
Recitation 4
Computing Derivatives



Agenda

1. Back propagations: derivatives, gradients, and chain rules

2. Computing derivatives

3. Computational graphs



What is a loss function and loss?

“The function we want to minimize or maximize is called the objective function or 
criterion. When we are minimizing it, we may also call it the cost function, loss 
function, or error function.” [1]

Functions of loss: 

1. Monitor: Loss evaluates the performance of the model. The lower the loss is, the 
better the model is.

2. Part of the optimizer: 

Learning problem -> Optimization problem

Define loss function -> minimize the loss function

[1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2017



Commonly used loss functions 

Mean absolute error loss: nn.L1Loss

Mean squared error loss: nn.MSELoss

Cross Entropy loss (Classification): nn.CrossEntropyLoss (hw1, hw2)

Connectionist Temporal Classification loss: nn.CTCLoss (hw3)



Back propagation of loss

Loss is the starting point of the back propagation

Backpropagation aims to minimize the cost function by adjusting network’s 
weights and biases. The level of adjustment is determined by the gradients of the 
cost function w.r.t. those parameters.



Back propagation: Derivatives, Gradients, and the Chain Rule

Training a network:

1. Forward Propagation with current parameters
2. Calculate the loss 
3. Backward Propagation to calculate the gradients of the parameters
4. Step to update the parameters with gradients

The gradient is the transpose of the derivative



Derivatives

Mathematically, the derivative of a function 𝑓 measures the 
sensitivity of change of the function value 𝑦 w.r.t. a change in 
its input value 𝑥.

𝑑𝑦
𝑑𝑥

= 	 lim
*+→-

Δ𝑦
Δ𝑥

Geometrically, the derivative of the 𝑓 w.r.t. 𝑥 at 𝑥- is the 
slope of the tangent line to the graph of 𝑓 at 𝑥-.



Derivatives

We note “the derivative of y with respect to x” as
Δy = 𝜵𝒙𝒚	Δ𝑥

The shape of the derivative for any variable will be transposed w.r.t that variable
Ex: 
For a function with scalar input 𝑥 and scalar output 𝑦, 
its derivative is a scalar. 

For a function with (D x 1) vector input 𝑥 and scalar output 𝑦, 
its derivative is a (1 x D) row vector. 

For a function with (D x 1) vector input 𝑥 and (K x 1) vector output 𝑦, 
its derivative is a (K x D) matrix. 



Derivatives

Scalar derivatives (scalar in, scalar out)
Δy = 𝒇4(𝒙)	Δ𝑥

Multivariable derivatives (vector in, scalar out)

Δ𝑦 = 𝜵𝒙𝒚	Δ𝑥 =
𝜕𝑦
𝜕𝑥8

, … ,
𝜕𝑦
𝜕𝑥;

Δ𝑥8
⋮

Δ𝑥;

Full derivative Partial derivative



Derivatives

Multivariable derivatives (vector in, vector out)

Input 𝑥 = 	
𝑥8
⋮
𝑥;

, Output y=	
𝑦8
⋮
𝑦=

Δ𝑦8
⋮

Δ𝑦=
= 𝜵𝒙𝒚	Δ𝑥 =

𝜕𝑦8
𝜕𝑥8

⋯
𝜕𝑦8
𝜕𝑥;

⋮ ⋱ ⋮
𝜕𝑦=
𝜕𝑥8

⋯
𝜕𝑦=
𝜕𝑥;

Δ𝑥8
⋮

Δ𝑥;

K x D D x 1K x 1

This is also referred to as the Jacobian 
of 𝑓(𝑥) and designated as 𝐽+𝑓(𝑥).



Key Ideas about Derivatives

1. The derivative is the best linear approximation of 𝑓 at a point
2. The derivative is a linear transformation (matrix multiplication)
3. The derivative describes the effect of each input on the output



Computing Derivatives – Scalar Chain Rule

𝑧 = 𝑔(𝑥)
All terms are scalars
CD
CE

is given

Target: calculate CD
C+

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
𝑔4(𝑥)

𝑥 𝑧



Computing Derivatives – Scalar Addition

𝑧 = 𝑥 + 𝑦
All terms are scalars
CD
CE

is given

Target: calculate CD
C+

, CD
CH

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑥

=
𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕𝑦

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑦

=
𝜕𝐿
𝜕𝑧

𝑥
𝑧

𝑦



Computing Derivatives – Scalar Multiplication

𝑧 = 𝑊𝑥
All terms are scalars
CD
CE

is given

Target: calculate CD
C+

, CD
CJ

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑥

= 	
𝜕𝐿
𝜕𝑧
	𝑊

𝜕𝐿
𝜕𝑊

=	
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑊

= 𝑥
𝜕𝐿
𝜕𝑧

𝑥
𝑧

𝑊



Computing Derivatives – Scalar Generalized Chain Rule

𝑧 = 𝑧8 + 𝑧K + ⋯+ 𝑧L = 	𝑔8 𝑥 + 𝑔K 𝑥 + ⋯+ 𝑔L 𝑥
All terms are scalars
CD
CE

is given

Target: calculate CD
C+

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑥

=
𝜕𝐿
𝜕𝑧
(
𝜕𝑔8
𝜕𝑥

+
𝜕𝑔K
𝜕𝑥

+ ⋯+
𝜕𝑔L
𝜕𝑥

)

𝑥

𝑧8

𝑧K

𝑧L

…

𝑧



Computing Derivatives – Multivariable Chain Rule

𝑧 = 𝑔(𝑥)
𝑥 is	D	x	1	vector,	𝑧 is	K	x	1	vector
𝛻E𝐿 is given (M x K) matrix
Target: calculate 𝛻+𝐿

𝛻+𝐿 = 𝛻E𝐿	𝛻+𝑍

M x K K x DM x D

𝑥 𝑧



Computing Derivatives – Multivariable Vector Addition 

𝑧 = 𝑥 + 𝑦
𝑥,	y,	z	are	all	D	x	1	vectors
𝛻E𝐿 is given (M x D) matrix
Target: calculate 𝛻+𝐿, 𝛻H𝐿

𝛻+𝐿 = 𝛻E𝐿	𝛻+𝑍 = 𝛻E𝐿	𝐼
𝛻H𝐿 = 𝛻E𝐿	𝛻H𝑍 = 𝛻E𝐿	𝐼

M x D D x DM x D

𝑥
𝑧

𝑦



Computing Derivatives – Multivariable Vector Addition of 
derivatives

𝐿 = 𝑓8 𝑧 + 𝑓K(𝑦)
𝑧 = 𝑔(𝑥)
𝑦 = ℎ(𝑥)

𝑥 is	D	x	1	vector,	𝑧 is	K	x	1	vector,	𝑦 is	M	x	1	vector
𝛻E𝐿 is given (N x K) matrix
𝛻H𝐿 is given (N x M) matrix
Target: calculate 𝛻+𝐿

𝛻+𝐿 = 𝛻E𝐿	𝛻+𝑍 + 𝛻H𝐿	𝛻+𝑌

N x K K x DN x D N x M M x D

𝑥

𝑧

𝑦

𝐿



Computing Derivatives – Multivariable Matrix Multiplication

𝐿 = 𝑓(𝑧)
𝑧 = 𝑊𝑥

𝑥 is	a	D	x	1	vector	
𝑧 is	a	K	x	1	vector
W		is	a	K	x	D	matrix
𝛻E𝐿 is given (1 x K) vector
Target: calculate 𝛻+𝐿, 𝛻J𝐿

𝛻+𝐿 = 𝛻E𝐿	𝛻+𝑍 = (𝛻E𝐿)𝑊
𝛻J𝐿 = 𝛻E𝐿	𝛻J𝑍 = 𝑥(𝛻E𝐿) D x K

1 x D

𝑥
𝑧

𝑊



Computing Derivatives – Multivariable Generalized Chain Rule

𝑧 = 𝑧8 + 𝑧K + ⋯+ 𝑧L = 𝑔8 𝑥 + 𝑔K 𝑥 + ⋯+ 𝑔L 𝑥
𝑥 is	a	D	x	1	vector	
𝑧 is	a	K	x	1	vector
𝛻E𝐿 is given (M x K) matrix
Target: calculate 𝛻+𝐿

𝛻+𝐿 = 𝛻E𝐿	𝛻+𝑍 = 𝛻E𝐿(𝛻+𝑍8 + 𝛻+𝑍K + ⋯+ 𝛻+𝑍L)

𝑥

𝑧8

𝑧K

𝑧L

…

𝑧



Computing derivatives of complex functions

● We now are prepared to compute very complex derivatives
● Procedure:

○ Express the computation as a series of computations of intermediate values
○ Each computation must comprise either a unary or binary relation

■ Unary relation:  RHS has one argument, e.g. 𝑦 = 𝑔(𝑥)
■ Binary relation:  RHS has two arguments 

e.g. 𝑧 = 𝑥 + 𝑦 or z = 𝑥𝑦
○ Work your way backward through the derivatives of the simple relations



Example: 

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑊+d𝑥8 + 𝑏+d +𝑊+f𝑥K + 𝑏+f
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑊Hd𝑦8 + 𝑏Hd +𝑊Hf𝑦K + 𝑏Hf
● 𝛻Ed𝐿 is given
● Target: 

○ 𝛻+d𝐿, 𝛻+f𝐿, 𝛻Hd𝐿, 𝛻Hf𝐿
○ 𝛻Jgd𝐿, 𝛻hgd𝐿, 𝛻Jgf𝐿, 𝛻hgf𝐿
○ 𝛻Jid𝐿, 𝛻hid𝐿, 𝛻Jif𝐿, 𝛻hif𝐿

𝑥K

𝑥8 𝑦8

𝑦K

𝑧8

→: (𝑊𝑥 + 𝑏)



Example: 

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑊+d𝑥8 + 𝑏+d +𝑊+f𝑥K + 𝑏+f
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑊Hd𝑦8 + 𝑏Hd +𝑊Hf𝑦K + 𝑏Hf

𝑥K

𝑥8 𝑦8

𝑦K

𝑧8● 𝑦K = 𝑡𝑎𝑛ℎ 𝑖l
● 𝑖l = 𝑖8 + 𝑏+d + 𝑖K + 𝑏+f
● 𝑖8 = 	𝑊+d𝑥8
● 𝑖K = 	𝑊+f𝑥K



Example: 

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑊+d𝑥8 + 𝑏+d +𝑊+f𝑥K + 𝑏+f
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑊Hd𝑦8 + 𝑏Hd +𝑊Hf𝑦K + 𝑏Hf

𝑥K

𝑥8 𝑦8

𝑦K

𝑧8● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖n = 𝑊Hd𝑦8
● 𝑖o = 𝑊Hf𝑦K



Example: 

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑊+d𝑥8 + 𝑏+d +𝑊+f𝑥K + 𝑏+f
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑊Hd𝑦8 + 𝑏Hd +𝑊Hf𝑦K + 𝑏Hf

𝑥K

𝑥8 𝑦8

𝑦K

𝑧8

● 𝑖n = 𝑊Hd𝑦8
● 𝑖o = 𝑊Hf𝑦K
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m

● 𝑖8 = 	𝑊+d𝑥8
● 𝑖K = 	𝑊+f𝑥K
● 𝑖l = 𝑖8 + 𝑏+d + 𝑖K + 𝑏+f
● 𝑦K = 𝑡𝑎𝑛ℎ 𝑖l



Example: 

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑊+d𝑥8 + 𝑏+d +𝑊+f𝑥K + 𝑏+f
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑊Hd𝑦8 + 𝑏Hd +𝑊Hf𝑦K + 𝑏Hf
● Given pD

pEd
	(𝛻Ed𝐿)

𝑥K

𝑥8 𝑦8

𝑦K

𝑧8

● 𝑖n = 𝑊Hd𝑦8
● 𝑖o = 𝑊Hf𝑦K
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m

● 𝑖8 = 	𝑊+d𝑥8
● 𝑖K = 	𝑊+f𝑥K
● 𝑖l = 𝑖8 + 𝑏+d + 𝑖K + 𝑏+f
● 𝑦K = 𝑡𝑎𝑛ℎ 𝑖l



Example: 

● Given pD
pEd
	(𝛻Ed𝐿)

● 𝛻qr𝐿 = 𝛻Ed𝐿	𝛻qr𝑧8 = 	𝛻Ed𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖m))

● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖o = 𝑊Hf𝑦K
● 𝑖n = 𝑊Hd𝑦8



Example: 

● Given pD
pEd
	(𝛻Ed𝐿)

● 𝛻qr𝐿 = 𝛻Ed𝐿	𝛻qr𝑧8 = 	𝛻Ed𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖m))

● 𝛻qt𝐿 = 𝛻qr𝐿	𝛻qt𝑖m = 𝛻qr𝐿
● 𝛻hid𝐿 = 𝛻qr𝐿	𝛻hid𝑖m = 𝛻qr𝐿
● 𝛻qu𝐿 = 𝛻qr𝐿	𝛻qu𝑖m = 𝛻qr𝐿
● 𝛻hif𝐿 = 𝛻qr𝐿	𝛻hif𝑖m = 𝛻qr𝐿

● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖o = 𝑊Hf𝑦K
● 𝑖n = 𝑊Hd𝑦8



Example: 

● Given pD
pEd
	(𝛻Ed𝐿)

● 𝛻qr𝐿 = 𝛻Ed𝐿	𝛻qr𝑧8 = 	𝛻Ed𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖m))

● 𝛻qt𝐿 = 𝛻qr𝐿	𝛻qt𝑖m = 𝛻qr𝐿
● 𝛻hid𝐿 = 𝛻qr𝐿	𝛻hid𝑖m = 𝛻qr𝐿
● 𝛻qu𝐿 = 𝛻qr𝐿	𝛻qu𝑖m = 𝛻qr𝐿
● 𝛻hif𝐿 = 𝛻qr𝐿	𝛻hif𝑖m = 𝛻qr𝐿
● 𝛻Jif𝐿 = 𝛻qu𝐿	𝛻Jif𝑖o = 	𝑦K	𝛻qu𝐿
● 𝛻Hf𝐿 = 𝛻qu𝐿	𝛻Hf𝑖o = 𝛻qu𝐿	𝑊Hf

● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖o = 𝑊Hf𝑦K
● 𝑖n = 𝑊Hd𝑦8



Example: 

● Given pD
pEd
	(𝛻Ed𝐿)

● 𝛻qr𝐿 = 𝛻Ed𝐿	𝛻qr𝑧8 = 	𝛻Ed𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖m))

● 𝛻qt𝐿 = 𝛻qr𝐿	𝛻qt𝑖m = 𝛻qr𝐿
● 𝛻hid𝐿 = 𝛻qr𝐿	𝛻hid𝑖m = 𝛻qr𝐿
● 𝛻qu𝐿 = 𝛻qr𝐿	𝛻qu𝑖m = 𝛻qr𝐿
● 𝛻hif𝐿 = 𝛻qr𝐿	𝛻hif𝑖m = 𝛻qr𝐿
● 𝛻Jif𝐿 = 𝛻qu𝐿	𝛻Jif𝑖o = 	𝑦K 𝛻qu𝐿
● 𝛻Hf𝐿 = 𝛻qu𝐿	𝛻Hf𝑖o = 𝛻qu𝐿	𝑊Hf
● 𝛻Jid𝐿 = 𝛻qt𝐿	𝛻Jid𝑖n = 𝑦8𝛻qt𝐿
● 𝛻Hd𝐿 = 𝛻qt𝐿	𝛻Hd𝑖n = 	𝛻qt𝐿	𝑊Hd

● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖o = 𝑊Hf𝑦K
● 𝑖n = 𝑊Hd𝑦8



Example: 

● Given pD
pEd
	(𝛻Ed𝐿)

● 𝛻qr𝐿 = 𝛻Ed𝐿	𝛻qr𝑧8 = 	𝛻Ed𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖m))

● 𝛻qt𝐿 = 𝛻qr𝐿	𝛻qt𝑖m = 𝛻qr𝐿
● 𝛻hid𝐿 = 𝛻qr𝐿	𝛻hid𝑖m = 𝛻qr𝐿
● 𝛻qu𝐿 = 𝛻qr𝐿	𝛻qu𝑖m = 𝛻qr𝐿
● 𝛻hif𝐿 = 𝛻qr𝐿	𝛻hif𝑖m = 𝛻qr𝐿
● 𝛻Jif𝐿 = 𝛻qu𝐿	𝛻Jif𝑖o = 	𝑦K 𝛻qu𝐿
● 𝛻Hf𝐿 = 𝛻qu𝐿	𝛻Hf𝑖o = 𝛻qu𝐿	𝑊Hf
● 𝛻Jid𝐿 = 𝛻qt𝐿	𝛻Jid𝑖n = 𝑦8𝛻qt𝐿
● 𝛻Hd𝐿 = 𝛻qt𝐿	𝛻Hd𝑖n = 	𝛻qt𝐿	𝑊Hd

● 𝑧8 = 𝑡𝑎𝑛ℎ 𝑖m
● 𝑖m = 𝑖n + 𝑏Hd + 𝑖o + 𝑏Hf
● 𝑖o = 𝑊Hf𝑦K
● 𝑖n = 𝑊Hd𝑦8



Example: 

● Given pD
pHf
	(𝛻Hf𝐿)

● 𝛻qv𝐿 = 𝛻Hf𝐿	𝛻qv𝑦K = 𝛻Hf𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖l))

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑖l
● 𝑖l = 𝑖8 + 𝑏+d + 𝑖K + 𝑏+f
● 𝑖K = 	𝑊+f𝑥K
● 𝑖8 = 	𝑊+d𝑥8



Example: 

● Given pD
pHf
	(𝛻Hf𝐿)

● 𝛻qv𝐿 = 𝛻Hf𝐿	𝛻qv𝑦K = 𝛻Hf𝐿	(1 − 𝑡𝑎𝑛ℎ
K(𝑖l))

● 𝛻qf𝐿 = 𝛻qv𝐿	𝛻qf𝑖l = 𝛻qv𝐿
● 𝛻hgd𝐿 = 𝛻qv𝐿	𝛻hgd𝑖l = 𝛻qv𝐿
● 𝛻qd𝐿 = 𝛻qv𝐿	𝛻qd𝑖l = 𝛻qv𝐿
● 𝛻hgf𝐿 = 𝛻qv𝐿	𝛻hgf𝑖l = 𝛻qv𝐿

● 𝑦K = 𝑡𝑎𝑛ℎ 𝑖l
● 𝑖l = 𝑖8 + 𝑏+d + 𝑖K + 𝑏+f
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When to use “=” vs “+=”

● In the forward computation a variable may be used multiple times to compute 
other intermediate variables

● During backward computations, the first time the derivative is computed for 
the variable, the we will use “=“

● In subsequent computations we use “+=“
● It may be difficult to keep track of when we first compute the derivative for a 

variable
○ When to use “=“ vs when to use “+=“

● Cheap trick: 
○ Initialize all derivatives to 0 during computation
○ Always use “+=“
○ You will get the correct answer 
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● In the example (left figure) we showed before, we kept using “=”, think about 
why it worked

● In the new example (right figure), which variable requires “+=”?
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Please read Prof. Raj’s notes about the derivatives and 
influence diagrams

● https://piazza.com/class/knsmz2b3z131mn?cid=574
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