. The algorithm is

Wi = Wi+ pu(=Vy) (45)

= Wy + 2uérsgm’ (si)Xx (46)

Algorithm (40) is the backpropagation algorithm for the Sigmoid Adaline element.
The backpropagation name makes more sense when the algorithm is utilized in a
layered network, which will be studied below. Implementation of algorithm (46) is illu-
strated in Fig. 15. '

Input Pattern Weight Vector

Vector
+1®
X1k
x.® Y
o Sigmoid
Output
Xnke
AW, =
L LMS 2 Sk
Xy Algorithm k\“ x »
+
~ Desired
p 2u ERng'(Sk) dy Reess;;gflse

Figure 15: Implementation of backpropagation for the Sigmoid Adaline element
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If the sigmoid is chosen to be the hyperbolic tangent function (37), then the derivative
sgm “(sy) is given by

sgm’(sg) =

d(tanh(sy))
sk

Accordingly Eq. (46) becomes

Wk-H = Wi+ Q,ugk(l — yZ)Xk.

1~ (tanh(sy))? = 1 - y?

(47)

(48)

Madaline Rule Ill for the Sigmoid Adaline: The implementation of algorithm (46),
illustrated in Fig. 15, requires accurate realization of the sigmoid function and its deri-
vative function. These functions may not be realized accurately when implemented
with analog hardware. Indeed, in an analog network, each Adaline will have its own
individual nonlinearities. Difficulties in adaptation have been encountered in practice
with the backpropagation algorithm because of imperfections in the nonlinear func-

tions.
Input Pattern .
Vector Weight Vector
X, W,
1 — Wok Perturbation
* As
- Wik
X1k
s
-— Wik > k
X2k
®
°
[ ]
P Wnk
Xk
L [Aw Ay’ v
A As emory,
- LMS <.< >‘ . :
i ). ¢Y Algorithm leferenc’mg,
and Scaling

Figure 16: Implementation of the MRIII algorithm for the sigmoid -

d, Response
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To circumvent these problems, a new algorithm has been devised by David Andes for
adapting networks of Sigmoid Adalines. This is the Madaline Rule Il (MRIII) algo-
rithm.

The idea of MRIII for a Sigmoid Adaline is illustrated in Fig. 16. The derivative of
the sigmoid function is not used here. Instead, a small perturbation signal As is added
to the sum sy, and the effect of this perturbation upon output y; and error g is noted.
An instantaneous estimated gradient can be obtained as follows:

o _ 0@ _ 0@ 05 _ 8@y
KT OW, ~ 0Osp OWi  0dsp ¥ (49)

Since As is small,

. + A(&)?
Vk ’1. (_—([i—:_)—> Xk
‘ (50)
Another way to obtain an approximate instantaneous gradient by measuring the

effects of the perturbation As can be obtained from Eq. (49).

- 9(&)? . 0& . (A€k>
= =26 —Xp ~2 — ] X
Vi Osk X ck Jdsy k R As k

(61)

Accordingly, there are two forms of the MRIIl algorithm for the Sigmoid Adaline. .
They are based on the method of steepest descent, using the estimated instanta-
neous gradients:

A ~ \2
Wi =We—yp (‘(A_e:)") Xk
(52)
or,
. (A&
Wi = Wy — 20 (_&Zﬁ) X;. L
' (53)

For small perturbations, these two forms are essentially identical. Neither one
requires a priori knowledge of the sigmoid’s derivative, and both are robust with res-
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pect to natural variations, biases, and drift in the analog hardware. Which form to use
is a matter of implementational convenience. The algorithm of Eq. (52) is illustrated

in Fig. 16.
Regarding algorithm (53), some changes can be made to establish a point of inte-

reit. Note that, in accord with Eq.(38),

& =di — yx (54)
Adding the perturbation As causes a change in g equal to

A& = —Ayi | (55)
Now, Eq. (53) may bé rewritten as

A
Wi = Wi+ 26 (52 X,
$ (56)

Since As is small, the ratio of increments may be replaced by a ratio of differentials
finally giving

.
Wi ~ W, +2m5ﬁxk (57)
Sk

Wi + 2;z€ksgm'(sk)X;¢.‘ (58)

I

This is identical to the backpropagation algorithm (46) for the Sigmoid Adaline.
Thus, backpropagation and MRIIl are mathematically equivalent if the perturbation As
is small, but MRIIl is robust, even with analog implementations.

7. STEEPEST-DESCENT RULES - MULTI-ELEMENT NETWORKS

We now study rules for steepest-descent minimization of the MSE associated with
entire networks of Sigmoid Adaline elements. Like their single-element counterparts,
the most practical and efficient steepest-descent rules for multi-element networks
typically work with one pattern presentation at a time. We will describe two steepest-
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descent rules for multi-element sigmoid networks, backpropagation and Madaline
Rule 1.

7.1 Backpropagation for Networks
The publication of the backpropagation technique by Rumelhart et al (42) has unque-
stionably been the most influential development in the field of neural networks during
the past decade. In retrospect, the technique seems simple. Nonetheless, largely
because early neural network research dealt almost exclusively with hard-limiting
nonlinearities, the idea never occurred to neural network researchers throughout the
- 1960’s. The basic concepts of backpropagation are easily grasped. Unfortunately,
these simple ideas are often obscured by relatively intricate notation, so formal deri-
vations of the backpropagation rule are often tedious. We instead present a brief out-
line of the algorithm and illustrate how it works for the simple network shown in Fig.
17. The backpropagation technique is a nontrivial generalization of the single Sigmoid
- Adaline case of Section 6.2. When applied to multi-element networks, the backpro-
pagation technique adjusts the weights in the direction opposite the instantaneous
error gradient:

85?
82 Buwyk
A e
Vi= =t =
T oW
S
dwmk (59)

Now, however, Wi is a long m-component vector of all weights in the entire net-
work. The instantaneous sum squared error €k2 is the sum of the squares of the
errors at each of the Ny outputs of the network. Thus

=2 6 (60)
In the network example shown in Fig. 17, the sum square error is given by

€' =(d — 1)’ + (d2 — 1)’
| (61)
where we now suppress the time index k for convenience.
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In its simplest form, backpropagation training begins by presenting an input pattern
vector X to the network, sweeping forward through the system to generate an output
response vector Y, and computing the errors at each output. The next step involves
sweeping the effects of the errors backward through the network to associate a
“square error derivative” $\delta$ with each Adaline, computing a gradient from each
$\delta$, and finally updating the weights of each Adaline based upon the correspon-
ding gradient. A new pattern is then presented and the process'?is repeated. The
initial weight values are normally set to small random numbers. Th:é;ialgorithm will not
work properly with multilayer networks if the initial weights are either zero or poorly
chosen nonzero values.

Remark 13: Recently, Nguyen has discovered that a more sophisticated choice of
initial weight values in hidden layers can lead to reduced problems with local optima

and dramatic increases in network training speed (100). Experimental evidence sug- -

gests that it is advisable to choose the initial weights of each hidden layer in a quasi-
random manner which ensures that at each position in a layer’s input space the
outputs of all but a few of its Adalines will be saturated, while ensuring that each
Adaline in the layer is unsaturated in some region of its input space. When this
method is used, the weights in the output layer are set to small random values.

We can get some idea about what is involved in the calculations associated with
the backpropagation algorithm by examining the network of Fig. 17. Each of the five
large circles represents a linear combiner, as well as some associated signal paths
for error backpropagation, and the corresponding adaptive machinery for updating
the weights. This detail is shown in Fig. 18. The solid lines in these diagrams repre-
sent forward signal paths through the network, and the dotted lines represent the
separate backward paths that are used in association with calculations of the square
error derivatives 8. From Fig. 17, we see that the calculations associated with the
backward sweep are of a, complexity which is roughly equal to that represented by
the forward pass through the network. The backward sweep requires the same num-
ber of function calculations as the forward sweep, but fewer weight multiplications.

As stated above, after a pattern has been presented to the network, and the res-
ponse error of each output has been calculated, the next step of the backpropagation
élgorithm involves finding the instantaneous square error derivative § associated with
each summing junction in the network. The square error derivative associated with
the j th Adaline in layer / is defined as
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3 0) :
2 Os; (62)

Remark 14: In Fig. 17, all notation follows the convention that superscripts within
parentheses indicate the layer number of the associated Adaline or input node, while
subscripts identify the associated Adaline(s) within a layer.

Each of these derivatives in essence tells us how sensitive the sum square output
error of the network is to changes in the linear output of the associated Adaline ele-

ment.

o Xy Algorithm

Figgre 18: Detail of linear combiner and associated circuitry in backpropagation net-
work.

The derivation of & for hidden layer elements is not difficult and can be found in
many publications (101, 47). For our purposes, however, the easiest way to find
values of 4 for these units is to follow the schematic diagram of Fig. 17. For instance,
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we find from this picture that &4 (2), the value & corresponding to the first Adaline in
the second layer is given simply by

6§ = (d - .s;gm(s1 ))) sgm (3(2) (63)

Likewise, the procedure for finding 8, the square error derivative associated with
a given Adaline in hidden layer /, involves respectively multiplying each derivative
8(H1) associated with each element in the layer immediately downstream from a
given Adaline by the weight which connects it to the given Adaline. These weighted
square error derivatives are then added together, producing an error term el which,
in turn, is multiplied by sgm’(s(/)), the derivative of the given Adaline’s sigmoid func-
tion at its current operating point. If a network has more than two layers, this process
of backpropagating the instantaneous square error derivatives from one layer to the
immediately preceding layer is successively repeated until a square error derivative &
is computed for each Adaline in the network.

We now have a general method for finding a derivative & for each Adaline element
in the network. The next step is to use these &'s to obtain the corresponding gradi-
ents. Consider an Adaline somewhere in the network which, during presentation k,
has a weight vector Wy, an input vector Xy, and a linear output sy = WkTXk. The
instantaneous gradient for this Adaline element is

. oc?
Vi = ok
Wi (64)

This can be written as

ﬁk — 662 _ 6_6,2‘ aSk
OW, s IW, (65)

Note that W and X are independent so

631, _ BW{Xk _ x .
6Wk - aWk - k (66)

Therefore,

m ~n N rs
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2
Vi = Qﬂxk '
Osx (67)

For this element,

, 10¢2
8k —=—=
C20s (68)
Accordingly,
Vi = 26X

(69)

Updating the weights of the Adaline element using the method of steepest descent
with the instantaneous gradient is a process represented by

Wip = Wi + ;t(—@k) = Wy + 2ub X;. 70)

Thus, after backpropagating all square error derivatives, we complete a backpro-
pagation iteration by adding to each weight vector the corresponding input vector
scaled by the associated square error derivative. Eq. (70) and the means for finding
8y comprise the general weight update rule of the backpropagation algorithm.

There is a great similarity between Eq. (70) and the p-LMS algorithm (25), but one
should view this similarity with caution. The quantity §, defined as a squared error
derivative, might appear to play the same role in backpropagation as that played by
the error in the u-LMS algorithm. However, §, is not an error. Adaptation of the given
Adaline is effected to reduce the squared output error ezk not J of the given Adaline
or of any other Adaline in the network. The objective is not to reduce the §;’s of the
network, but to reduce ezk at the network output.

It is interesting to examine the weight updates that backpropagation imposes on
the Adaline elements in the output layer. Substituting Eq. (63) into Eq. (70) reveals
that the Adaline which provides output y in Fig. 17 is updated by the rule

Wi = Wi + 26 sgm’(s]”) X, (71)
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This rule turns out to be identical to the single Adaline version (46) of the backpropa-
gation rule. This is not surprising since the output Adaline is provided with both input
signals and desired responses, so its training circumstance is the same as that expe-
rienced by an Adaline trained in isolation.

There are many variants of the backpropagation algorithm. Sometimes, the size of
$\mu$ is reduced during training to diminish the effects of gradient noise in the
wéights. Another extension is the momentum technique (42) which involves including
in the weight change vector AW, of each Adaline a term proportional to the corre-
sponding weight change from the previous iteration. That is, Eq. (70) is replaced by a
pair of equations:

AW, = 2u(1 — )6 Xk + 1AW, ' (72)

Wk+1 = Wi+ AW,. (73)

where the momentum constant 0 < n < 1 is in practice usually set to something
around 0.8 or 0.9. v

The momentum technique low-pass filters the weight updates and thereby tends to
resist erratic weight changes due either to gradient noise or to high spatial frequen-
cies in the mean-square-error surface. The factor 1-n in Eq. (72) is included to give
the filter a DC gain of unity so that the learning rate i does not need to be stepped
down as the momentum constant n is increased. A momentum term can also be
added to the update equations of other algorithms discussed in this paper. A detailed
analysis of stability issues associated with momentum updating for the pu-LMS algo-
rithm, for instance, has been described by Shynk and Roy (102).

In our experience, the momentum technique used alone is usually of little value.
We have found, however, that it is often useful to apply the technique in situations
that require relatively "clean”

Remark 15: "Clean" gradient estimates are those with little gradient noise.

gradient estimates. One case is a normalized weight update equation which
makes the network’s weight vector move the same Euclidean distance with each ite-
ration. This can be accomplished by replacing Egs. (72) and (73) with

Ar = 6Xi+nlk (74)

< T < M

a

aO

- OO T M
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AV

) Vi VY L

all Adalines (75)

Wi = Wi+

where again 0 < n < 1. The weight updates determined by Egs. (74) and (75) can
help a network find a solution when a relatively flat local region in the mean-square-
error surface is encountered. The weights move by the same amount whether the
surface is flat or inclined. It is reminiscent of a-LMS because the gradient term in the
weight update equation is normalized by a time-varying factor. The weight update
rule could be further modified by including terms from both techniques associated
with Egs. (72) through (75). Other methods for speeding up backpropagation training
include Fahlman’s popular quickprop method (103), as well as the delta-bar-delta
approach reported in an excellent paper by Jacobs (104).

Remark 16: Jacobs’s paper, like many other papers in the literature, assumes for
analysis that the true gradients rather than instantaneous gradients are used to upda-
te the weights, i.e. that weights are changed periodically, only after all training pat-
terns are presented. This eliminates gradient noise but can slow down training
enormously if the training set is large. The delta-bar-delta procedure in Jacobs's
paper involves monitoring changes of the true gradients in response to weight chan-
ges. It should be possible to avoid the expense of computing the true gradients expli-
citly in this case by instead monitoring changes in the outputs of, say, two momentum
filters with different time constants.

One of the most promising new areas of neural network research involves back-
propagation variants for training various recurrent (signal feedback) networks.
Recently, backpropagation rules have been devised for training recurrent networks to
learn static associations (105, 106). More interesting is the on-line technique of
Williams and Zipser (107) which allows a wide class of recurrent networks to learn
dynamic associations and trajectories. A more general and computationally viable
variant of this technique has been advanced by Narendra and Parthasarathy (81).
These on-line methods are generalizations of a well-known steepest-descent algo-
rithm for training linear IIR filters (108, 30).

An equivalent technique which is usually far less computationally intensive, but
best suited for off-line computation also exists (37, 42, 109). This approach, called
"backpropagation through time" has been used by Nguyen and Widrow (30) to enable
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a neural network to learn without a teacher how to back up a computer-simulated trai-
ler truck to a loading dock (Fig. 19). This is a highly nonlinear steering task and it is
not yet known how to design a controller to perform it. Nevertheless, with just 6 input

initial state

~ time-lapse \

]

final state

Figure 19: Example Truck Backup Sequence.

providing information about the current position of the truck, a two-layer neural net-
work with only 26 Adalines was able to learn of its own accord to solve this problem.
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Once trained, the network could successfully back up the truck from any initial positi
on and orientation in front of the loading dock. -

7.2 Madaline Rule Il for Networks

It is difficult to build neural networks with analog hardware which can be trained effec-
tively by the popular backpropagation technique. Attempts to overcome this difficulty
have led to the development of the MRIII algorithm. A commercial analog neurocom-
puting chip based primarily on this algorithm has already been devised (110). The
method described in this section is a generalization of the single Adaline MRIII techni-
que (52). The multi-element generalization of the other single element MRIII rule (53)
is described in (111).

The MRIIll algorithm can be readily described by referring to Fig. 20. Although this
figure shows a simple two-layer feedforward architecture, the procedure to be develo-
ped will work for neural networks with any number of Adaline elements in any feedfor-
ward structure. In (111), we discuss variants of the basic MRIIl approach that allow
steepest-descent training to be applied to more general network topologies, even

_those with signal feedback.

Input v
Pattern Perturbation
Output
Vector
Y,
> Yk

Sum Squared
Error -

(Squared
Euclidean Error)

dx d
Desired Responses

Figure 20: Example two-layer Madaline Il architecture
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Assume that an input pattern X and its associated desired output responses d4 and
- dp are presented to the network of Fig. 20. At this point, we measure the sum squa-

red output response error g2 = (d1-y1)2 + (d2-y2)2 = 812 + 322. We then add a small
quantity As to a selected Adaline in the network, providing a perturbation to the ele-
ment’s linear sum. This perturbation propagates through the network, and causes a
change in the sum of the squares of the errors, A (62) =A (312 + 822). An easily mea-
sured ratio is

A _A@E+d) ()

As As — 0Os (76)

Below we use this to obtain the instantaneous gradient of 5k2 with respect to the
weight vector of the selected Adaline. For the kth presentation, the instantaneous

gradient is

o 0D 0D o5 _ o)y

- 6Wk - 6sk c?Wk - é)sk (77)

Replacing the derivative with a ratio of differences yields

2
A (ek) Xk

Vi~
k As (78)

The idea of obtaining a derivative by perturbing the linear output of the selected
Adaline element is the same as that expressed for the single element in Section 6.2,
except that here the error is obtained from the output of a multi-element netwdrk rat-
her than from the output of a single element. ‘

The gradient (78) can be used to optimize the weight vector in accord with the
method of steepest descent:

Bel)y

Wi = Wi — .
k+1 k— K As (79)

Maintaining the same input pattern, one could either perturb all the elements in the
network in sequence, adapting after each gradient calculation, or else the derivatives
could be computed and stored to allow all Adalines to be adapted at once. These two
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MRIII approaches both involve the same weight update equation (79), and if p is
small, both lead to equivalent solutions. With large p, experience indicates that adap-

ting one element at a time results in convergence after fewer iterations, especially in

large networks. Storing the gkadients, however, has the advantage that after the initi-
al unperturbed error is measured during a given training presentation, each gradient

estimate requires only the perturbed error measurement. If adaptations take place

after each error measurement, however, both perturbed and unperturbed errors must

be measured for each gradient calculation. This is because each weight update

changes the associated unperturbed error.

7.3 Comparison of MRIIl with MRII

MRIIl was derived from MRII by replacing the signum nonlinearities with sigmoids.
The similarity of these algorithms becomes evident when comparing Fig. 20, repre-
senting MRIII, with Fig. 12, representing MRII.

The MRII network is highly discontinuous and nonlinear. Using an instantaneous
gradient to adjust the weights is not possible. The idea of adding a perturbation to the
linear sum of a selected Adaline element is workable, however. If the Hamming error
has been reduced by the peiturbation, the Adaline is adapted to reverse its output
decision. This weight change is in the LMS direction, along its X-vector. If adapting
the Adaline would not reduce network output error, it is not adapted. This is in accord
with the minimal disturbance principle. The Adalines selected for possible adaptation
are those whose analog sums are closest to zero, i.e., the Adalines which can be
adapted to give opposite responses with the smallest weight changes. It is useful to
note that with binary +/- 1 desired responses, the Hamming error is equal to four
times the sum square error. Minimizing the output Hamming error is therefore equi-
valent to minimizing the output sum square error. ,

The MRIII algorithm works in a similar manner. All the Adalines in the MRIIl net-
work are adapted, but those whose analog sums are closest to zero will usually be
adapted most strongly, because the sigmoid has its maximum slope at zero, contribu-
ting to high gradient values. As with MRII, the objective is to change the weights for
the given input presentation to reduce the sum square error at the network output. In
accord with the minimal disturbance principle, the weight vectors of the Adaline ele-
ments are adapted in the LMS direction, along their X-vectors, and are adapted in
proportion to their capabilities for reducing the sum square error (the square of the
Euclidean error) at the output.
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7.4 Comparison of MRIll with Backpropagation

In Section 6.2, we argued that for the Sigmoid Adaline element, the MRIII algorithm
(53) is essentially equivalent to the backpropagation algorithm (46). The same argu-
ment can be extended to the network of Adaline elements, demonstrating that if As is
small and adaptation is applied to all elements in the network at once, then MRIII is
essentially equivalent to backpropagation. That is, to the extent that the sample deri-
vative AekQ/As from Eq. (79) is equal to the analytical derivative ﬁekz/ﬁsk from Eq.
(67), the two rules follow identical instantaneous gradients, and thus perform identical
weight updates. The backpropagation algorithm requires fewer operations than MRIII
to calculate gradients, since it is able to take advantage of a priori knowledge of the
sigmoid nonlinearities and their derivative functions. Conversely, the MRIll algorithm
uses no prior knowledge about the characteristics of the sigmoid functions. Rather, it
acquires instantaneous gradients from perturbation measurements. Using MRIII, tole-
rances on the sigmoid implementations can be greatly relaxed compared to accept-
able tolerances for successful backpropagation.

Steepest-descent training of multi-layer networks implemented by computer simu-
lation or by precise parallel digital hardware is usually best carried out by backpropa-
gation. During each training presentation, the backpropagation method requires only
one forward computation through the network followed by one backward computation
in order to adapt all the weights of an entire network. To accomplish the same effect
with the form of MRIII that updates all weights at once, one measures the unpertur-
bed error followed by a number of perturbed error measurements equal to the num-
ber of elements in the network. This could require a lot of computation. If a network is
to be implemented in analog hardware, however, experience has shown that MRIIl
offers strong advantages over backpropagation. Comparison of Fig. 17, with Fig. 20
demonstrates the relative simplicity of MRIIl. All the apparatus for backward propa-
gation of error-related signals is eliminated, and the weights do not need to carry sig-
nals in both directions (see Fig. 18). MRIIl is a much simpler algorithm to build and to
understand, and in principle it produces the same instantaneous gradient as the
backpropagation algorithm. The momentum technique and most other common vari-
ants of the backpropagation algorithm can be applied to MRIIi training.

8. ANETWORK TOPOLOGY FOR PATTERN RECOGNITION
It would be useful to devise a neural network configuration that could be trained to
classify an important set of training patterns as required, but have these network res-
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ponses be invariant to translation, rotation, and scale change of the input pattern
with-in the field of view. It should not be necessary to train the system with the speci-
fic training patterns of interest in all combinations of translation, rotation, and scale.
The first step is to show that a neural network having these properties exists (the
invariance methods that follow are extensions of results reported earlier by Widrow
(2)). The next step is to obtain training algorithms to achieve the desired objectives.

Retina

AD

All retinal
signals
go to all

- ADALINES

Slab output

Figure 21: One slab of a left-right, up-down translation invariant network

8.1 Invariance to up-down, left-right pattern translation :
Fig. 21 shows a planar network configuration (a "slab" of neurons) that could be used
to map a retinal image into a single-bit output so that, with proper weights in the net-
work’s neurons, the response will be insensitive to left-right and/or up-down translati-
on. The same slab structure can be replicated, with different weights, to allow the
retinal pattern to be independently mapped into additional single-bit outputs, all insen-
sitive to left-right, up-down translation.
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Box of Slabs

Fixed, translation-invariant preprocessor network

e

Retina

m—

layer
Adaptive
Descrambler

Second adaptive —»
layer

Outputs

Figure 22: A translation-invariant preprocessor network and an adaptive two-layer
descrambler network ,,

- Fig. 22 illustrates the general idea. A retinal image having a given number of pixels
can be mapped through an array of slabs into a different image having the same,
more, or fewer pixels, depending on the number of slabs used. In any event, the
mapped image is insensitive to up-down, left- right translation of the original image.
The mapped image in Fig. 22 is fed to a set of Adaline neurons that can be easily trai-
ned to provide output responses to the original image as required. This amounts to a
"descrambling" of the preprocessor’s outputs. The descrambler’s output responses

cle
ri¢
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classify the original input images and, at the same time, are insensitive to their left-
right, up-down translations.

In the systems of Figures 21 and 22, the elements labeled "AD" are Adalines.
Those labeled "MAJ" are majority vote - takers (If the number of input lines to MAJ is
even and there is a tie vote, these elements are biased to give a positive response.)
The AD elements are adaptive neurons and the MAJ elements are fixed neurons, as
in Fig. 7.

In the system shown in Fig. 21, the structuring of the weights so that the output is
insensitive to left-right and up-down translation needs further explanation. Let the
weights of each Adaline be arranged in a square array and the corresponding retinal
pixels arrayed in a square pattern. Let the square matrix (W) designate the array of
weights of the upper-left Adaline, and let Tp1(W+) be the array of weights of the next
lower Adaline. The operator T4 represents "translate down on", so the second set of
weights is the same as the topmost set, but translated down en masse by one pixel.
The bottom row wraps around to comprise the top row. The patterns on the retina its-
elf wrap around on a cylinder when they undergo translation. The weights of the next
lower Adaline are Tpo(W4), and those of the next lower Adaline are Tpg(W1).
Returning to the upper-left Adaline, let its neighbor to the right be designated by
Tr1(W1) with TR{ being a "translate right one” operator. The pattern of weights for
the entire array of Adalines in Fig. 21 is - '

(Wy) T (Wh) Tra(Wh) Trs(Wh)
Tpr(Wh) TriToi(Wh) TreTpi(Wh) TrsTpi(Wh)
Tpa(Wh) TraTpe(Wh) TreTp2(Wi) TraTp2(Wh)

Tps(W1) TriTps(W1) TreTps(W1) TrsTps(Wh) (80)

As the input pattern moves up, down, left, or right on the retina; the roles of the
various Adalines interchange. Since all Adaline outputs are equally weighted by the
MAJ element, translating the input pattern up-down and/or left- right on the retina has
no effect on the MAJ element output.

The set of "key" weights (W) can be randomly chosen. Once chosen, they can be
translated according to Equation (80) to fill out the array of weights for the system of
Fig. 21. This array of weights can be incorporated as the weights for the first slab of
Adalines shown in Fig. 22. The weights for the second slab would require the same
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translational symmetries, but be based on a different randomly chosen set of key
weights Wo. The mapping function of the second slab would therefore be distinct
from that of the first slab.

The translational symmetries in the weights called for in Fig. 22 could be fixed and
manufactured in, or they could be arrived at through training. If, when designing an
application-specific pattern recognition system, one knew that translational invariance
would be required, it would make sense to manufacture the appropriate symmetry
into a fixed weight system, leaving only the final-output Adaline layers plastic and
trainable (see Fig. 22). Such a preprocessor would definitely work, would provide
very.high speed response without scanning and searching for pattern location and ali-
gnment, and would be an excellent application of neural networks.

8.2 Invariance to rotation
Fig. 22 repfesents a system for preprocessing retinal patterns with a translation-inva-
riant fixed neural network followed by a two- layer adaptive descrambler network. The
system can be expanded to ‘incorporate rotational invariance. Suppose that all input
patterns can be presented in “normal® vertical orientation, approximately centered
within the field of view of the retina. Suppose further that all input patterns can be pre-
sented when rotated from normal by 90, 180, and 270 degrees. Thus, each pattern
can be presented in all four rotations and in all possible left-right, up-down translati-
ons. The number of combinations would be large. The problem is to design a neural
network preprocessor that is invariant to translation and to rotation by 90 degrees.
Begin with a single slab of Adaline elements, as shown in Fig. 21, producing a
majority output that is insensitive to translation of the input pattern on the retina. Next,
replicate this slab four-fold, and let the majority outputs feed into a single majority out-
put element. In the first slab, (W) designates the upper-left Adaline’s matrix of
weights. (See Equation (80) for the weight matrices of all first-slab Adalines.) In the
second slab, the upper-left Adaline’s weight matrix corresponds to the first-slab
weight matrix rotated 90 degrees clockwise. This can be designated by Rg (W),
and the corresponding third- and fourth-slab weight matrices can be designated by
Rco(W1) and Rpg(Wq). Thus, the weight matrices of the upper-left Adalines begin
with (W4) in the first slab, and are rotated clockwise by 90 degrees in the second
slab, by 180 degrees in the third slab, and by 270 degrees in the fourth slab. The
weight matrices of all slabs are translated right and down, in the fashion-of Equation
(80), starting with the Adalines in the upper left-hand corner. For example, the array
of weight matrices for the second slab is
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Re1(Wh) Tr1Rc1(Wh) Tr2Rc1(Wh) TrsRc1(Wh)
TpiRci(W1) TriTpiRci(Wh) TreTpiRei(Wh) TrsTpiRer(Wh)
Tp2Rci(Wh) TriTp2Rci(W1) TreTp2Rei(Wh) TrsTpeRei(Wh)

TpaRci(Wh) TriTpsRci(Wh) TreTpsRci(Wh) TrsTpsRer(Wh) 81)

Clearly, translating the pattern on the retina does not change the majority output
response. Rotating the pattern 90 degrees causes an interchange of the roles of the
slabs in making their responses, but, since the output majority element weights them
equally, the output response is unchanged. Insensitivity to 45-degree rotation can be
accomplished by using more slabs; thus, a complete neural network providing invari-
ance to rotation and translation could be constructed. Each translation-invariant slab
of Fig. 22 would need to be replaced by the rotation- invariant multiple slab and majo-

A rity-element system described above.

8.3 Invariance to scale
The same principles can be used to design invariance networks that are insensitive to
scale or pattern size. By establishing a "point of expansion” on the retina so that input

~ patterns can be expanded or contracted with respect to this point, two Adalines can

be trained to give similar responses to patterns of two different sizes if the weight
matrix of one expands (or contracts) about the point of expansion like the patterns
themselves.

The amplitude of the weights must be scaled in inverse proportion to the square of
the linear dimension of the retinal pattern. By adding many more slabs, the invariance
network can be built around this idea to be insensitive to pattern size as well as to
translation and rotation (Implementation would, of course, require the abundance and
low cost of VLSI electronics).

The general pattern-recognition concept we've described involves use of an invari-
ance net followed by a trainable classifier. Fig. 23 illustrates the key ideas. The invari-
ance net can be trained or designed to produce a set of outputs that are insensitive to
translation, rotation, scale change, etc., of the retinal pattern. These outputs are
scrambled, but the adaptive layers can be trained to descramble them and reproduce
the original patterns in"standard" position, orientation, and scale. '
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Figure 23: A Neural Network system for pattern recognition.}

9. SUMMARY
We have discussed and compared the LMS algorithm, the Perceptron rule, the back-

propagation algorithm, and several other learning rules. Although they differ signifi-
cantly from each other, they all belong to the same "family".
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A distinction was drawn between error correction rules and steepest descent rules.
The former includes the Perceptron rule, Mays’s rules, the o-LMS algorithm, the origi-
nal Madaline | rule of 1962, and the Madaline Il rule. The latter includes the p-LMS
élgofithm, the Madaline Ill rule, and the backpropagation algorithm. The following
chart categorizes the learning rules that have been studied:

Steepest Error
Descent Correction
Rules Rules
Layered  Single Layered Single
Network Element Network  Element
Nonlinear Nonlinear . Nonlinear Nonlinear .
(Sigmoid) (Sigmoid) Linear (Signum) (Signum) Linear
MRIIT MRIII pu-LMS  MRI Perceptron o-LMS

Backprop Backprep MRII Mays

Figure 24: Learning Rules

Al‘though these algorithms have been presented as established learning rules, one
should not gain the impression that they are perfect and frozen for all time. Variations
are possible for every one of them. They should be regarded as substrates upon
which to build new and better rules. There is a tremendous amount of invention wait-
ing "in the wings." We look forward to the next 30 years.

Although learning algorifhms used in artificial neural networks are probably not
representative of learning processes in living neural systems, study of these algorith-
ms could give neurobiologists some clues of what to look for when studying cognition
and learning, pattern classification, and locomotion.
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