Recitation 7

CTC Decoding and Beam Search

Sean Pereira and Tony Qin

Sequence to Sequence Modeling

- Problem:
- Input Sequence: $X_{1} \ldots X_{n}$
- Output Sequence: $Y_{1} \ldots Y_{m}$
- $|X| \neq|Y|$

HW3P2 Problem: Sequence to Sequence with Order Synchrony

- In HW1P2, we utilized sequence classification for phoneme recognition. We can manage this problem by applying a variant using recurrent nets.
- Left: Sequence of inputs produces a single output; Right: How???

New: Complex Problem - Training

- Objective: Given a sequence of inputs, asynchronously output a sequence of symbols - Concatenation of many copies of the simple model in the previous slide

- In the previous model, we ignored intermediate steps. However, we can exploit the untagged inputs and assume the same output.

- How do we know when to output symbols?
- Apply our ideas from HW1P2:
- At each time in the network outputs a probability for each output symbol given all inputs until that time.
- The most likely symbol sequence given the inputs. How?

Lecture will discuss computing Divergence

- Possible Solutions
- Solution 1: Simply select the most probable symbol at each time. Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant.
- Issue 1: This isn't the most probable sequence of symbols
- Issue 2: Cannot distinguish between an extended symbol and repetitions of the symbol
- Solution 2: Impose external constraints on what sequences are allowed
- Issue 1: A suboptimal decode that actually finds the most likely time-synchronous output sequence. Will be discussed in lecture.

- Overall Solution:
- Apply both previous solutions
- At each time the network outputs a probability for each output symbol
- Block out all rows that do not include symbols from the target sequence

■ Compose a graph such that every path in the graph from source to sink represents a valid alignment

- Find the most probable sequence of symbols using the graph above
- Edge scores have a probability of 1
- Nodes scores are probabilities resulting from the neural network

Lecture will discuss how to find the most probable sequence given the graph and how to compute the divergence once we get the most probable sequence

Repetition Issue and Solution

- We have a decode:
- RRROOOOOD
- Is this the symbol sequence ROD or ROOD?
- Introduce an explicit extra symbol which serves to separate discrete versions of a symbol (Blank)
- RRR---OO---DDD = ROD
- -RR-R---OO---D-DD = RRODD
- The label recognized by the network must now include the extra blank symbol that will need to be trained

Final Graph

CTC - Training Procedure

1. Setup Network
a. Many LSTM
2. Initialize network with a Blank Symbol
3. Pass training instances through network to obtain probabilities for all labels/symbols
4. Construct graph on previous page
5. Forward and Backward Algorithm - Lecture
6. Compute Divergence - Lecture
7. Update Parameters

Connectionist Temporal Classification

How to decode at test time?

- I will first discuss an example of training a network using nn.CTCLoss
- Then Tony will discuss an algorithm called Beam Search using pseudocode and an example

The forward output

Returning to the decoding problem

How to decode at test time?

- Greedy decode -> choose symbol with highest probability at each time step and merge
- Sub-optimal decode which finds most likely synchronous output sequence
- Objective of decoding-> Most likely asynchronous symbol sequence
- Find all decodings and pick the most likely decode!
- Unfortunately, explicit computation of this will require evaluate of an exponential number of symbol sequences
- Solution: Organize all possible symbol sequences as a (semi)tree

Hypothesis semi-tree

- The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
- Every symbol connects to every symbol other than itself
- It also connects to a blank, which connects to every symbol including itself
- The simple structure repeats recursively
- Each node represents a unique symbol sequence!

Decoding graph for the tree

- The figure to the left is the tree, drawn in a vertical line
- The graph is just the tree unrolled over time
- The alpha at final time represents the full forward score for a unique symbol sequence
- Select the symbol sequence with the largest alpha

Pruning

- This is the "theoretically correct" CTC decoder
- In practice, the graph gets exponentially large very quickly
- To prevent this pruning strategies are employed to keep the graph (and computation) manageable

Beam Search

Inputs:

- BeamWidth: int that is the number of paths considered
- SymbolSet: set of symbols, not including blank
- y : array of probabilities of shape (len(SymbolSet) $+1, \mathrm{t}$)

BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                        Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                                NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, y[:,t])
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```


BEAM SEARCH

Global PathScore = [], BlankPathScore = []

```
# First time instant: Initialize paths with each of the symbols,
    including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])
```

\# Subsequent time steps

```
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                    NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, y[:,t])
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```


BEAM SEARCH InitializePaths: FIRST TIME INSTANT

```
function InitializePaths(SymbolSet, y)
InitialBlankPathScore = [], InitialPathScore = []
# First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}
# Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank
    path = c
    InitialPathScore[path] = y[c] # Score of symbol c at t=1
    InitialPathsWithFinalSymbol += path # Set addition
end
return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
    InitialBlankPathScore, InitialPathScore
```

InitialPathWithFinalBlank

InitialPathWithFinalSymbols

BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathSc
InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
```

We will visit this routine after discussing the rest of the loop (to avoid confusion)

```
\# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore = Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)
\# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, y[:,t])
\# Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
\# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore NewPathsWithTerminalSymbol, NewPathScore)
\# Pick best path
BestPath \(=\) argmax (FinalPathScore) \# Find the path with the best score
```


BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet,' y[:,0])
# Subsequent time steps
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                                    Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                            NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, y[:,t])
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```


BEAM SEARCH: Extending with blanks

```
Global PathScore, BlankPathScore
function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
    UpdatedPathsWithTerminalBlank = {}
    UpdatedBlankPathScore = []
    # First work on paths with terminal blanks
    #(This represents transitions along horizontal trellis edges for blanks)
    for path in PathsWithTerminalBlank:
        # Repeating a blank doesn't change the symbol sequence
        UpdatedPathsWithTerminalBlank += path # Set addition
        UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
    end
    # Then extend paths with terminal symbols by blanks
    for path in PathsWithTerminalSymbol:
        # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
        # simply add the score. If not create a new entry
        if path in UpdatedPathsWithTerminalBlank
            UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
        else
            UpdatedPathsWithTerminalBlank += path # Set addition
            UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
        end
    end
    return UpdatedPathsWithTerminalBlank,
        UpdatedBlankPathScore
```


BEAM SEARCH: Extending with blanks

```
Global PathScore, BlankPathScore
function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
    UpdatedPathsWithTerminalBlank = {}
    UpdatedBlankPathScore = []
    # First work on paths with terminal blanks
    #(This represents transitions along horizontal trellis edges for blanks)
    for path in PathsWithTerminalBlank:
        # Repeating a blank doesn't change the symbol sequence
        UpdatedPathsWithTerminalBlank += path # Set addition
        UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
    end
    # Then extend paths with terminal symbols by blanks
    for path in PathsWithTerminalSymbol:
        # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
        # simply add the score. If not create a new entry
        if path in UpdatedPathsWithTerminalBlank
            UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
        else
            UpdatedPathsWithTerminalBlank += path # Set addition
            UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
        end
end
    return UpdatedPathsWithTerminalBlank,
        UpdatedBlankPathScore
```


Transitions from "blank" lines to "blank" lines (which will all be horizontal edges)

BEAM SEARCH: Extending with blanks

```
Global PathScore, BlankPathScore
function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
    UpdatedPathsWithTerminalBlank = {}
    UpdatedBlankPathScore = []
    # First work on paths with terminal blanks
    #(This represents transitions along horizontal trellis edges for blanks)
    for path in PathsWithTerminalBlank
        # Repeating a blank doesn't change the symbol sequence
        UpdatedPathsWithTerminalBlank += path # Set addition
        UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
    end
    # Then extend paths with terminal symbols by blanks
    for path in PathsWithTerminalSymbol:
    # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
    # simply add the score. If not create a new entry
    if path in UpdatedPathsWithTerminalBlank
            UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
    else
            UpdatedPathsWithTerminalBlank += path # Set addition
            UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
    end
end
```

return UpdatedPathsWithTerminalBlank, UpdatedBlankPathScore
(only at $\mathrm{t}=1$)
UpdatedPathsWIthTerminalBlank

Transitions from
"symbol" lines to "blank" lines

BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                                    Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                                NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, y[:,t])
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```


BEAM SEARCH: Extending with symbols

```
Global PathScore, BlankPathScore
function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
    UpdatedPathsWithTerminalSymbol = {}
    UpdatedPathScore = []
    # First extend the paths terminating in blanks. This will always create a new sequence
    for path in PathsWithTerminalBlank:
        for c in SymbolSet: # SymbolSet does not include blanks
            newpath = path + c # Concatenation
            UpdatedPathsWithTerminalSymbol += newpath # Set addition
            UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
        end
    end
    # Next work on paths with terminal symbols
    for path in PathsWithTerminalSymbol:
        # Extend the path with every symbol other than blank
        for c in SymbolSet: # SymbolSet does not include blanks
            newpath = (c == path[end]) ? path : path + c # Horizontal transitions don't extend the sequence
            if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
                UpdatedPathScore[newpath] += PathScore[path] * y[c]
            else # Create new path
                    UpdatedPathsWithTerminalSymbol += newpath # Set addition
                    UpdatedPathScore[newpath] = PathScore[path] * y[c]
            end
        end
    end
    return UpdatedPathsWithTerminalSymbol, UpdatedPathScore
```


BEAM SEARCH: Extending with symbols

```
Global PathScore, BlankPathScore
function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
    UpdatedPathsWithTerminalSymbol = {}
    UpdatedPathScore = []
# First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:
    for c in SymbolSet: # SymbolSet does not include blanks
        newpath = path + c # Concatenation
        UpdatedPathsWithTerminalSymbol += newpath # Set addition
            UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
        end
end
# Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
    # Extend the path with every symbol other than blank
    for c in SymbolSet: # SymbolSet does not include blanks
        newpath = (c == path[end]) ? path : path + c # Horizontal transitions don't extend the sequence
        if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
            UpdatedPathScore[newpath] += PathScore[path] * y[c]
        else # Create new path
            UpdatedPathsWithTerminalSymbol += newpath # Set addition
            UpdatedPathScore[newpath] = PathScore[path] * y[c]
        end
    end
end
return UpdatedPathsWithTerminalSymbol, UpdatedPathScore
```


Transitions from "blank" lines to "symbol" lines
(figure shows path extensions for only 2 time steps)

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

```
function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
    UpdatedPathsWithTerminalSymbol = {}
    UpdatedPathScore = []
    # First extend the paths terminating in blanks. This will always create a new sequence
    for path in PathsWithTerminalBlank:
        for c in SymbolSet: # SymbolSet does not include blanks
            newpath = path + c # Concatenation
            UpdatedPathsWithTerminalSymbol += newpath # Set addition
            UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
        end
```

 end
 \# Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
\# Extend the path with every symbol other than blank
for c in SymbolSet: \# SymbolSet does not include blanks
newpath $=(c==$ path[end]) ? path : path $+c$ \# Horizontal transitions don't extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: \# Already in list, merge paths
UpdatedPathScore[newpath] += PathScore[path] * y[c]
else \# Create new path
UpdatedPathsWithTerminalSymbol += newpath \# Set addition
UpdatedPathScore[newpath] = PathScore[path] * y[c]
end
end
end

Transitions from "symbol" lines to "symbol" lines (including horizontal transitions)
(figure shows path extensions for only 2 time steps)

BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                            NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(P
    (Po Pruning deletes unpromising paths
                                    from contention, to reduce
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(Paths computation
                                    PathsWithTerm&ndisymmol, symoOLsel, y[:,l])
end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```

Consider this instant

BEAM SEARCH: Pruning low-scoring entries

```
Global PathScore, BlankPathScore
function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
    PrunedBlankPathScore = []
    PrunedPathScore = []
    # First gather all the relevant scores
    i = 1
for p in PathsWithTerminalBlank
        scorelist[i] = BlankPathScore[p]
        i++
    end
    for p in PathsWithTerminalSymbol
        scorelist[i] = PathScore[p]
        i++
end
# Sort and find cutoff score that retains exactly BeamWidth paths
sort(scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]
PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
        if BlankPathScore[p] >= cutoff
            PrunedPathsWithTerminalBlank += \# Set addition
            PrunedBlankPathScore[p] = BlankPathScore[p]
        end
end
PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
    if PathScore[p] >= cutoff
        PrunedPathsWithTerminalSymbol += [# Set addition
            PrunedPathScore[p] = PathScore[p]
        end
end
```


BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

```
function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
    PrunedBlankPathScore = []
    PrunedPathScore = []
    # First gather all the relevant scores
    i = 1
    for p in PathsWithTerminalBlank
        scorelist[i] = BlankPathScore[p]
        i++
    end
    for p in PathsWithTerminalSymbol
        scorelist[i] = PathScore[p]
        scor
    end
```

 \# Sort and find cutoff score that retains exactly BeamWidth paths
 sort (scorelist) \# In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]
 PrunedPathsWithTerminalBlank = \{\}
 for \(p\) in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff

PrunedBlankPathScore[p] = BlankPathScore[p]
end
end
PrunedPathsWithTerminalSymbol = \{\}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol $+=$ 汭 Set addition
PrunedPathScore[p] = PathScore[p]
end
end

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

```
function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
    PrunedBlankPathScore = []
    PrunedPathScore = []
    # First gather all the relevant scores
    i = 1
for p in PathsWithTerminalBlank
        scorelist[i] = BlankPathScore[p]
        i++
    end
    for p in PathsWithTerminalSymbol
        scorelist[i] = PathScore[p]
        i++
end
```

Sort the scores
Find the largest score
Find the cutoff score (the Kth largest score)
\# Sort and find cutoff score that retains exactly BeamWidth paths
\# Sort and find cutoff score that retai
sort(scorelist) \# In decreasing order
cutoff $=$ BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]
PrunedPathsWithTerminalBlank $=$ \{\}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank $+=$ 巫 Set addition PrunedBlankPathScore[p] = BlankPathScore[p]
end
end

PrunedPathsWithTerminalSymbol $=\{ \}$
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol $+=$ 汭 Set addition
PrunedPathScore[p] = PathScore[p]
end
end

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

```
function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
    PrunedBlankPathScore = []
    PrunedPathScore = []
    # First gather all the relevant scores
    i = 1
    for p in PathsWithTerminalBlank
        scorelist[i] = BlankPathScore[p]
        i++
    end
    for p in PathsWithTerminalSymbol
        scorelist[i] = PathScore[p]
        i++
    end
    # Sort and find cutoff score that retains exactly BeamWidth paths
    sort(scorelist) # In decreasing order
    cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]
    PrunedPathsWithTerminalBlank = {}
    for p in PathsWithTerminalBlank
        if BlankPathScore[p] >= cutoff
            PrunedPathsWithTerminalBlank += \# Set addition
            PrunedBlankPathScore[p] = BlankPathScore[p]
        end
end
```

PrunedPathsWithTerminalSymbol $=\{ \}$
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol $+=$ 汭 Set addition
PrunedPathScore[p] = PathScore[p]
end
end

Retain nodes on
"blank" rows
with scores above cutoff

Effectively, prune out nodes on "blank" rows with scores below cutoff

They will subsequently not contribute to the computation

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

```
function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
    PrunedBlankPathScore = []
    PrunedPathScore = []
    # First gather all the relevant scores
    i = 1
for p in PathsWithTerminalBlank
        scorelist[i] = BlankPathScore[p]
        i++
    end
    for p in PathsWithTerminalSymbol
        scorelist[i] = PathScore[p]
        i++
end
# Sort and find cutoff score that retains exactly BeamWidth paths
sort(scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]
PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
        if BlankPathScore[p] >= cutoff
```



```
            PrunedBlankPathScore[p] = BlankPathScore[p]
        end
end
```

```
mal
```

mal
p in PathsWithTerminalSymbol
p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += \#\# Set addition
PrunedPathsWithTerminalSymbol += \#\# Set addition
PrunedPathScore[p] = PathScore[p]
PrunedPathScore[p] = PathScore[p]
end
end
end

```
end
```


Retain nodes on "symbol" rows
with scores above cutoff

Effectively prune out nodes on "symbol" rows with scores below cutoff

They will subsequently not contribute to the computation

Retain nodes on "symbol" rows
with scores above cutoff

Effectively prune out nodes on "symbol" rows with scores below cutoff

They will subsequently not contribute to the computation

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []
PrunedPathScore $=$ []
\# First gather all the relevant scores
i $=1$
for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore[p]
i
for p in PathsWithTerminalSymbol
scorelist[i] = PathScore[p]
i++
The overall effect of these steps:
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPath
                InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
    Why is the pruning here and not at
the end of the loop?
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                                    Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                            NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank, Because we don't want to prune paths at
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(Pa
                                    Pathswith? Instead at the final time we will merge
end
# Merge identical paths differing only by the final blank
the final time. This loses
information.
paths that represent the same symbol
sequence
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
                                    NewPathsWithTerminalSymbol, NewPathScore)
# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
```


BEAM SEARCH

```
Global PathScore = [], BlankPathScore = []
# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])
# Subsequent time steps
for t = 1:T
    # Prune the collection down to the BeamWidth
    PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
                                    Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
                                NewBlankPathScore, NewPathScore, BeamWidth)
    # First extend paths by a blank
    NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, y[:,t])
    # Next extend paths by a symbol
    NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
                                    PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
```

```
# Merge identical paths differing only by the final blank
```


Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

```

\section*{\# Pick best path}
```

BestPath = argmax (FinalPathScore) \# Find the path with the best score

```


\section*{BEAM SEARCH: Merging final paths}
```

Global PathScore, BlankPathScore
function MergeIdenticalPaths(PathsWithTerminalBlank, PathsWithTerminalSymbol)

All paths with terminal symbols will remain

MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from

PathsWithTerminalSymbol if present, or be included in the final set, otherwise

for p in PathsWithTerminalBlank
if p in MergedPaths
FinalPathScore[p] += BlankPathScore[p]
else
MergedPaths += p\# Set addition
FinalPathScore[p] = BlankPathScore[p]
end
end
return MergedPaths, FinalPathScore

```

\section*{BEAM SEARCH}
```

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,

including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T
\# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)
\# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])
\# Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, y[:,t])
end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

```

\section*{\# Pick best path}
```

BestPath $=$ argmax (FinalPathScore) \# Find the path with the best score

```
```

