
Recitation 7
CTC Decoding and Beam Search

Sean Pereira and Tony Qin

Sequence to Sequence Modeling

● Problem:
○ Input Sequence:

○ Output Sequence:

●

HW3P2 Problem: Sequence to Sequence with Order Synchrony

● In HW1P2, we utilized sequence classification for phoneme recognition. We can manage this

problem by applying a variant using recurrent nets.

● Left: Sequence of inputs produces a single output; Right: How???

New: Complex Problem - Training

● Objective: Given a sequence of inputs, asynchronously output a sequence of symbols
○ Concatenation of many copies of the simple model in the previous slide

● In the previous model, we ignored intermediate steps. However, we can exploit the untagged

inputs and assume the same output.

● How do we know when to output symbols?
○ Apply our ideas from HW1P2:

■ At each time in the network outputs a probability for each output symbol given all inputs until that
time.

■ The most likely symbol sequence given the inputs. How?

● Possible Solutions
○ Solution 1: Simply select the most probable symbol at each time. Merge adjacent repeated symbols, and place

the actual emission of the symbol in the final instant.
■ Issue 1: This isn’t the most probable sequence of symbols
■ Issue 2: Cannot distinguish between an extended symbol and repetitions of the symbol

○ Solution 2: Impose external constraints on what sequences are allowed
■ Issue 1: A suboptimal decode that actually finds the most likely time-synchronous output sequence.

Will be discussed in lecture.

Lecture will discuss computing Divergence

● Overall Solution:
○ Apply both previous solutions

■ At each time the network outputs a probability for each output symbol

■ Block out all rows that do not include symbols from the target sequence

■ Compose a graph such that every path in the graph from source to sink represents a valid alignment

● Find the most probable sequence of symbols using the graph above
○ Edge scores have a probability of 1
○ Nodes scores are probabilities resulting from the neural network

Lecture will discuss how to find the most probable sequence given the graph and how to compute the

divergence once we get the most probable sequence

Repetition Issue and Solution
● We have a decode:

○ R R R O O O O O D
○ Is this the symbol sequence ROD or ROOD?

● Introduce an explicit extra symbol which serves to separate discrete versions of a symbol (Blank)
○ RRR---OO---DDD = ROD
○ –RR-R---OO---D-DD = RRODD

● The label recognized by the network must now include the extra blank symbol that will need to be

trained

Final Graph

CTC - Training Procedure
1. Setup Network

a. Many LSTM

2. Initialize network with a Blank Symbol

3. Pass training instances through network to obtain probabilities for all labels/symbols

4. Construct graph on previous page

5. Forward and Backward Algorithm - Lecture

6. Compute Divergence - Lecture

7. Update Parameters

Connectionist Temporal Classification

How to decode at test time?
● I will first discuss an example of training a network using nn.CTCLoss

● Then Tony will discuss an algorithm called Beam Search using pseudocode and an example

The forward output

tonyqin
Cross-Out

Returning to the decoding problem

How to decode at test time?

● Greedy decode -> choose symbol with highest probability at each time step and merge

- Sub-optimal decode which finds most likely synchronous output sequence

● Objective of decoding -> Most likely asynchronous symbol sequence

- Find all decodings and pick the most likely decode!

- Unfortunately, explicit computation of this will require evaluate of an exponential number of

symbol sequences

- Solution: Organize all possible symbol sequences as a (semi)tree

Hypothesis semi-tree

● The semi tree of hypotheses (assuming

only 3 symbols in the vocabulary)

● Every symbol connects to every symbol
other than itself

● It also connects to a blank, which
connects to every symbol including itself

● The simple structure repeats recursively

● Each node represents a unique symbol

sequence!

Decoding graph for the tree

● The figure to the left is the tree, drawn in

a vertical line

● The graph is just the tree unrolled over

time

● The alpha at final time represents the full

forward score for a unique symbol

sequence

● Select the symbol sequence with the

largest alpha

Pruning

● This is the “theoretically correct” CTC decoder

● In practice, the graph gets exponentially large very quickly

● To prevent this pruning strategies are employed to keep the graph (and computation)
manageable

Beam Search
Inputs:

• BeamWidth: int that is the number of paths considered
• SymbolSet: set of symbols, not including blank
• y: array of probabilities of shape (len(SymbolSet) + 1, t)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

InitialPathWithFinalSymbols

S2

S1

InitialPathWithFinalBlank

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [], InitialPathScore = []
First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank
 path = c
 InitialPathScore[path] = y[c] # Score of symbol c at t=1
 InitialPathsWithFinalSymbol += path # Set addition
end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
 InitialBlankPathScore, InitialPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

We will visit this routine
after discussing the rest of
the loop
(to avoid confusion)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

Only transitions into
nodes on the rows
corresponding to
blanks

(only at t=1)
UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
 UpdatedPathsWithTerminalBlank = {}
 UpdatedBlankPathScore = []
 # First work on paths with terminal blanks
 #(This represents transitions along horizontal trellis edges for blanks)
 for path in PathsWithTerminalBlank:
 # Repeating a blank doesn’t change the symbol sequence
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
 end

 # Then extend paths with terminal symbols by blanks
 for path in PathsWithTerminalSymbol:
 # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
 # simply add the score. If not create a new entry
 if path in UpdatedPathsWithTerminalBlank
 UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
 else
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
 end
 end

 return UpdatedPathsWithTerminalBlank,
 UpdatedBlankPathScore

(only at t=1)
UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
 UpdatedPathsWithTerminalBlank = {}
 UpdatedBlankPathScore = []
 # First work on paths with terminal blanks
 #(This represents transitions along horizontal trellis edges for blanks)
 for path in PathsWithTerminalBlank:
 # Repeating a blank doesn’t change the symbol sequence
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
 end

 # Then extend paths with terminal symbols by blanks
 for path in PathsWithTerminalSymbol:
 # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
 # simply add the score. If not create a new entry
 if path in UpdatedPathsWithTerminalBlank
 UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
 else
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
 end
 end

 return UpdatedPathsWithTerminalBlank,
 UpdatedBlankPathScore

Transitions from
“blank” lines
to “blank” lines
(which will all be
horizontal edges)

(only at t=1)
UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
 UpdatedPathsWithTerminalBlank = {}
 UpdatedBlankPathScore = []
 # First work on paths with terminal blanks
 #(This represents transitions along horizontal trellis edges for blanks)
 for path in PathsWithTerminalBlank:
 # Repeating a blank doesn’t change the symbol sequence
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]
 end

 # Then extend paths with terminal symbols by blanks
 for path in PathsWithTerminalSymbol:
 # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
 # simply add the score. If not create a new entry
 if path in UpdatedPathsWithTerminalBlank
 UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
 else
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
 end
 end

 return UpdatedPathsWithTerminalBlank,
 UpdatedBlankPathScore

Transitions from
“symbol” lines
to “blank” lines

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

(figure shows path extensions for only 2 time steps)

Only transitions into
nodes on the rows
corresponding to
non-blank symbols

BEAM SEARCH: Extending with symbols
Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
 UpdatedPathsWithTerminalSymbol = {}
 UpdatedPathScore = []

 # First extend the paths terminating in blanks. This will always create a new sequence
 for path in PathsWithTerminalBlank:
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = path + c # Concatenation
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
 end
 end

 # Next work on paths with terminal symbols
 for path in PathsWithTerminalSymbol:
 # Extend the path with every symbol other than blank
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
 if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
 UpdatedPathScore[newpath] += PathScore[path] * y[c]
 else # Create new path
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = PathScore[path] * y[c]
 end
 end
 end

 return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)
UpdatedPathsWIthTerminalSymbol

S2

S1

BEAM SEARCH: Extending with symbols
Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
 UpdatedPathsWithTerminalSymbol = {}
 UpdatedPathScore = []

 # First extend the paths terminating in blanks. This will always create a new sequence
 for path in PathsWithTerminalBlank:
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = path + c # Concatenation
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
 end
 end

 # Next work on paths with terminal symbols
 for path in PathsWithTerminalSymbol:
 # Extend the path with every symbol other than blank
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
 if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
 UpdatedPathScore[newpath] += PathScore[path] * y[c]
 else # Create new path
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = PathScore[path] * y[c]
 end
 end
 end

 return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)
UpdatedPathsWIthTerminalSymbol

S2

S1

(figure shows path extensions for only 2 time steps)

Transitions from
“blank” lines
to “symbol” lines

BEAM SEARCH: Extending with symbols
Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
 UpdatedPathsWithTerminalSymbol = {}
 UpdatedPathScore = []

 # First extend the paths terminating in blanks. This will always create a new sequence
 for path in PathsWithTerminalBlank:
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = path + c # Concatenation
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
 end
 end

 # Next work on paths with terminal symbols
 for path in PathsWithTerminalSymbol:
 # Extend the path with every symbol other than blank
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
 if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
 UpdatedPathScore[newpath] += PathScore[path] * y[c]
 else # Create new path
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = PathScore[path] * y[c]
 end
 end
 end

 return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)
UpdatedPathsWIthTerminalSymbol

S2

S1

(figure shows path extensions for only 2 time steps)

Transitions from
“symbol” lines
to “symbol” lines
(including horizontal
transitions)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

Returning to this routine

Pruning deletes unpromising paths
from contention, to reduce
computation

Consider this instant

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Consider this instant

Aggregate scores from
both “symbol” rows
and “blank” rows

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Sort the scores
Find the largest score
Find the cutoff score (the Kth largest score)

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Find nodes on
“blank” rows
with scores above cutoff
and add them to the
“active” list

Consider this instant

Effectively, prune out
nodes on “blank” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Retain nodes on
“blank” rows
with scores above cutoff

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Find nodes on
“symbol” rows
with scores above cutoff
and add them to the
“active” list

Consider this instant

Effectively prune out
nodes on “symbol” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Retain nodes on
“symbol” rows
with scores above cutoff

Effectively prune out
nodes on “symbol” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Consider this instant

Retain nodes on
“symbol” rows
with scores above cutoff

BEAM SEARCH: Pruning low-scoring entries
Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

The overall effect of these steps:

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

Why is the pruning here and not at
the end of the loop?

Because we don’t want to prune paths at
the final time. This loses
information.
Instead at the final time we will merge
paths that represent the same symbol
sequence

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

Merge scores for
 “S2” and “S2-”

S2 -

S2

S1 -

S1

Merge scores for
 “S1” and “S1-”

BEAM SEARCH: Merging final paths

Global PathScore, BlankPathScore

function MergeIdenticalPaths(PathsWithTerminalBlank, PathsWithTerminalSymbol)

 # All paths with terminal symbols will remain
 MergedPaths = PathsWithTerminalSymbol
 FinalPathScore = PathScore

 # Paths with terminal blanks will contribute scores to existing identical paths from
 # PathsWithTerminalSymbol if present, or be included in the final set, otherwise
 for p in PathsWithTerminalBlank
 if p in MergedPaths
 FinalPathScore[p] += BlankPathScore[p]
 else
 MergedPaths += p # Set addition
 FinalPathScore[p] = BlankPathScore[p]
 end
 end

 return MergedPaths, FinalPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
 InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
 Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
 NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,
 PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore
 NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

