
Deep Neural Networks
Convolutional Networks III

Bhiksha Raj
Fall 2021

1

Outline

• Quick recap
• Back propagation through a CNN
• Modifications: Transposition, scaling, rotation and

deformation invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity

2

Story so far
• Pattern classification tasks such as “does this picture contain a cat”,

or “does this recording include HELLO” are best performed by
scanning for the target pattern

• Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or layer makes the final decision
– Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a
convnet

• For 1-D scan along time, it is called a Time-delay neural network

3

Recap: The general architecture of a
convolutional neural network

• A convolutional neural network comprises of
“convolutional” and optional “downsampling” layers

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

4

Recap: A convolutional layer

• The computation of each output map has two stages
– Computing an affine map, by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates point-wise on the output of the convolution

Previous
layer

Recap: A convolutional layer

• The computation of each output map has two stages
– Computing an affine map, by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates point-wise on the output of the convolution

Previous
layer

Recap: Convolution

• Each affine output map is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

7

Filter1 Filter 𝑙

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Caveat : 0-based indexing

Filter1 Filter 𝑙

Recap: Convolution

Previous
layer

8

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Caveat : 0-based indexing

Recap: Convolution

Previous
layer

9

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Recap: Convolution

Previous
layer

10

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

11

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

12

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

13

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

14

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

15

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

16

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Previous
layer

17

Recap: Convolution

• Each affine output is computed from multiple input maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Recap: A cube visualization

• View the collection of maps as a stacked arrangement
of planes

• We can view the joint processing of the various maps
as processing the stack using a three-dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)

18

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

19

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

20

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

21

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

22

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

23

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

24

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

25

Recap: A cube visualization

௟ ௟

௅ିଵ

௝ୀ଴

௅ିଵ

௜ୀ଴௠

Recap: A convolutional layer

• The computation of each output map has two stages
– Computing an affine map, by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Convolution layer: A more explicit illustration

• Input maps are convolved with several filters to generate the affine maps
– Each filter consists of a set of square patterns of weights, with one set for each map in 𝑌(𝑙 − 1,∗)

– We get one affine map per filter

• A point-wise activation function is applied to each map in to produce the
activation maps 27

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Affine maps Activation maps

Pseudocode: Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl tensor

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor
z(l,j,x,y) = W(l,j).segment + b(l,j)#tensor prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})

28Pseudocode has 1-based indexing

Pseudocode: Vector notation
The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

m = 1

for x = 1:stride:Wl-1-Kl+1

n = 1

for y = 1:stride:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment + b(l,j) #tensor prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

n++

m++

Y = softmax({Y(L,:,:,:)})
29

Poll 1

• @885

30

Poll 1

31

Select all true statements about a convolution layer.

 The number of “planes” in any filter equals the number of input maps (output maps from the
previous layer)

 The number of “planes” in any filter equals the number of output maps (affine maps output by
the layer)

 The number of filters equals the number of input maps
 The number of filters equals the number of output maps

Downsampling/Pooling

• Convolutional (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

32

Recall: Max pooling

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

33

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

34

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

35

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

36

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

37

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

38

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

39

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

40

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

41

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

42

Recap: Pooling and downsampling layer

• Input maps are operated on individually by
pooling operations to produce the pooled maps
– Pooling is performed with stride > 1 resulting in downsampling

• Output maps are smaller than input maps 43

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟ିଵ)

pooling

Recap: Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
44

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Recall: Mean pooling

• Mean pooling computes the mean of the window
of values
– As opposed to the max of max pooling

• Scanning with strides is otherwise identical to
max pooling

Mean

3 1

4 6

Mean 3.5

45

Recap: Mean Pooling layer at layer

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

u(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

46

a) Performed separately for every map (j)

Recap: A CNN, end-to-end

• Typical image classification task
– Assuming maxpooling..

• Input: RBG images
– Will assume color to be generic

47

Recap: A CNN, end-to-end

ଵ
ଵ

ଶ
ଵ

1

4

• Several convolutional and pooling layers.
• The output of the last layer is “flattened” and passed through an MLP

convolve convolve

48

௄య

ଷ

3

௠

1

௄భ

ଵ

௠ 2 3 3

3

2

௄మ

ଶ

Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

𝐾1 × 𝐼 × 𝐼

3

learnable learnable

learnable

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ

Recap: Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a loss:
– Define a divergence between the desired output and true

output of the network in response to any input
– The loss aggregates the divergences of the training set

• Network parameters are trained to minimize the loss
– Through variants of gradient descent
– Gradients are computed through backpropagation

50

Defining the loss

• The loss for a single instance 51

ଵ
ଵ

ଶ
ଵ

1

4

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

௄య

ଷ

3

௠

1

௄భ

ଵ

௠ 2 3 3

3

2

௄మ

ଶ

Recap: Problem Setup
• Given a training set of input-output pairs

• The divergence on the ith instance is
• The aggregate Loss

• Minimize w.r.t
– Using gradient descent

52

Recap: The derivative

• Computing the derivative

53

Total derivative:

Total training loss:

Recap: The derivative

• Computing the derivative

54

Total derivative:

Total training loss:

Backpropagation: Final flat layers

• For each training instance: First, a forward pass through the net
• Then the backpropagation of the derivative of the divergence

• Backpropagation continues in the usual manner until the computation of
the derivative of the divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the “unrolling” of the maps from

the final convolutional layer

௒(௅)

௄భ

ଵ

1
௄మ

ଶ

2

3

Conventional backprop until here

55

Backpropagation: Convolutional and
Pooling layers

• Backpropagation from the flat MLP requires
special consideration of
– The shared computation in the convolution layers

– The pooling layers (particularly maxout)

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)

56

Backpropagating through the convolution

• Convolution layers:
• We already have the derivative w.r.t (all the elements of) activation map

– Having backpropagated it from the divergence

• We must backpropagate it through the activation to compute the derivative w.r.t.
and further back to compute the derivative w.r.t the filters and 57

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Affine maps Activation maps

Backprop: Pooling and D/S layer

• Pooling and downsampling layers:
• We already have the derivative w.r.t

– Having backpropagated it from the divergence

• We must compute the derivative w.r.t 58

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟ିଵ)

pooling

𝛻௒(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

59

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

60

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

61

Backpropagating through the activation

• Forward computation: The activation maps are obtained by point-wise
application of the activation function to the affine maps

– The affine map entries have already been computed via
convolutions over the previous layer 62

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 63

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

64

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

65

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

66

Backpropagating through the affine map

• We already have the derivative w.r.t
– Having backpropagated it past

• We must compute the derivative w.r.t 67

Filter1 Filter 𝑙

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Backpropagating through the affine map

• We already have the derivative w.r.t
– Having backpropagated it past

• We must compute the derivative w.r.t 68

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝒘𝒍(𝟐, 𝟏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝟐, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps69

Filter(n)

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

௟

௟

௟ ௟ିଵ

𝑍(𝑙, 𝑛)

Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps70

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝒎, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps71

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps72

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency diagram for a single map

• Each map influences through the th “plane” of the
th filter ௟

• influences the divergence through all maps
73

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

Dependency diagram for a single map

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to
complete the computation of the formula 74

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

Dependency diagram for a single map

75

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to
complete the computation of the formula

Consider a specific

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t.

76

BP: Convolutional layer

3 44
4 32
3 42

• Each affects several
terms

77

BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps

N = No. of filters

78

BP: Convolutional layer

N = No. of filters

79
ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

BP: Convolutional layer

N = No. of filters

80
ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps
What is this?

How a single influences

• Compute how each in influences
various locations of

81

௟

Assuming indexing
begins at 0

How a single influences

82

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

௟

How a single influences

83

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

84

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

85

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

86

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

87

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

88

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

89

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

90

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

• Note: The coordinates of and
sum to the coordinates of

91

௟

How a single influences

௟

92

BP: Convolutional layer

ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

93

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

94

Poll 2

• @886, 887

95

Poll 2

96

In order to compute the derivative at a single affine element Y(l,m,x,y), we must consider the
contributions of every position of every affine map at the next layer: True or false

 True
 False

The derivative for an single affine element Y(l,m,x,y) will require summing over every position of every Z
map in the next layer: True of false

 True
 False

Computing derivative for

• The derivatives for every element of every
map in by direct implementation of
the formula:

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

• But this is actually a convolution!
– Let’s see how

97

How a single influences

98

௟

How a single influences

99

௟

How a single influences

100

௟

How a single influences

101

௟

How a single influences

102

௟

How a single influences

103

௟

How a single influences

104

௟

How a single influences

105

௟

How a single influences

106

௟

How a single influences

107

௟

• The derivative at is the sum of component-wise product
of the filter elements and the elements of the derivative at

How a single influences

108

• The derivative at is the sum of component-wise
product of the filter elements and the elements of the derivative at

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

Derivative at from a single map

109
Contribution of the entire th affine map

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

௟

110

Derivative at from a single map

111

Derivative at from a single map

௟

Zero pad with K-1 rows
and cols on every side

flip

112

௟

Derivative at from a single map

113

௟

Derivative at from a single map

114

௟

Derivative at from a single map

115

௟

Derivative at from a single map

116

௟

Derivative at from a single map

௟

117

Derivative at from a single map

௟

118

Derivative at from a single map

௟

119

Derivative at from a single map

120

௟

Derivative at from a single map

௟

121

Derivative at from a single map

௟

122

Derivative at from a single map

௟

123

Derivative at from a single map

௟

124

Derivative at from a single map

௟

125

Derivative at from a single map

௟

126

Derivative at from a single map

127

௟

Derivative at from a single map

௟

128

Derivative at from a single map

௟

129

Derivative at from a single map

௟

130

Derivative at from a single map

131

௟

Derivative at from a single map

௟

132

Derivative at from a single map

Derivative at from a single map

௟

133

Derivative at from a single map

௟

134

Derivative at from a single map

௟

135

Derivative at from a single map

136

௟

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

137

The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

138

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)

The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

139

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)

140

௟ In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

141

௟

௟

flip

In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

flip

142

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

143

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

144

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

145

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

146

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

147

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

148

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

149

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

150

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

151

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

152

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

153

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

154

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

155

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

156

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

157

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

158

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

159

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

160

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

161

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

162

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

163

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

164

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

165

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

166

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

Computing the derivative for

• This is just a convolution of the zero-padded
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side

167

𝑤௟(𝑚, 𝑛, 𝑥, 𝑦)

𝑤௟(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)

The size of the Y-derivative map

• We continue to compute elements for the derivative map as long as the
(flipped) filter has at least one element in the (unpadded) derivative Zmap
– I.e. so long as the derivative is non-zero

• The size of the derivative map will be
– and are heidght and width of the Zmap

• This will be the size of the actual map that was originally convolved
168

The size of the Y-derivative map

• If the map was zero-padded in the forward
pass, the derivative map will be the size of the
zero-padded map
– The zero padding regions must be deleted before

further backprop
169

When the stride is more than 1?

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

When the stride is more than 1?

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

• We must make adjustments for when the
stride is greater than 1.

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4

Stride greater than 1

• Observation: Convolving with a stride greater than 1 is the same
as convolving with stride 1 and “dropping” out of every
rows, and of every columns
– Downsampling by
– E.g. for stride 2, it is the same as convolving with stride 1 and dropping

every 2nd entry

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4

3 44
4 32
3 42

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives
of the divergence with respect to the
elements of the downsampled (strided) map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence
with respect to the elements of the downsampled (strided) map

• We can place these derivative values back into their original
locations of the full-sized map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence with respect to
the elements of the downsampled (strided) map

• We can place these values back into their original locations of the full-sized map

• The remaining entries of the map do not affect the divergence
– Since they get dropped out

• The derivative of the divergence w.r.t. these values is 0

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Computing derivatives with Stride > 1

• Upsampling derivative map:
– Upsample the downsampled derivatives
– Insert zeros into the “empty” slots
– This gives us the derivatives w.r.t. all the entries of a full-sized (stride 1) map

• We can compute the derivatives for , using the full map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Poll 3

• @888

181

Poll 3

182

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer
activation maps by backpropagation

 To compute the derivative w.r.t. the mth activation map of the lth convolutional layer, we
must select the mth “planes” of all the (l+1)th layer filters

 The selected filter planes must be flipped left-right and up-down
 They must convolve the derivative (maps) for the (l+1)th layer affine values
 The output of the convolution must be flipped back left-right and up-down
 If the forward convolution has a stride S, the derivative maps must be upsampled by S prior to

convolution
 If the forward convolution has stride S, the backpropagtion convolution must also have a stride S

Overall algorithm for computing
derivatives w.r.t.

• Given the derivatives ௗ஽௜௩

ௗ௭ ௟,௡,௫,௬

• If stride , upsample derivative map

• For ,

• Compute derivatives using:

183

ᇱ ᇱ
௟

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Can be computed by convolution with flipped filter

Derivatives for a single layer :
Vector notation

The weight W(l,m)is a 3D Dl-1xKlxKl
Assuming dz has already been obtained via backprop

if (stride > 1) #upsample

dz = upsample(dz,stride, Wl-1, Hl-1, Kl)

dzpad = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad

for j = 1:Dl
for i = 1:Dl-1 # Transpose and flip

Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(l,i,j,:,:)))

dzpad(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) #center map

end

for j = 1:Dl-1
for x = 1:Wl-1

for y = 1:Hl-1
segment = dzpad(:, x:x+Kl-1, y:y+Kl-1) #3D tensor

dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.

184

Upsampling
Upsample dz to the size it would be if stride was 1

function upsample(dz, S, W, H, K)

if (S > 1) #Insert S-1 zeros between samples

Hup = H – K + 1

Wup = W – K + 1

dzup = zeros(Wup, Hup)

for x = 1:S:H

xdownsamp = (x-1)/S+1 #Downsampled index

for y = 1:S:W

ydownsamp = (x-1)/S+1

dzup(x,y) = dz(xdownsamp, ydownsamp)

else

dzup = dz

return dzup
185

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

186

The derivatives for the weights

187

• Each weight affects several
– Consider the contribution of one filter components:

(e.g.)

௟

௫ᇱ,௬ᇱ

௟

௠

௟

188

• Each affine output is computed from multiple input maps simultaneously
• Each weight ௟ affects several

Previous
layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of
a single weight

189

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of
a single weight

190

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

191

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

192

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

193

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

194

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

195

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

196

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

197

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

198

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

199

Convolution: the contribution of
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Previous
layer

200

Convolution: the contribution of
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

201

Convolution: the contribution of
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟ ௟

Previous
layer

202

Convolution: the contribution of
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟

203

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

௟ ௟
௫,௬

204

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

௟ ௟
௫,௬

Already computed

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

205

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

Already computed

௟ ௟
௫,௬

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

206

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

௟
௫,௬

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

But this too is a convolution

• The derivatives for all components of all filters
can be computed directly from the above formula

• In fact it is just a convolution

• How?

207

௟
௫,௬

௟

Recap: Convolution

• Forward computation: Each filter produces an
affine map 208

Filter1 Filter 𝑙

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Recap: Convolution

• influences through
209

Filter1

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 210

𝑍(𝑙, 1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,2)

௟

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 211

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 212

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 213

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 214

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 215

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 216

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 217

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 218

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 219

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivative of the th affine map convolves with
every output map of the th layer, to get
the derivative for , the th “plane” of the th filter

220

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

Filter(n)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

௟

௟

௟ ௟ିଵ

The filter derivative

221

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

Filter1

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑑𝐷𝑖𝑣

𝑑𝑤௟ (𝑚, 𝑛, 𝑖, 𝑗)
= ෍

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)
𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗

௫,௬

=
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛)
⨂𝑦 𝑙 − 1, 𝑚

ௗ஽௜௩

ௗ௭(௟,௡,௫,௬)
must be upsampled if the stride was greater than 1 in the forward pass

If was zero padded in the forward pass, it must be zero padded for backprop

௟

௟

௟ ௟ିଵ

Poll 4

• @889

222

Poll 4

223

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer
filters using backpropagation

 The derivative for the mth plane of the nth filter is computed by convolving the mth input (l-
1th) layer map with the nth output (lth) layer affine derivative map

 The output map must be flipped left-right/up-down before convolution
 If the forward convolution has a stride S, the derivative maps must be upsampled by S prior to

convolution
 If the forward convolution has stride S, the backpropagtion convolution must also have a stride S

Derivatives for the filters at layer :
Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl
Assuming that derivative maps have been upsampled
if stride > 1

Also assuming y map has been zero-padded if this was
also done in the forward pass

The width and height of the dz map are W and H

for n = 1:Dl
for x = 1:Kl
for y = 1:Kl

for m = 1:Dl-1
dw(l,m,n,x,y) = dz(l,n,:,:). #dot product

y(l-1,m,x:x+H-1,y:y+W-1)

224

Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination

maps from the activation output maps

• How to compute the derivative w.r.t. and
given derivatives w.r.t.

225

CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
226

Switching to 1-based
indexing with appropriate
adjustments

Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

227

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)228

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)229

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here

Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = Wl:downto:1

m = (x-1)stride
for y = Hl:downto:1

n = (y-1)stride
for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = Dl-1:downto:1

for x’ = Kl:downto:1
for y’ = Kl:downto:1

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

230

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

231

Max

232

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

233

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

234

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

235

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

236

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

237

Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Max

1 3

6 5
Max

6

238

Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

239

1 3

6 5
Max

6

0 0
𝑑𝐷𝑖𝑣

𝑑𝑌 0

𝑑𝐷𝑖𝑣

𝑑𝑌
Backprop

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
240

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

241

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Mean

1 3

6 5
Mean

3.75

242

Derivative of mean pooling

• The derivative of mean pooling is distributed over the
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

𝑑𝑌

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ

243

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

244

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.

Derivative of mean pooling layer at
layer

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

245

“+=“ because adjacent windows may overlap

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

246

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back
propagation
– Maxpooling layers must propagate derivatives only over the maximum

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network 247

