Deep Neural Networks Convolutional Networks III

Bhiksha Raj Fall 2021

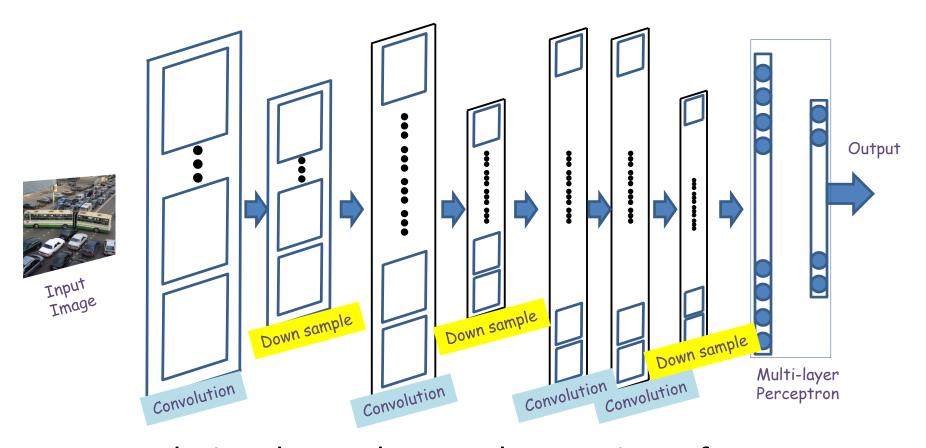
Outline

- Quick recap
- Back propagation through a CNN
- Modifications: Transposition, scaling, rotation and deformation invariance
- Segmentation and localization
- Some success stories
- Some advanced architectures
 - Resnet
 - Densenet
 - Transformers and self similarity

Story so far

- Pattern classification tasks such as "does this picture contain a cat", or "does this recording include HELLO" are best performed by scanning for the target pattern
- Scanning an input with a network and combining the outcomes is equivalent to scanning with individual neurons hierarchically
 - First level neurons scan the input
 - Higher-level neurons scan the "maps" formed by lower-level neurons
 - A final "decision" unit or layer makes the final decision
 - Deformations in the input can be handled by "pooling"
- For 2-D (or higher-dimensional) scans, the structure is called a convnet
- For 1-D scan along time, it is called a Time-delay neural network

Recap: The general architecture of a convolutional neural network



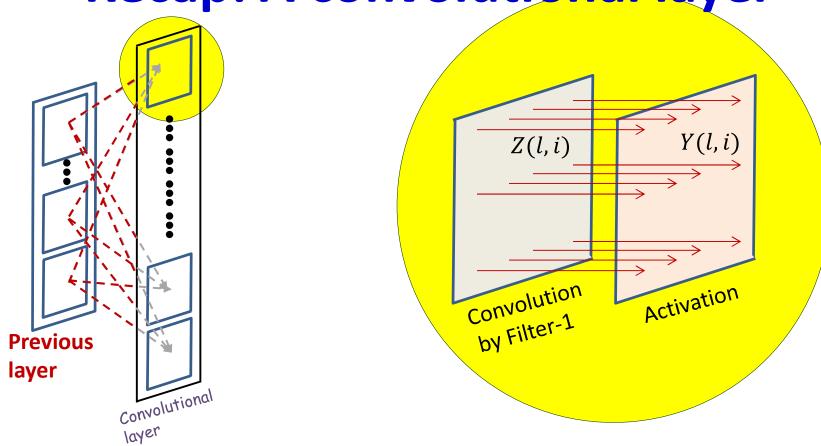
- A convolutional neural network comprises of "convolutional" and optional "downsampling" layers
- Followed by an MLP with one or more layers

Recap: A convolutional layer

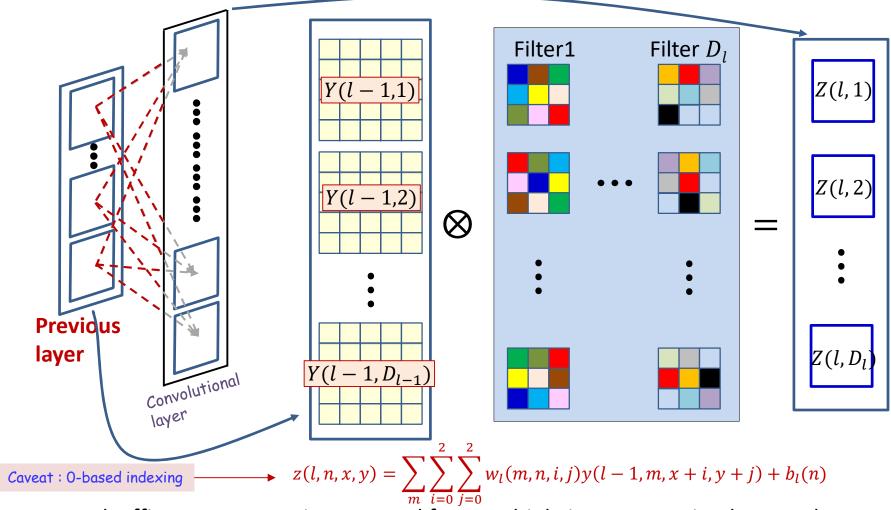


- The computation of each output map has two stages
 - Computing an affine map, by convolution over maps in the previous layer
 - Each affine map has, associated with it, a learnable filter
 - An activation that operates point-wise on the output of the convolution

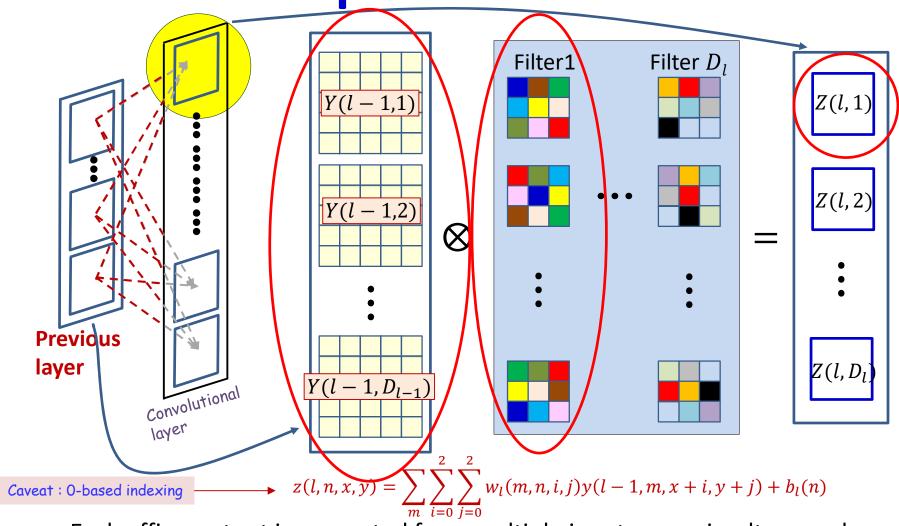
Recap: A convolutional layer



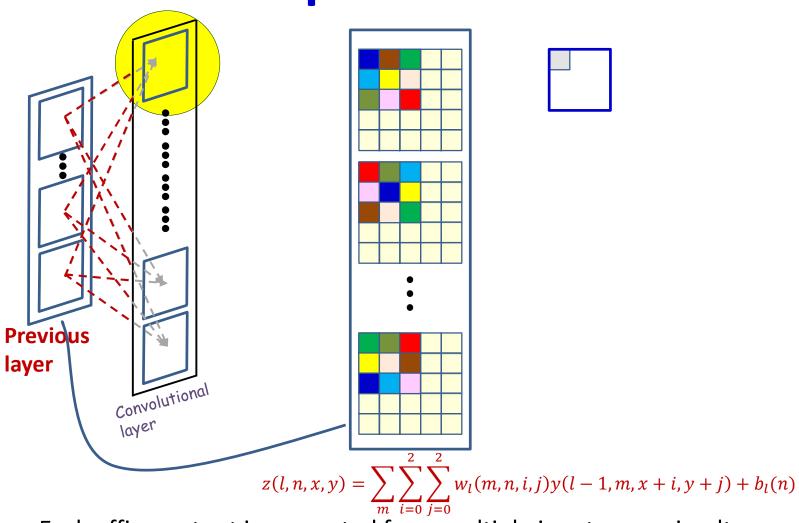
- The computation of each output map has two stages
 - Computing an affine map, by convolution over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates point-wise on the output of the convolution



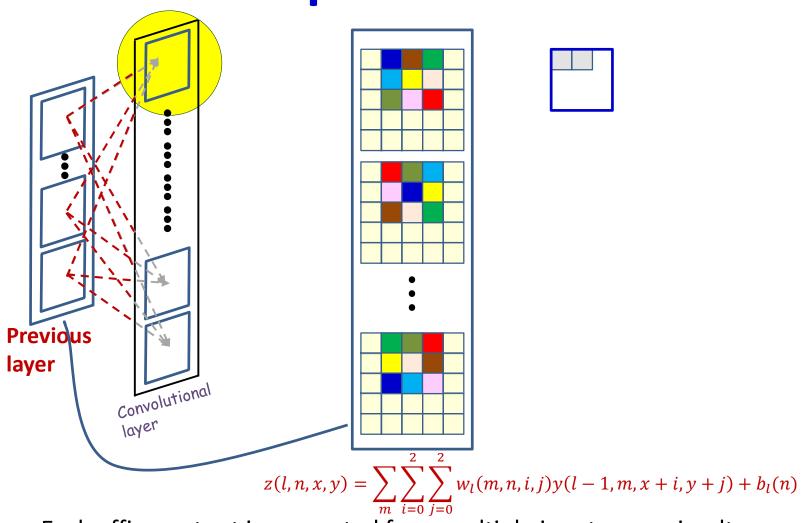
- Each affine output map is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



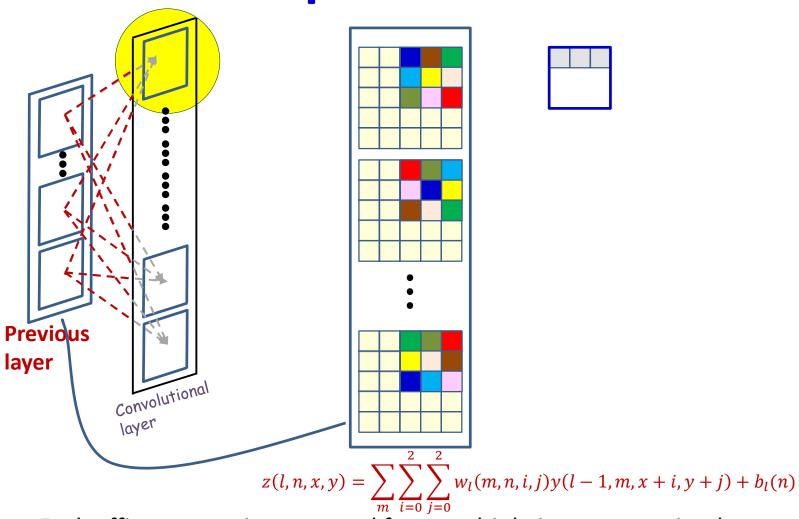
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



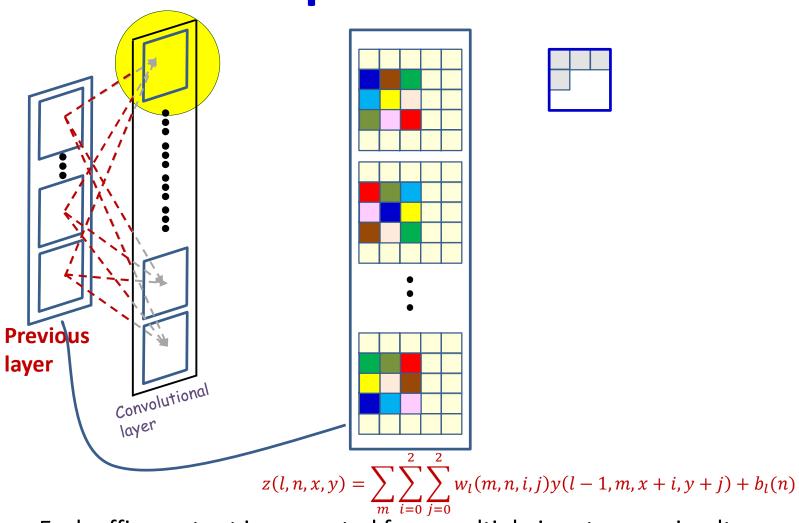
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



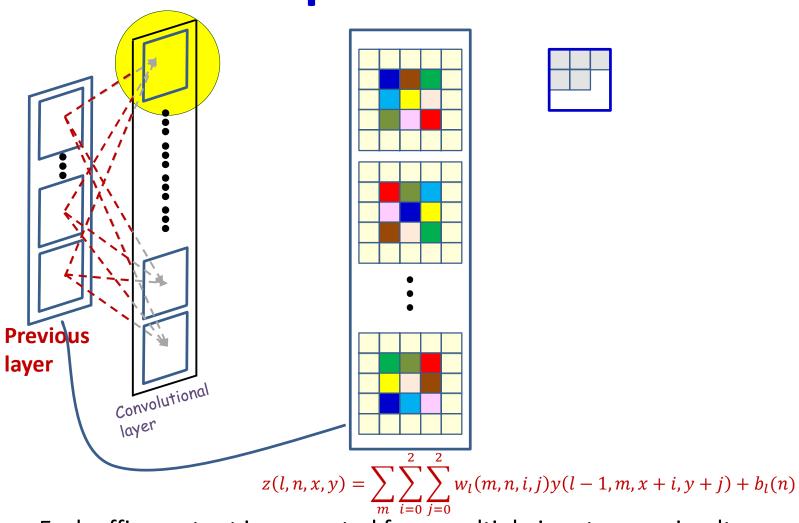
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



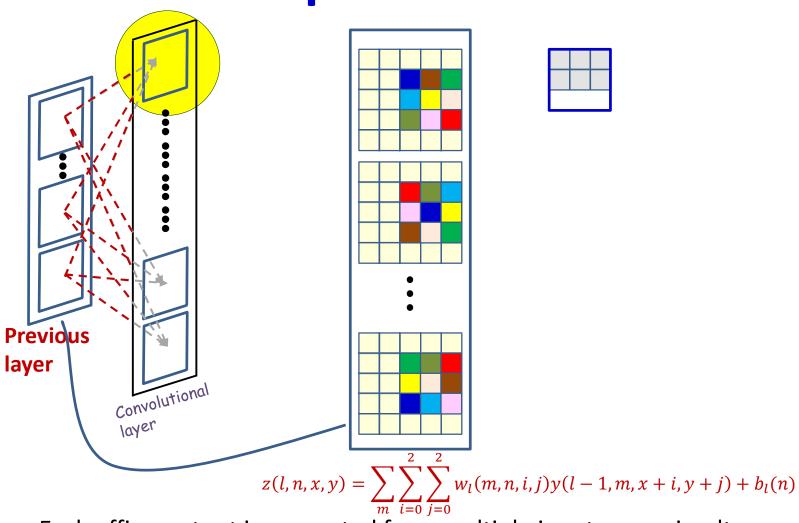
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as



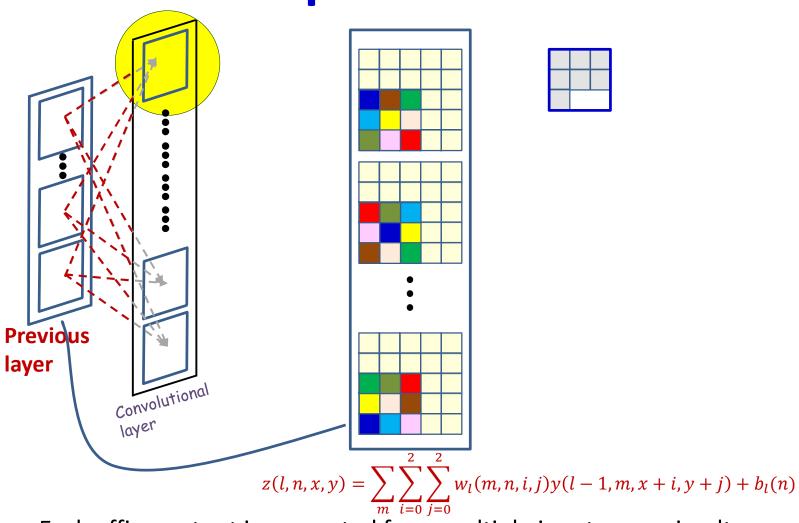
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as



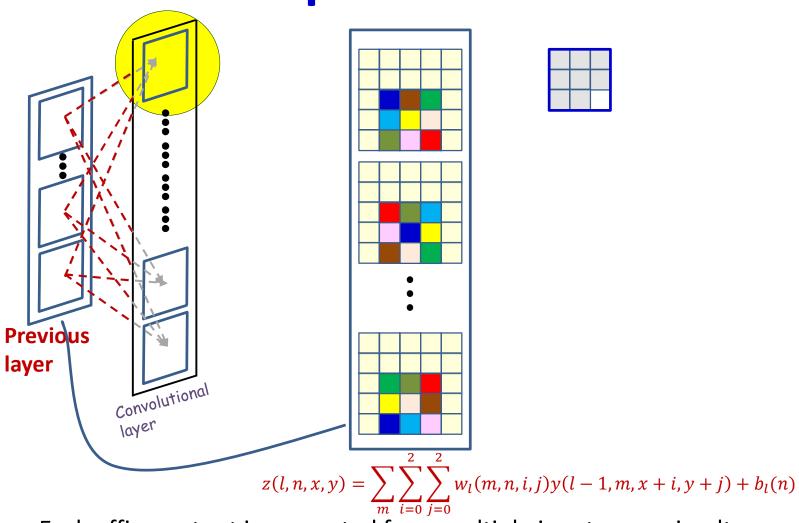
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as



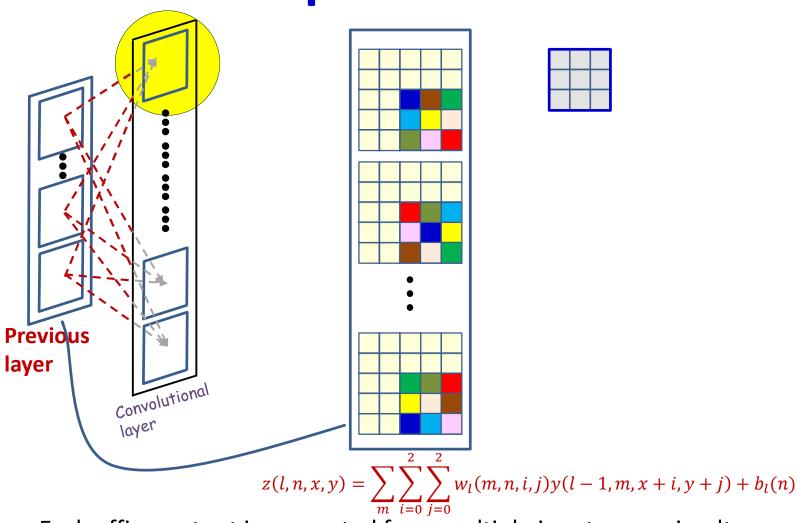
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



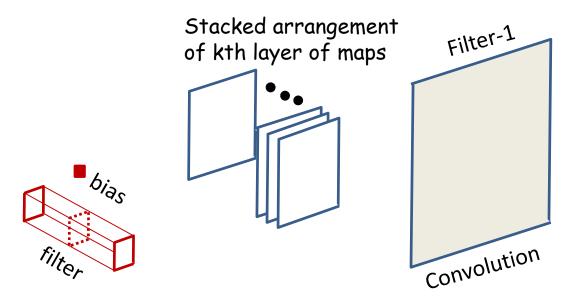
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as



- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

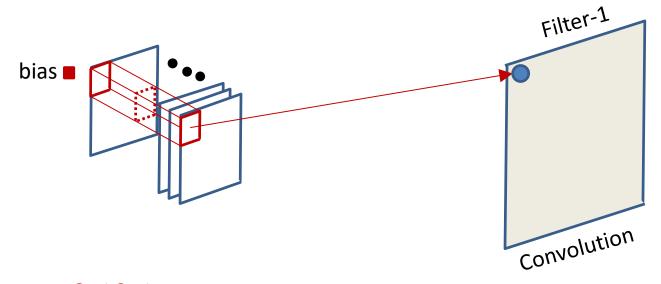


- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

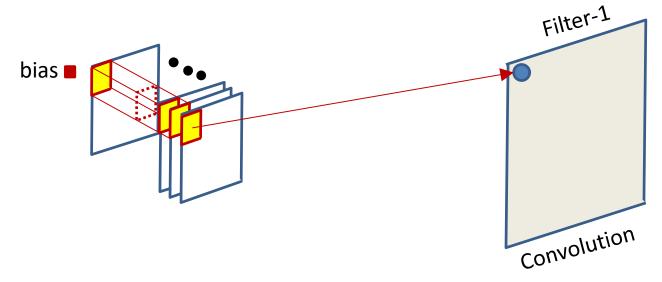


Filter applied to kth layer of maps (convolutive component plus bias)

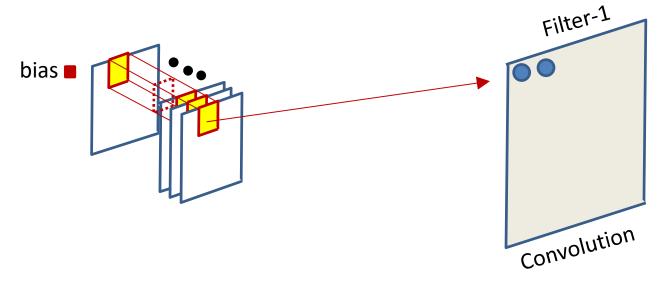
- View the collection of maps as a stacked arrangement of planes
- We can view the joint processing of the various maps as processing the stack using a three-dimensional filter



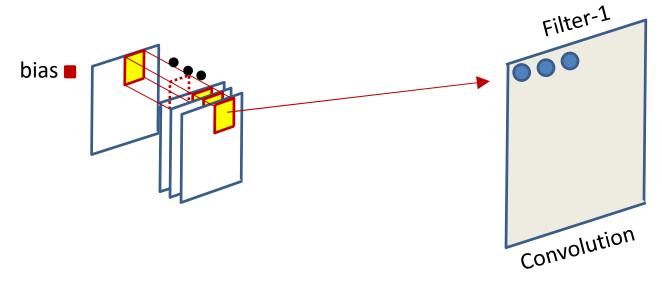
$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$



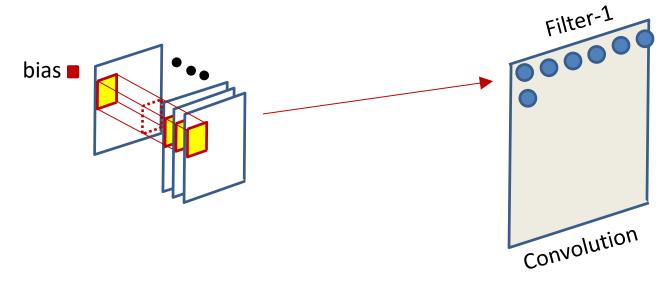
$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$



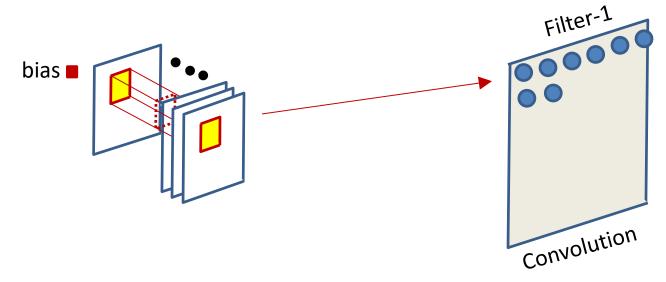
$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$



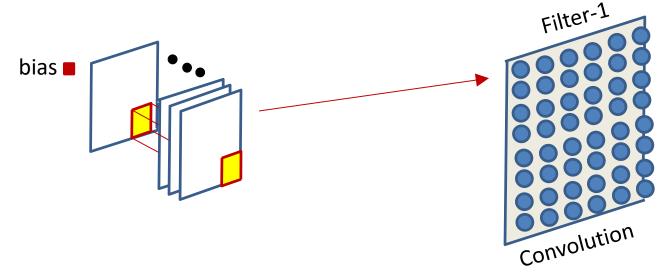
$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$



$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$

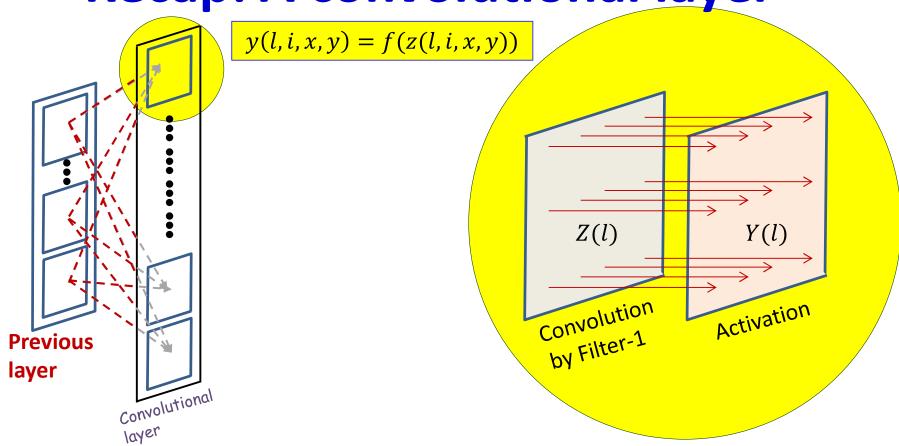


$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$



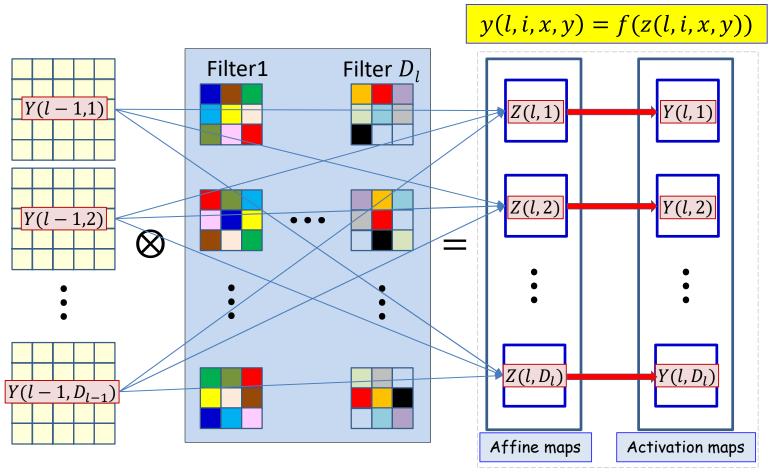
$$z(l, n, x, y) = \sum_{m} \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} w_l(m, n, i, j) y(l-1, m, x+i, y+j) + b_l(n)$$

Recap: A convolutional layer



- The computation of each output map has two stages
 - Computing an affine map, by convolution over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates on the output of the convolution

Convolution layer: A more explicit illustration



- Input maps Y(l-1,*) are convolved with several filters to generate the affine maps Z(l,*)
 - Each filter consists of a set of square patterns of weights, with one set for each map in Y(l-1,*)
 - We get one affine map per filter
- A *point-wise* activation function f(z) is applied to each map in Z(l,*) to produce the activation maps Y(l,*)

Pseudocode: Vector notation

```
The weight W(1,j) is a 3D D_{1-1} \times K_1 \times K_1 tensor
\mathbf{Y}(0) = Image
for 1 = 1:L # layers operate on vector at (x,y)
  for x = 1:W_{1-1}-K_1+1
    for y = 1:H_{1-1}-K_1+1
       for j = 1:D_1
          segment = Y(1-1, :, x:x+K_1-1, y:y+K_1-1) #3D tensor
          z(1,j,x,y) = W(1,j).segment + b(1,j) #tensor prod.
          \mathbf{Y}(1,j,x,y) = \mathbf{activation}(\mathbf{z}(1,j,x,y))
Y = softmax( {Y(L, :, :, :)} )
```

Pseudocode: Vector notation

```
The weight W(1, 1) is now a 3D D_{1-1} \times K_1 \times K_1 tensor (assuming
square receptive fields)
\mathbf{Y}(0) = Image
for 1 = 1:L # layers operate on vector at (x,y)
 m = 1
  for x = 1:stride:W_{1-1}-K_1+1
   n = 1
    for y = 1:stride: H_{1-1} - K_1 + 1
       for j = 1:D_1
           segment = Y(1-1, :, x:x+K_1-1, y:y+K_1-1) #3D tensor
           z(1,j,m,n) = W(1,j).segment + b(1,j) #tensor prod.
           Y(1,j,m,n) = activation(z(1,j,m,n))
           n++
         m++
```

29

 $Y = softmax({Y(L, :, :, :)})$

Poll 1

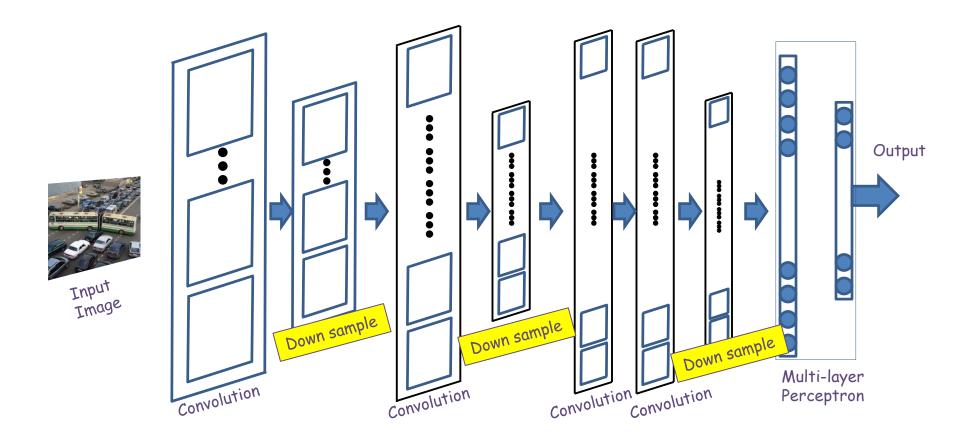
• @885

Poll 1

Select all true statements about a convolution layer.

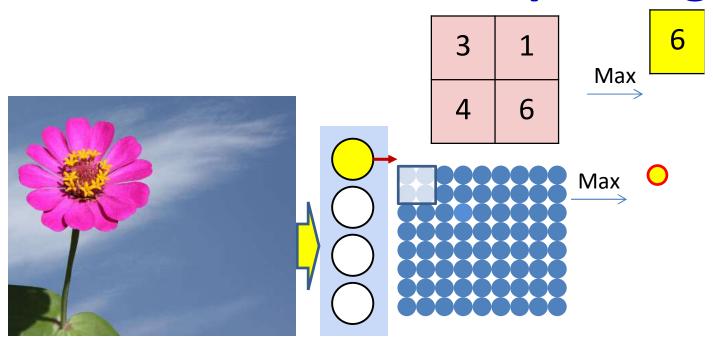
- The number of "planes" in any filter equals the number of input maps (output maps from the previous layer)
- The number of "planes" in any filter equals the number of output maps (affine maps output by the layer)
- The number of filters equals the number of input maps
- The number of filters equals the number of output maps

Downsampling/Pooling



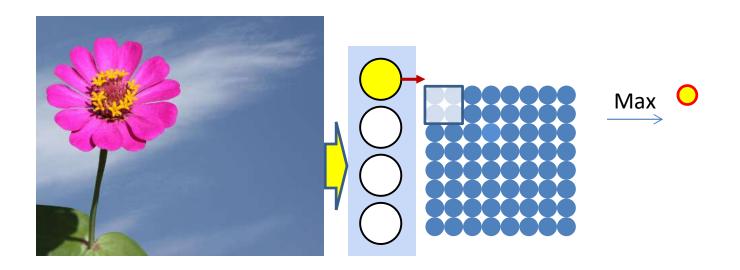
- Convolutional (and activation) layers are followed intermittently by "downsampling" (or "pooling") layers
 - Often, they alternate with convolution, though this is not necessary

Recall: Max pooling



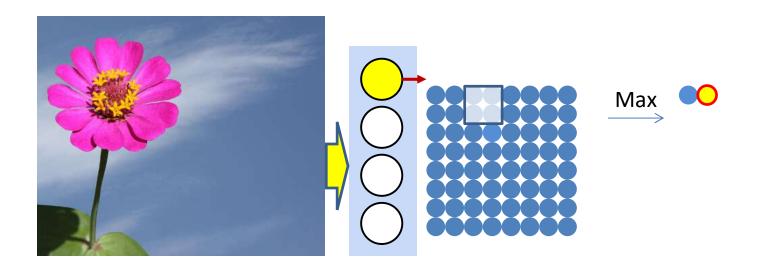
- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Pooling and downsampling



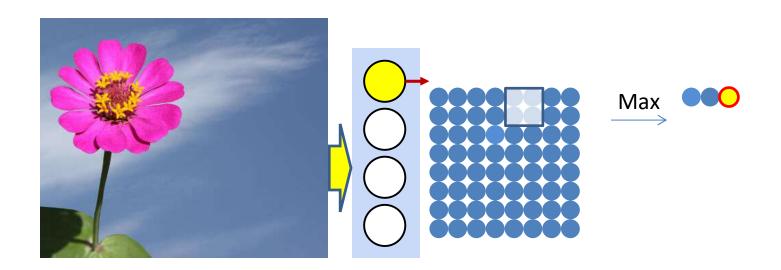
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

Pooling and downsampling

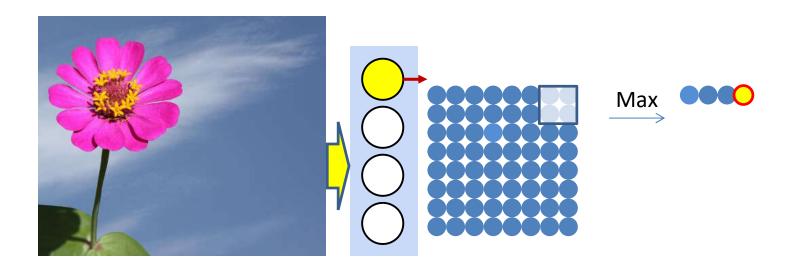


- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

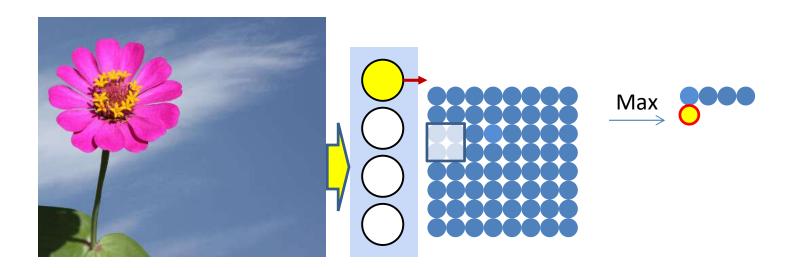
Pooling and downsampling



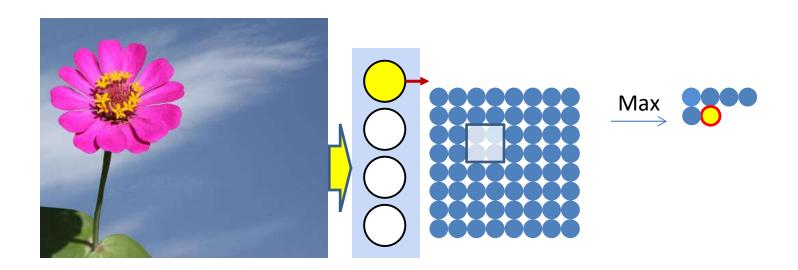
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



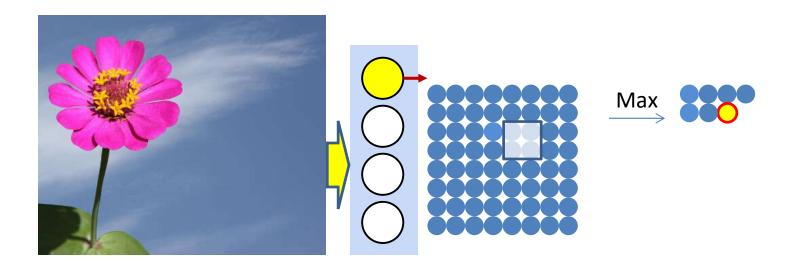
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



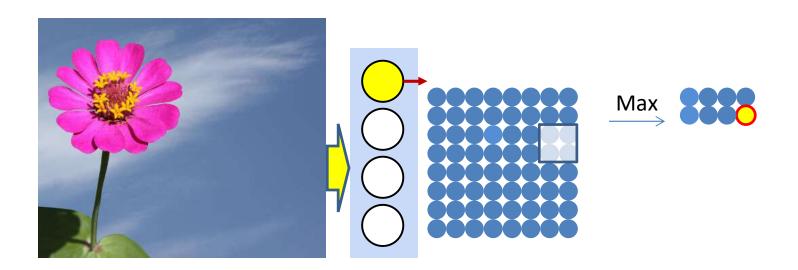
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



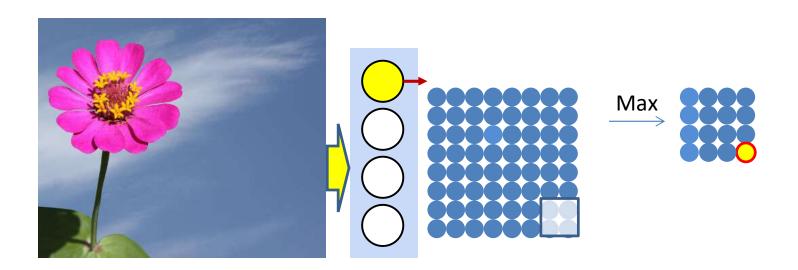
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

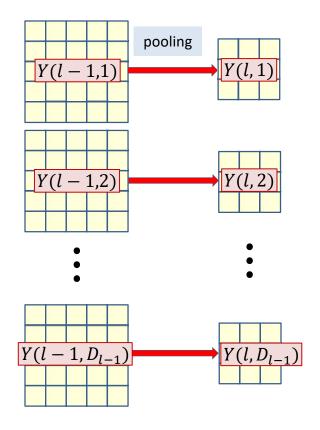


- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

Recap: Pooling and downsampling layer



- Input maps Y(l-1,*) are operated on individually by pooling operations to produce the pooled maps Y(l,*)
 - Pooling is performed with stride > 1 resulting in downsampling
 - Output maps are smaller than input maps

Recap: Max Pooling layer at layer l

- a) Performed separately for every map (j).
 *) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
for j = 1:D<sub>1</sub>

m = 1

for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1

n = 1

for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1

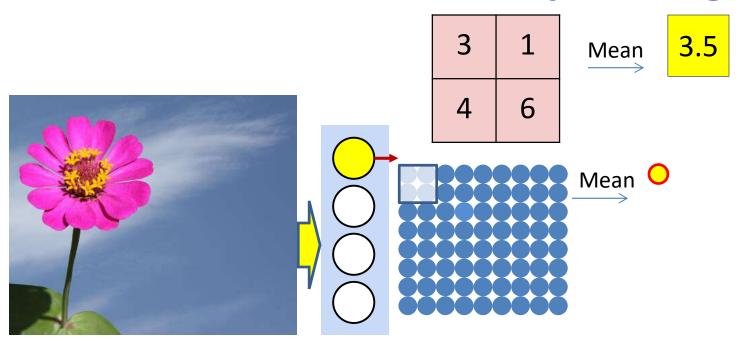
pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))

u(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
```

Recall: Mean pooling

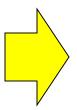


- Mean pooling computes the *mean* of the window of values
 - As opposed to the max of max pooling
- Scanning with strides is otherwise identical to max pooling

Recap: Mean Pooling layer at layer *l*

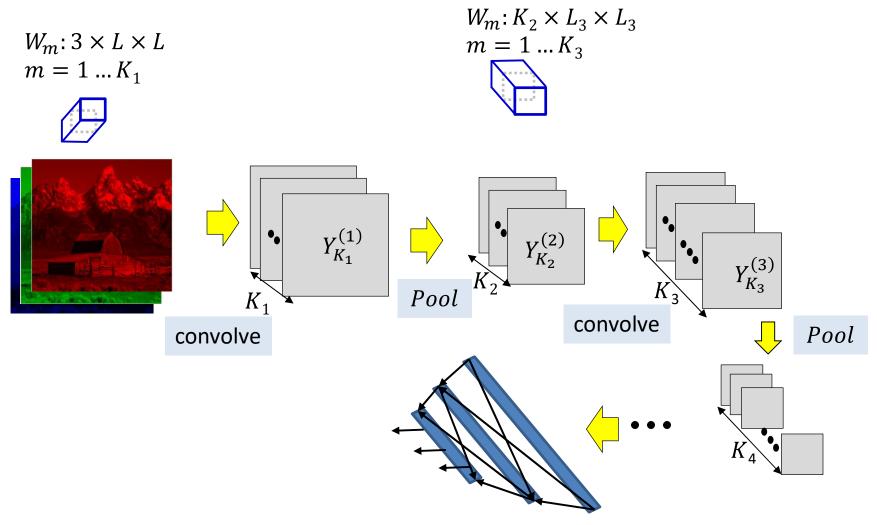
a) Performed separately for every map (j) Mean pooling for $j = 1:D_1$ m = 1for $x = 1:stride(1):W_{1-1}-K_1+1$ n = 1for $y = 1:stride(1):H_{1-1}-K_1+1$ $u(l,j,m,n) = mean(Y(l-1,j,x:x+K_1-1,y:y+K_1-1))$ n = n+1m = m+1

Recap: A CNN, end-to-end



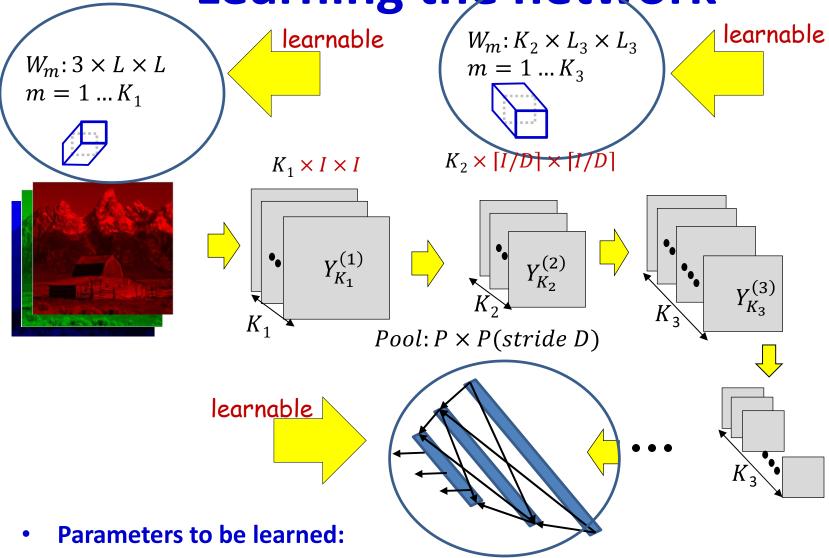
- Typical image classification task
 - Assuming maxpooling..
- Input: RBG images
 - Will assume color to be generic

Recap: A CNN, end-to-end



- Several convolutional and pooling layers.
- The output of the last layer is "flattened" and passed through an MLP

Learning the network



- The weights of the neurons in the final MLP
- The (weights and biases of the) filters for every convolutional layer

Recap: Learning the CNN

- Training is as in the case of the regular MLP
 - The only difference is in the structure of the network
- Training examples of (Image, class) are provided

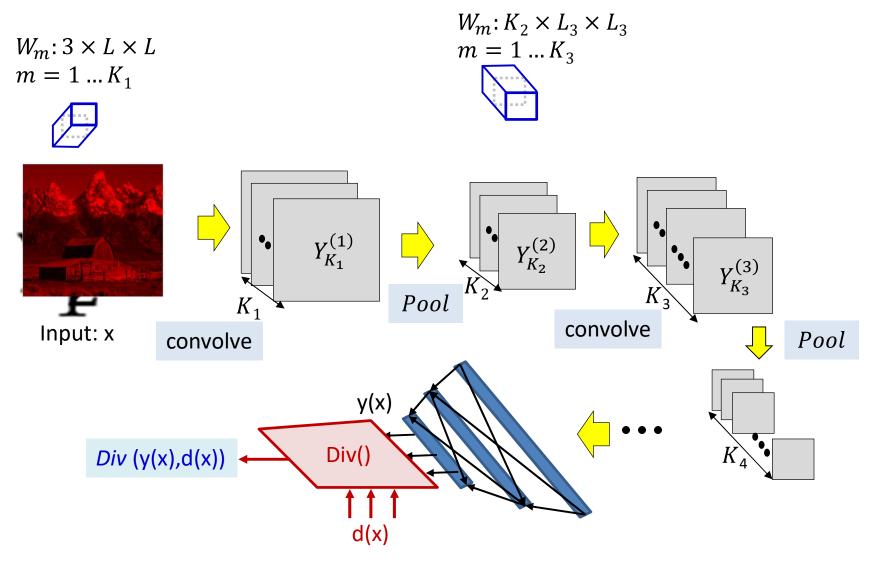
Define a loss:

- Define a divergence between the desired output and true output of the network in response to any input
- The loss aggregates the divergences of the training set

Network parameters are trained to minimize the loss

- Through variants of gradient descent
- Gradients are computed through backpropagation

Defining the loss



The loss for a single instance

Recap: Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The divergence on the ith instance is $div(Y_i, d_i)$
- The aggregate Loss

$$Loss = \frac{1}{T} \sum_{i=1}^{T} div(Y_i, d_i)$$

- Minimize Loss w.r.t $\{W_m, b_m\}$
 - Using gradient descent

Recap: The derivative

Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

Computing the derivative

Total derivative:

$$\frac{dLoss}{dw} = \frac{1}{T} \sum_{i} \frac{dDiv(Y_i, d_i)}{dw}$$

Recap: The derivative

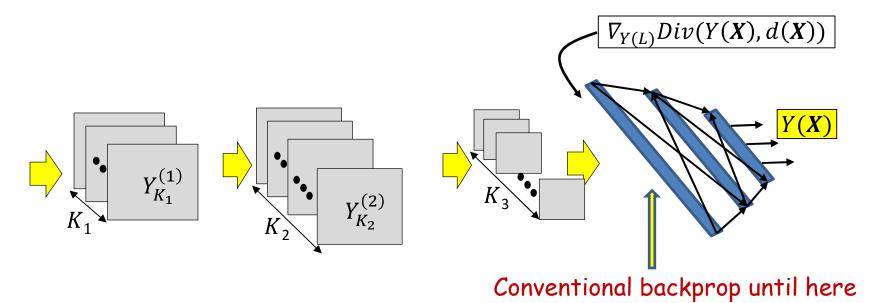
Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

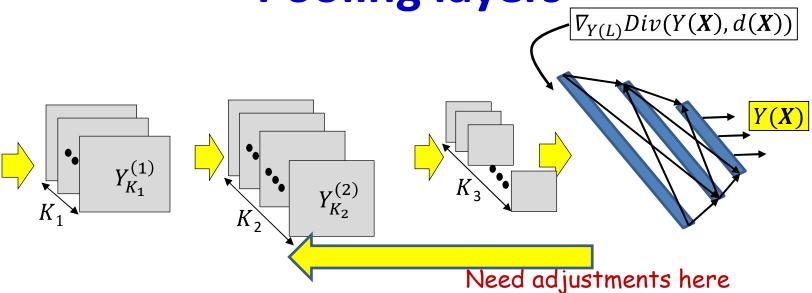
Computing the derivative

Total derivative:
$$\frac{dLoss}{dw} = \frac{1}{T} \sum_{i} \frac{dDiv(Y_i, d_i)}{dw}$$

Backpropagation: Final flat layers

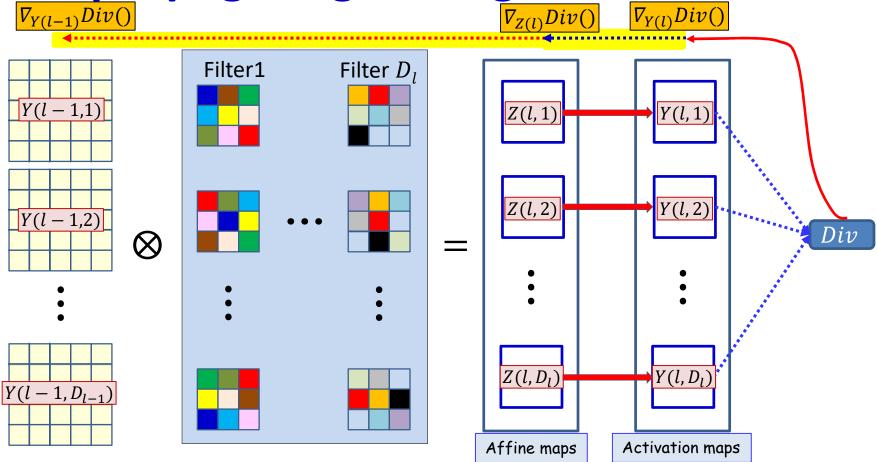


- For each training instance: First, a forward pass through the net
- Then the backpropagation of the derivative of the divergence
- Backpropagation continues in the usual manner until the computation of the derivative of the divergence w.r.t the inputs to the first "flat" layer
 - Important to recall: the first flat layer is only the "unrolling" of the maps from the final convolutional layer



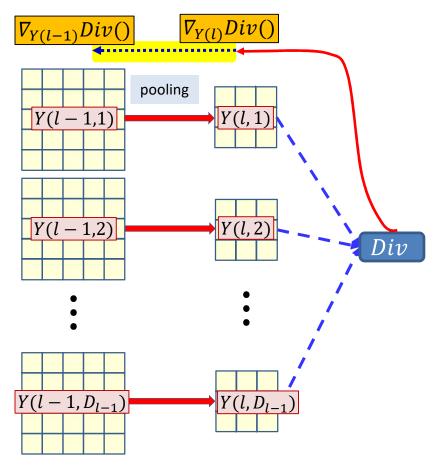
- Backpropagation from the flat MLP requires special consideration of
 - The shared computation in the convolution layers
 - The pooling layers (particularly maxout)

Backpropagating through the convolution



- Convolution layers:
- We already have the derivative w.r.t (all the elements of) activation map Y(l,*)
 - Having backpropagated it from the divergence
- We must backpropagate it through the activation to compute the derivative w.r.t. Z(l,*) and further back to compute the derivative w.r.t the filters and Y(l-1,*)

Backprop: Pooling and D/S layer



- Pooling and downsampling layers:
- We already have the derivative w.r.t Y(l,*)
 - Having backpropagated it from the divergence
- We must compute the derivative w.r.t Y(l-1,*)

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

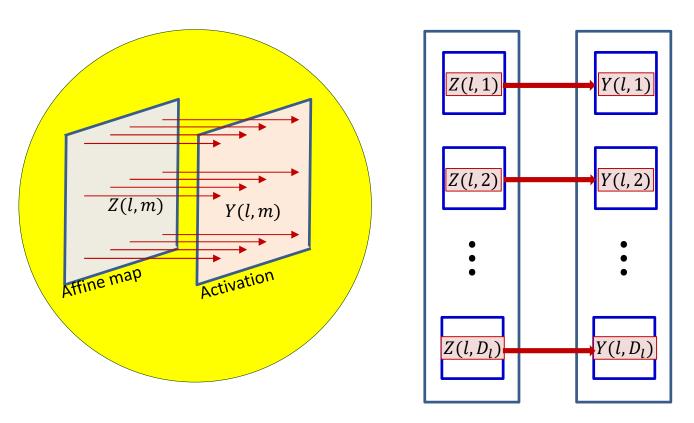
- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

Backpropagating through the activation

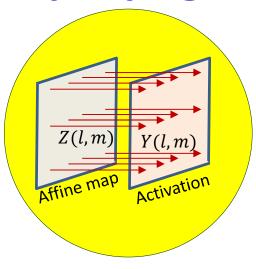


 Forward computation: The activation maps are obtained by point-wise application of the activation function to the affine maps

$$y(l, m, x, y) = f(z(l, m, x, y))$$

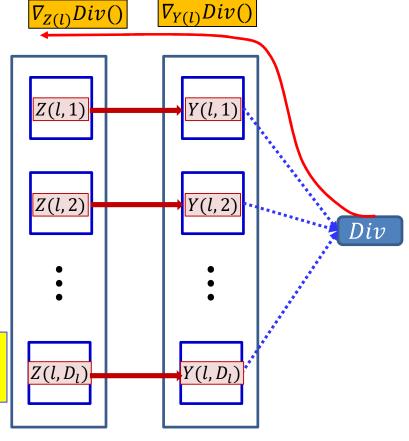
- The affine map entries z(l, m, x, y) have already been computed via convolutions over the previous layer

Backpropagating through the activation



$$y(l, m, x, y) = f(z(l, m, x, y))$$

$$\frac{dDiv}{dz(l,m,x,y)} = \frac{dDiv}{dy(l,m,x,y)} f'(z(l,m,x,y))$$



- Backward computation: For every map Y(l, m) for every position (x, y), we already have the derivative of the divergence w.r.t. y(l, m, x, y)
 - Obtained via backpropagation
- We obtain the derivatives of the divergence w.r.t. z(l, m, x, y) using the chain rule:

$$\frac{dDiv}{dz(l,m,x,y)} = \frac{dDiv}{dy(l,m,x,y)} f'(z(l,m,x,y))$$

Simple component-wise computation

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - \checkmark How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

Backpropagating through affine map

- Forward affine computation:
 - Compute affine maps z(l, n, x, y) from previous layer maps y(l-1, m, x, y) and filters $w_l(m, n, x, y)$

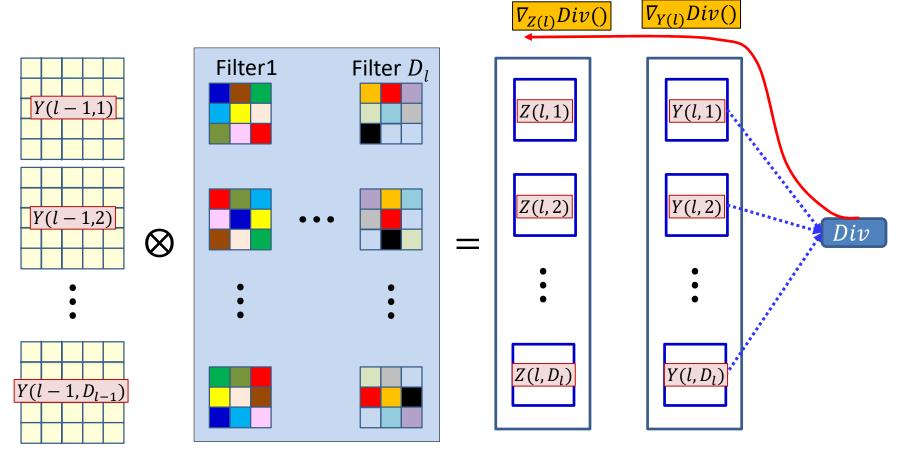
- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$
 - Compute derivative w.r.t. y(l-1, m, x, y)
 - Compute derivative w.r.t. $w_l(m, n, x, y)$

Backpropagating through affine map

- Forward affine computation:
 - Compute affine maps z(l, n, x, y) from previous layer maps y(l-1, m, x, y) and filters $w_l(m, n, x, y)$

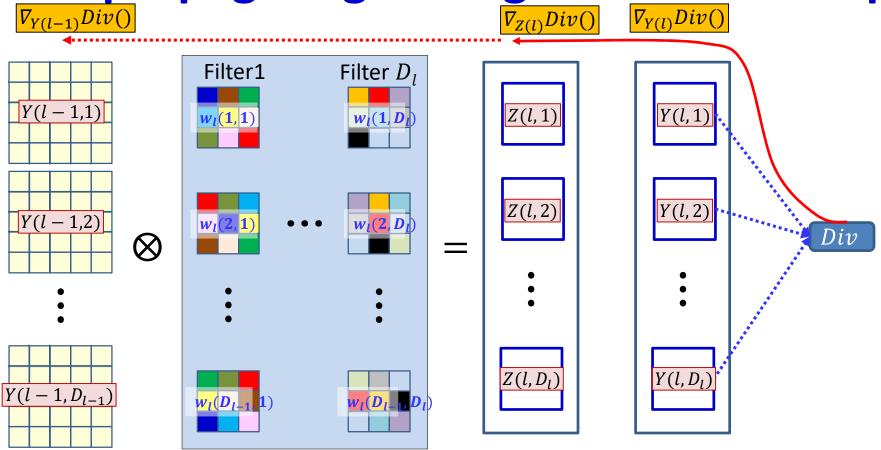
- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$
 - Compute derivative w.r.t. y(l-1, m, x, y)
 - Compute derivative w.r.t. $w_l(m, n, x, y)$

Backpropagating through the affine map



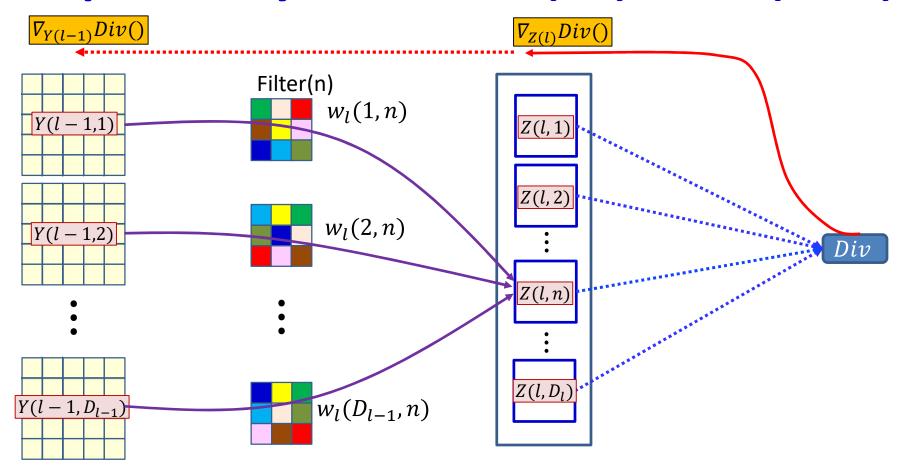
- We already have the derivative w.r.t Z(l,*)
 - Having backpropagated it past Y(l,*)

Backpropagating through the affine map

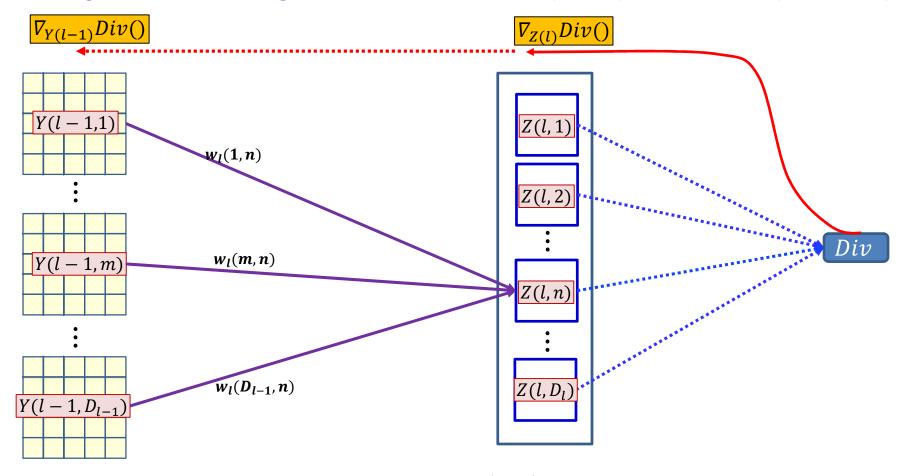


- We already have the derivative w.r.t Z(l,*)
 - Having backpropagated it past Y(l,*)
- We must compute the derivative w.r.t Y(l-1,*)

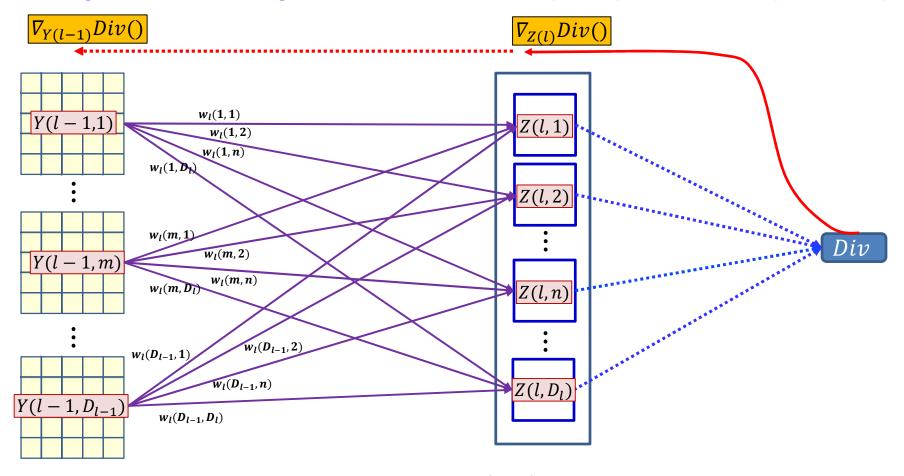
Dependency between Z(I,n) and Y(I-1,*)



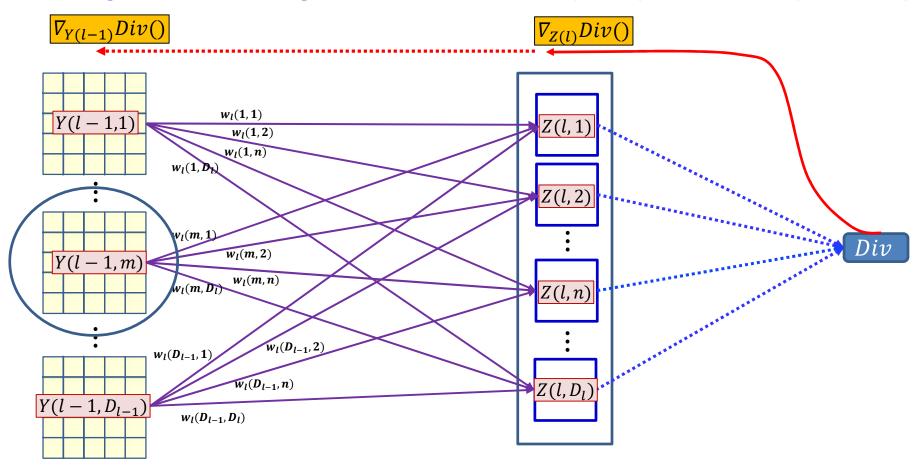
Dependency between Z(I,n) and Y(I-1,*)



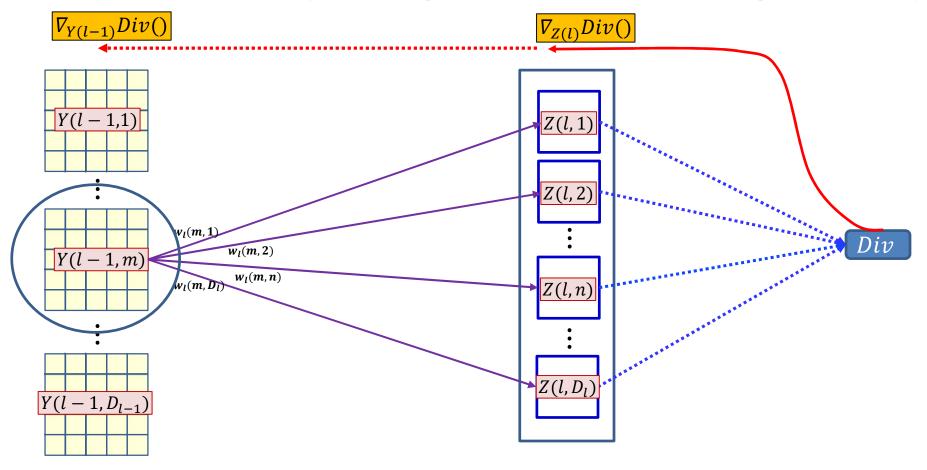
Dependency between Z(I,*) and Y(I-1,*)



Dependency between Z(I,*) and Y(I-1,*)

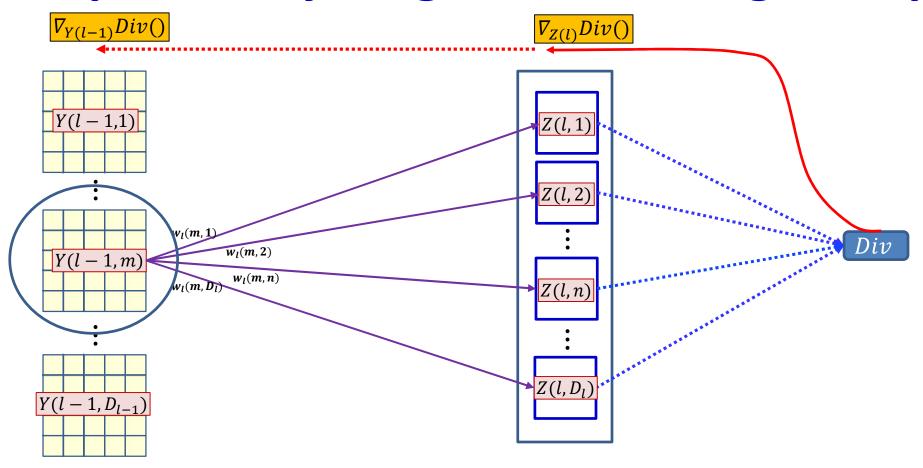


Dependency diagram for a single map



- Each Y(l-1,m) map influences Z(l,n) through the mth "plane" of the nth filter $w_l(m,n)$
- Y(l-1,m,*,*) influences the divergence through all Z(l,n,*,*) maps

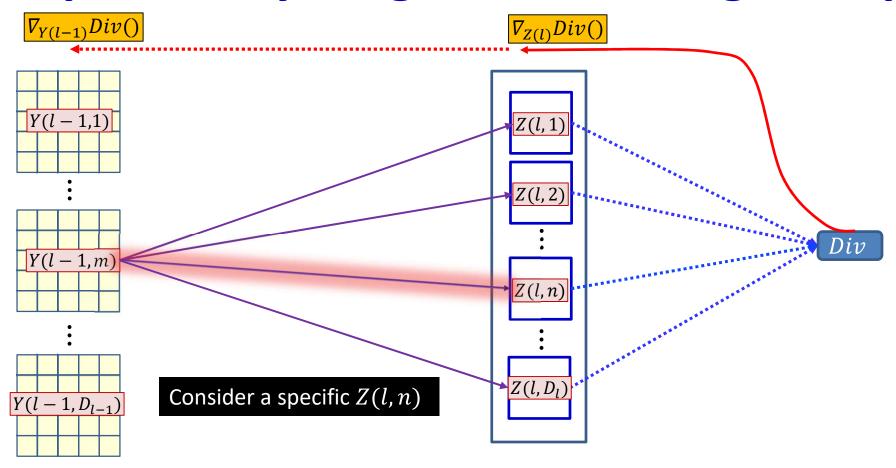
Dependency diagram for a single map



$$\nabla_{Y(l-1,m)}Div(.) = \sum_{n} \nabla_{Z(l,n)}Div(.) \nabla_{Y(l-1,m)}Z(l,n)$$

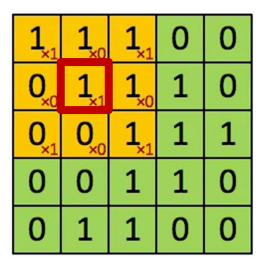
• Need to compute $\nabla_{Y(l-1,m)}Z(l,n)$, the derivative of Z(l,n) w.r.t. Y(l-1,m) to complete the computation of the formula

Dependency diagram for a single map



$$\nabla_{Y(l-1,m)}Div(.) = \sum_{n} \nabla_{Z(l,n)}Div(.) \nabla_{Y(l-1,m)}Z(l,n)$$

• Need to compute $\nabla_{Y(l-1,m)}Z(l,n)$, the derivative of Z(l,n) w.r.t. Y(l-1,m) to complete the computation of the formula

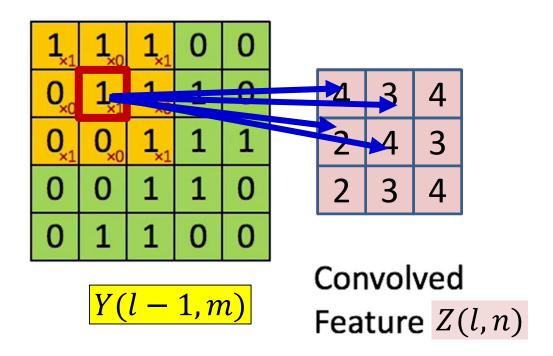


4	

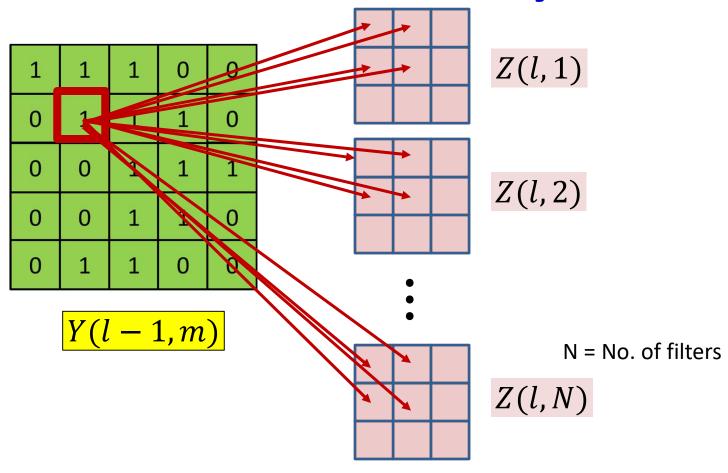
$$Y(l-1,m)$$

Convolved Feature
$$Z(l,n)$$

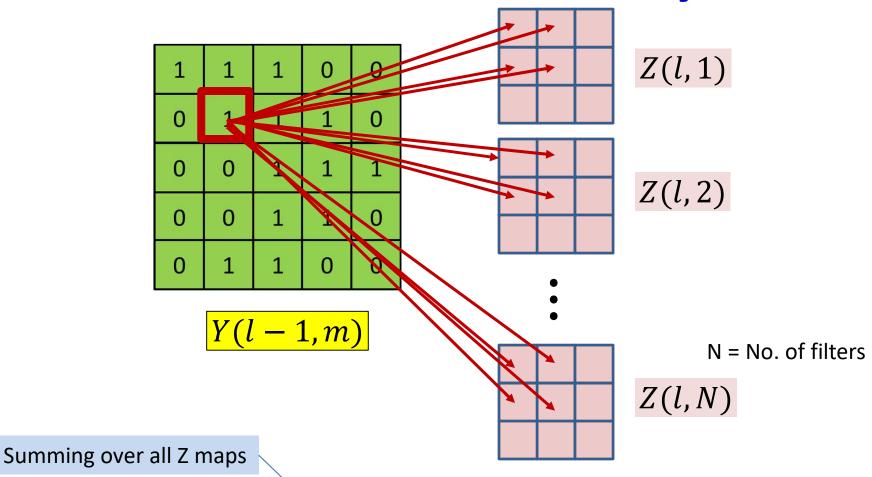
• Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms



• Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms

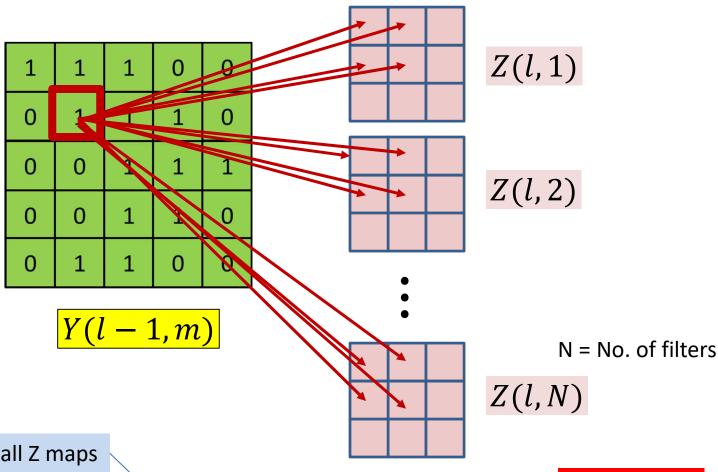


- Each Y(l-1, m, x, y) affects several z(l, n, x', y') terms
 - Affects terms in all l th layer Z maps



 $\frac{dDiv}{dz} = \sum \sum \frac{dDiv}{dz(l, n, x', y')}$

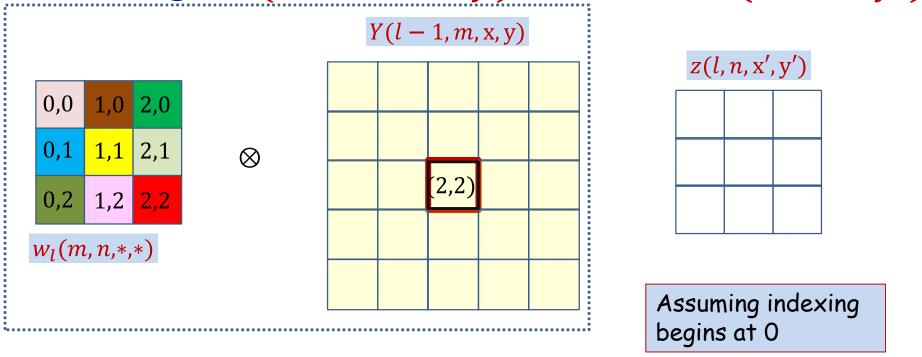
 $\frac{dD(v)}{dY(l-1,m,x,y)} = \sum_{n=x',y'} \frac{dD(v)}{dz(l,n,x',y')} \frac{dZ(l,n,x',y')}{dY(l-1,m,x,y)}$



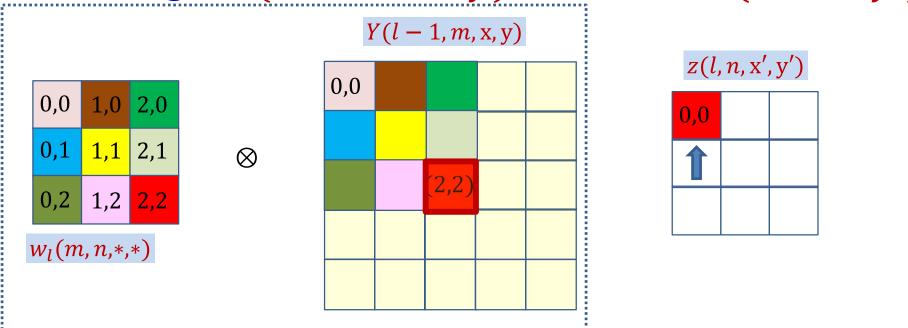
Summing over all Z maps

What is this?

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} \frac{dz(l,n,x',y')}{dY(l-1,m,x,y)}$$

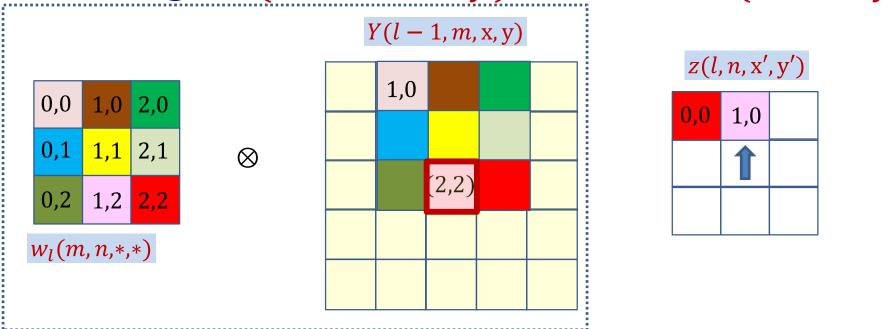


 Compute how each x, y in Y influences various locations of z



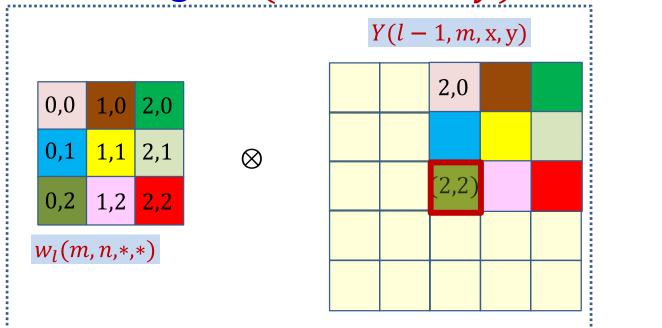
$$z(l, n, 0, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



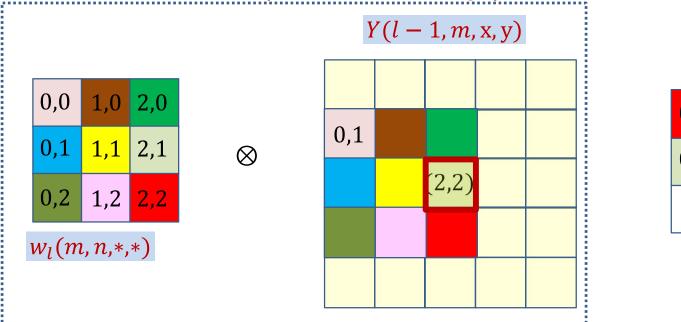
$$z(l, n, 1, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



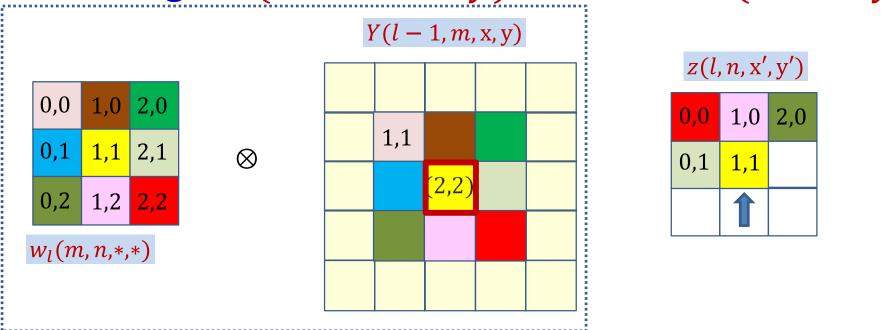
$$z(l, n, 2, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



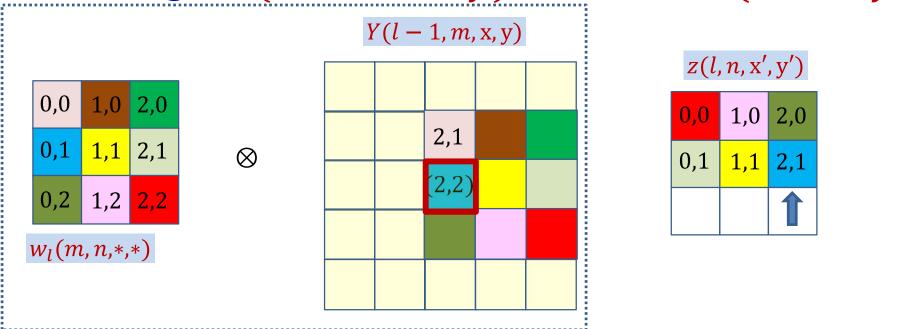
$$z(l, n, 0, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



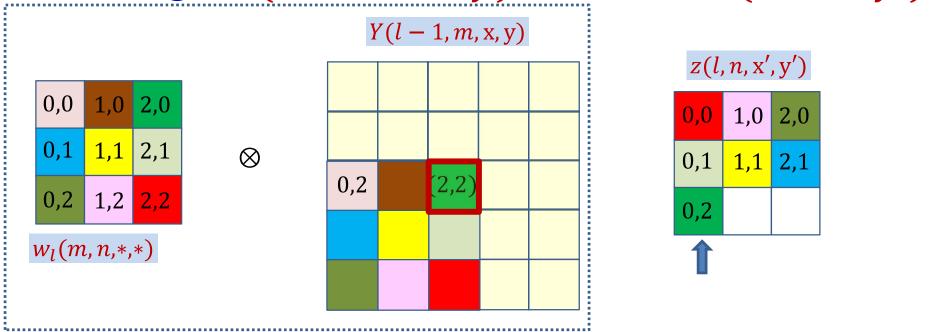
$$z(l, n, 1, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



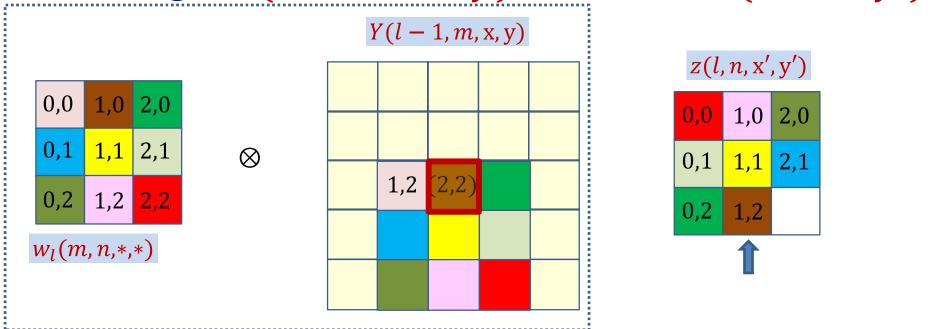
$$z(l, n, 2, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



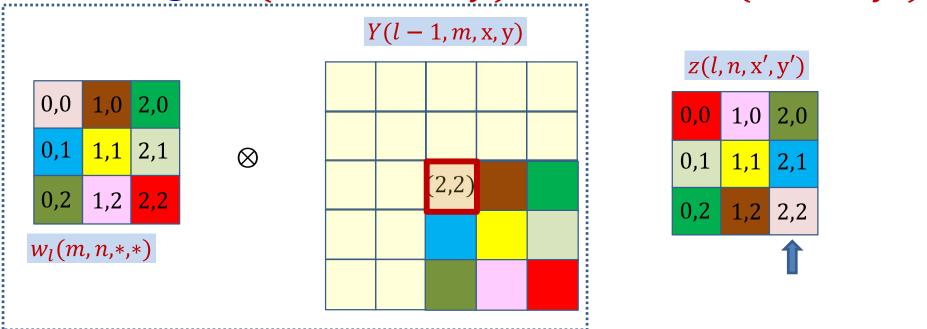
$$z(l, n, 0, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



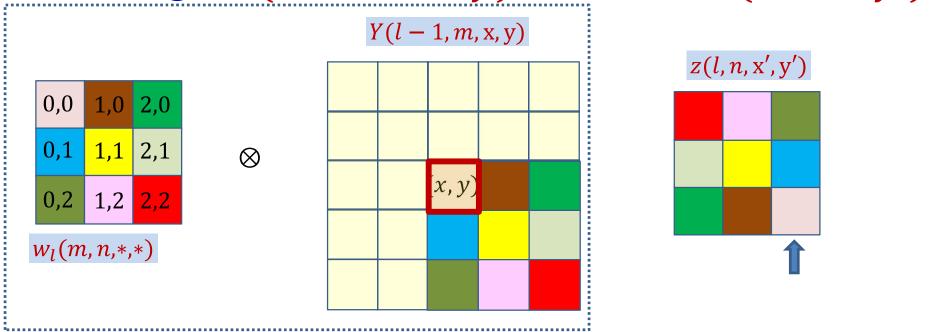
$$z(l, n, 1, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

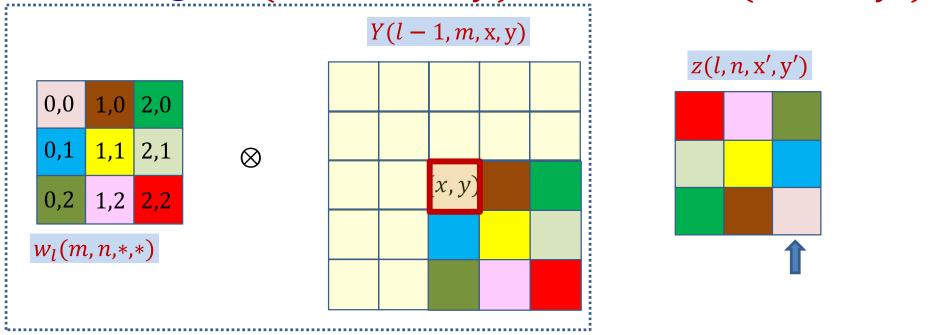


$$z(l, n, 2, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

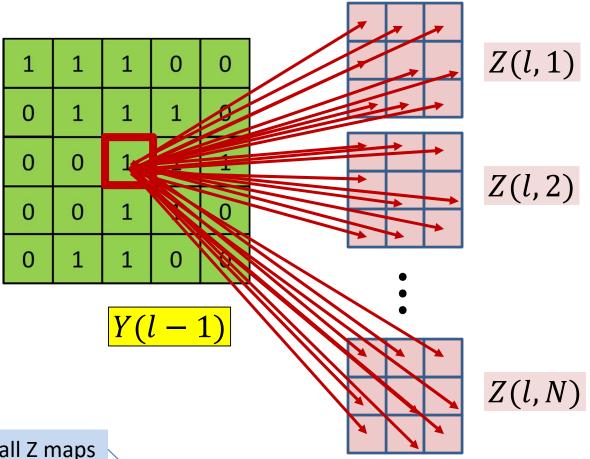


$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x-x', y-y')$$



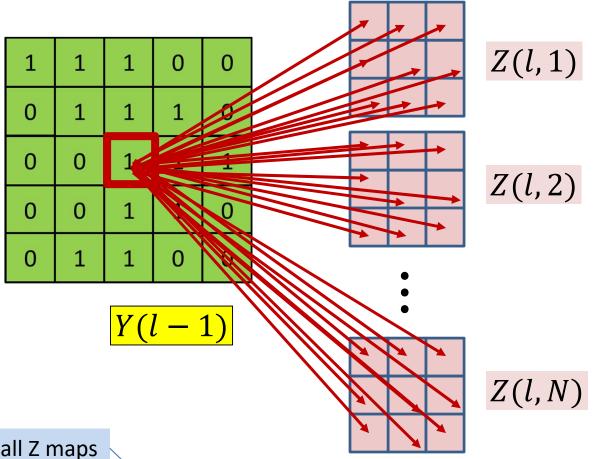
$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x-x', y-y')$$

$$\frac{dz(l, n, x', y')}{dY(l-1, m, x, y)} = w_l(m, n, x - x', y - y')$$



Summing over all Z maps

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} \frac{dz(l,n,x',y')}{dY(l-1,m,x,y)}$$



Summing over all Z maps

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

Poll 2

• @886, 887

Poll 2

In order to compute the derivative at a single affine element Y(l,m,x,y), we must consider the contributions of *every* position of *every* affine map at the next layer: True or false

- True
- False

The derivative for an single affine element Y(I,m,x,y) will require summing over every position of every Z map in the next layer: True of false

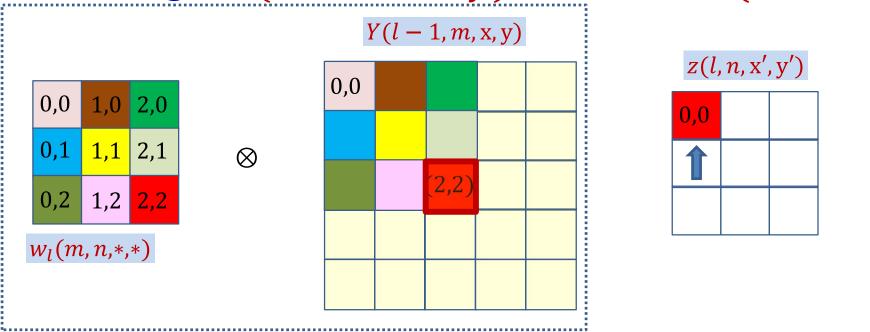
- True
- False

Computing derivative for Y(l-1, m, *, *)

• The derivatives for every element of every map in Y(l-1) by direct implementation of the formula:

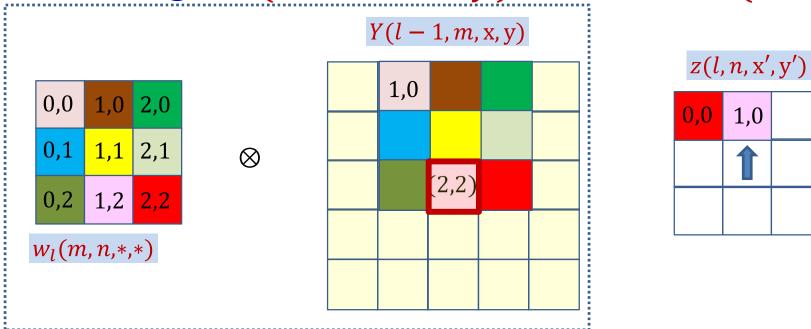
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

- But this is actually a convolution!
 - Let's see how



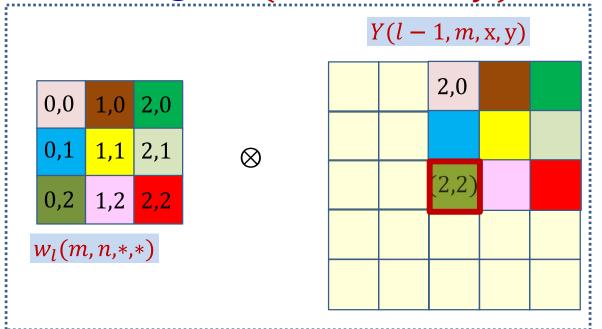
$$z(l, n, 0, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,0)} w_l(m,n,2,2)$$



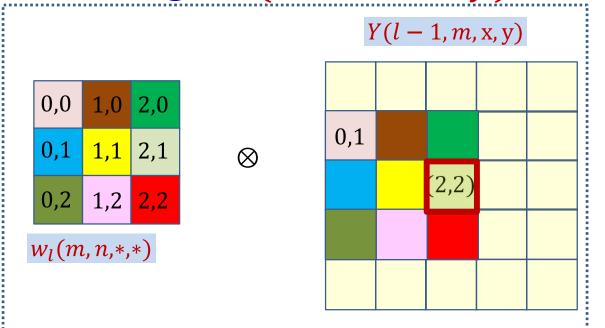
$$z(l, n, 1, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,0)} w_l(m,n,1,2)$$



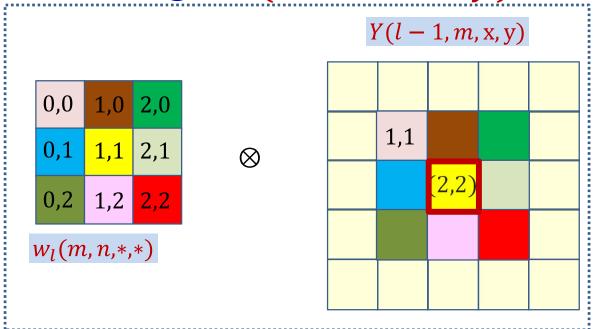
$$z(l, n, 2, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,0)} w_l(m,n,0,2)$$



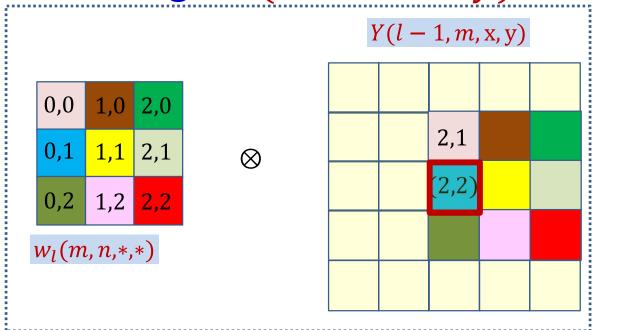
$$z(l, n, 0, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,1)} w_l(m,n,2,1)$$



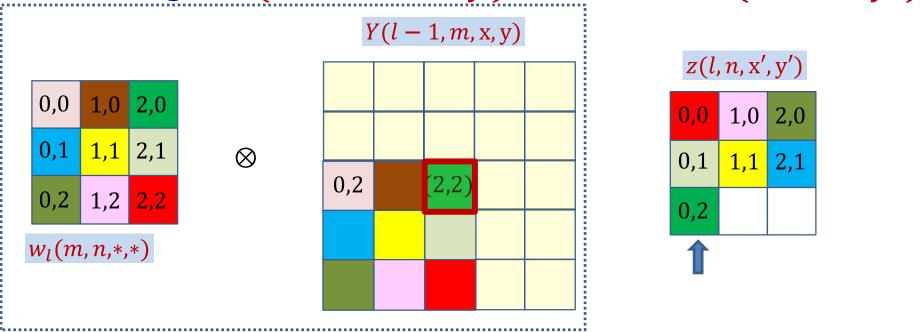
$$z(l, n, 1, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,1)} w_l(m,n,1,1)$$



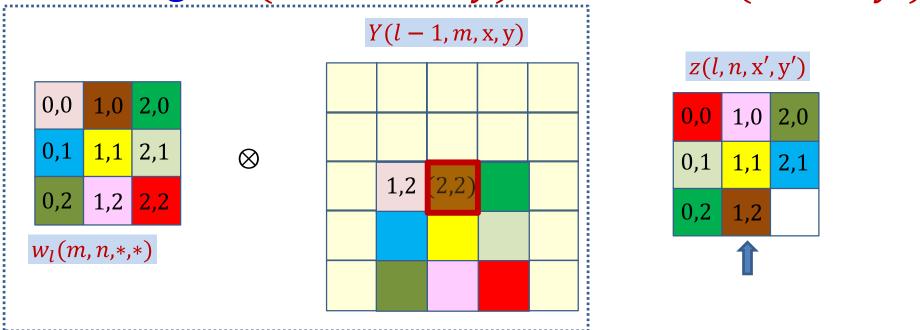
$$z(l, n, 2, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,1)} w_l(m,n,0,1)$$



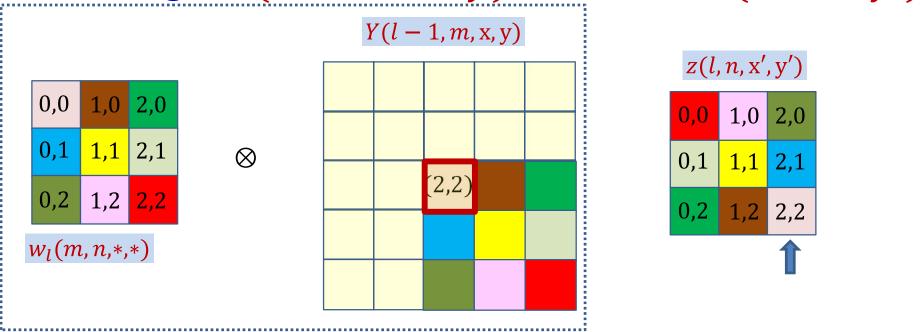
$$z(l, n, 0, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,2)} w_l(m,n,2,0)$$



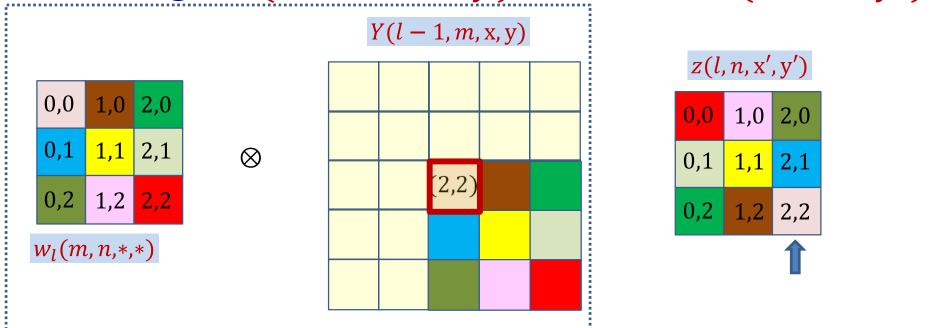
$$z(l, n, 1, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,2)} w_l(m,n,1,0)$$



$$z(l, n, 2, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

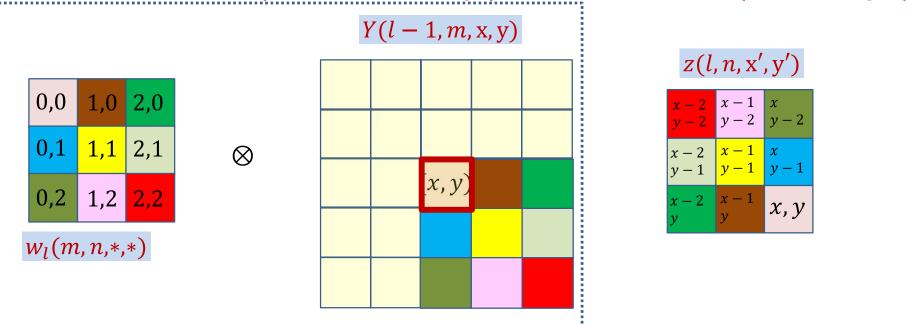
$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,2)} w_l(m,n,0,0)$$



$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,2-x',2-y')$$

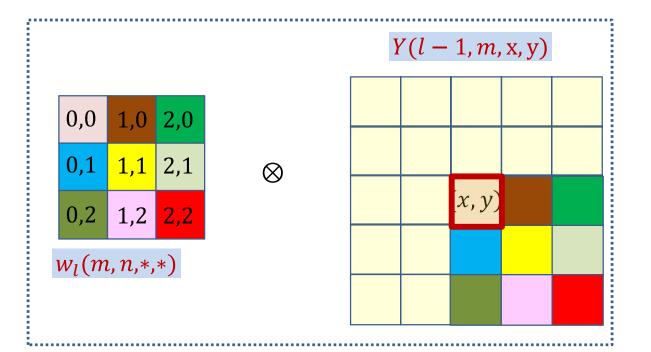
• The derivative at Y(l-1,m,2,2) is the sum of component-wise product of the filter elements and the elements of the derivative at z(l,m,...)



$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x - x', y - y')$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

• The derivative at Y(l-1,m,x,y) is the sum of component-wise product of the filter elements and the elements of the derivative at z(l,m,...)



$$z(l, n, x', y')$$

$$x-2 y-2 y-2 y-2$$

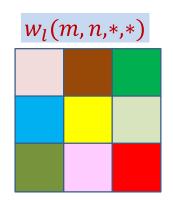
$$x-2 y-1 y-1 y-1$$

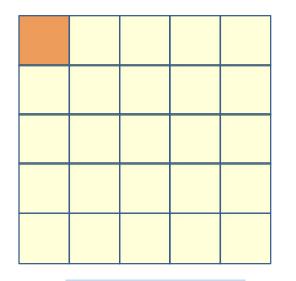
$$x-2 y-1 y-1 x, y$$

$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x-x', y-y')$$

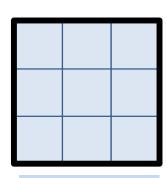
$$\frac{dDiv}{dY(l-1,m,x,y)} += \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',x-y')$$

Contribution of the entire nth affine map z(l, n, *, *)

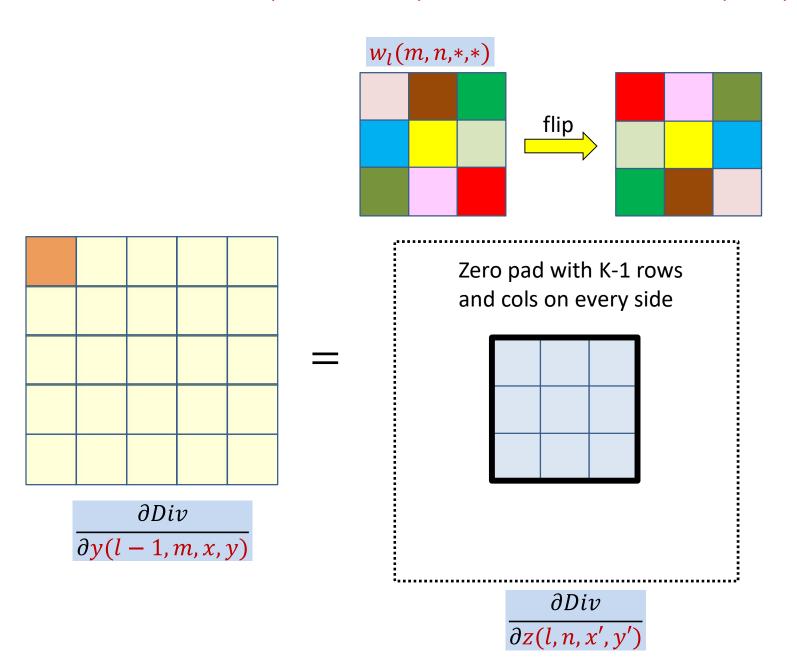


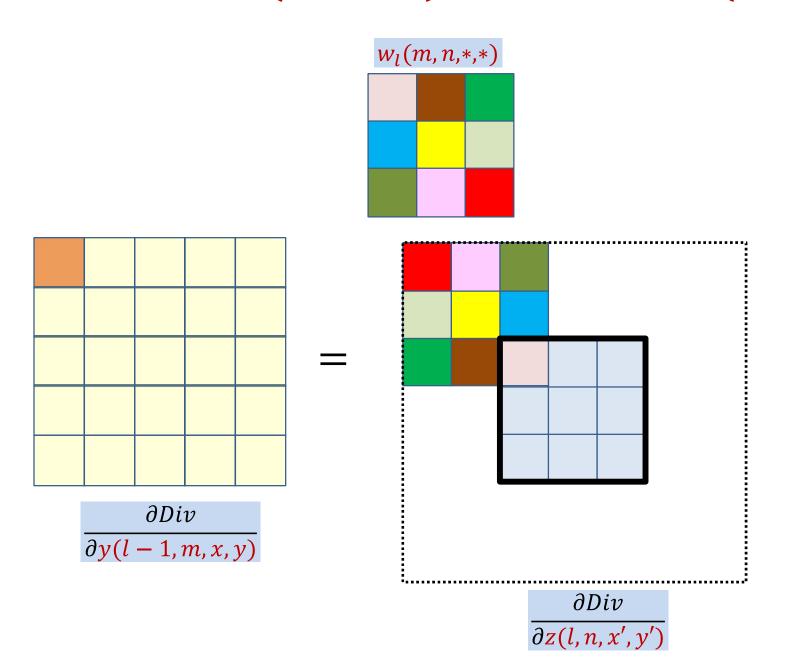


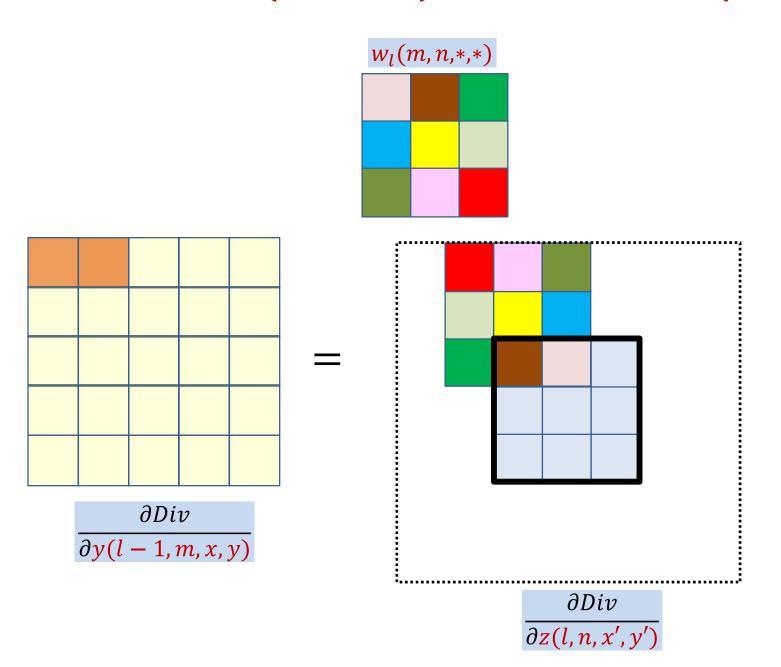
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

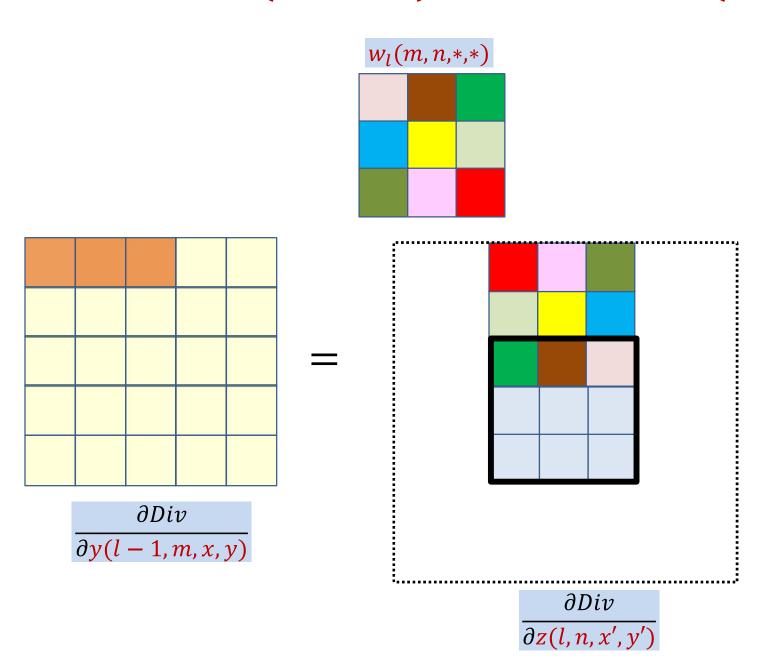


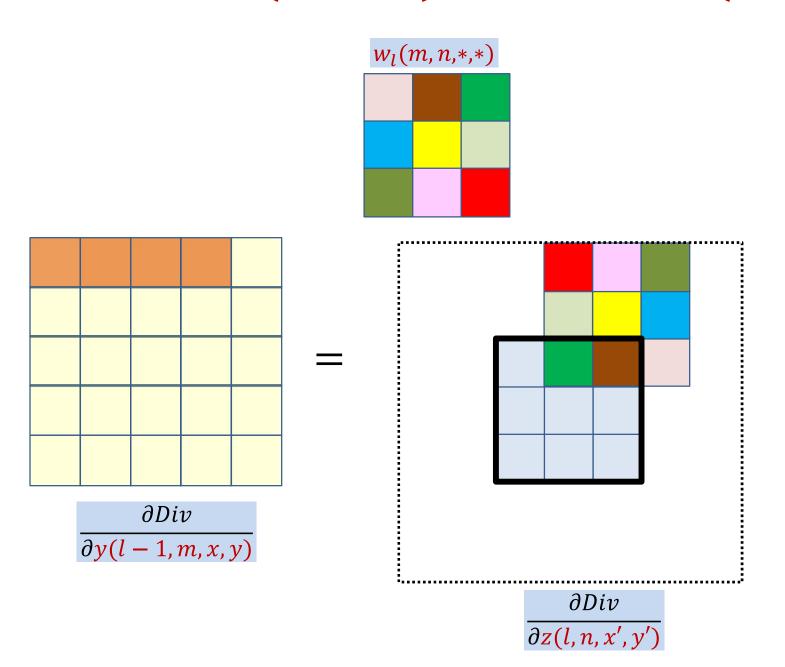
$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

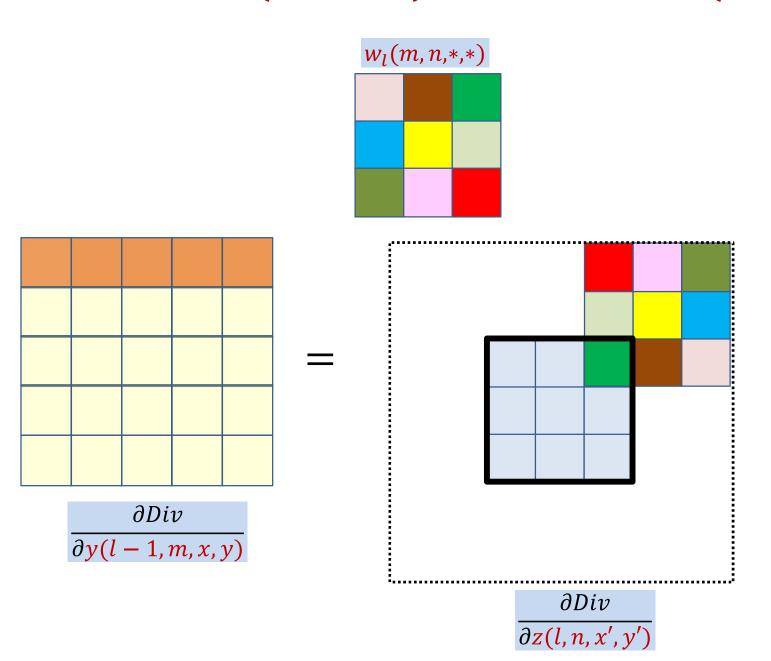


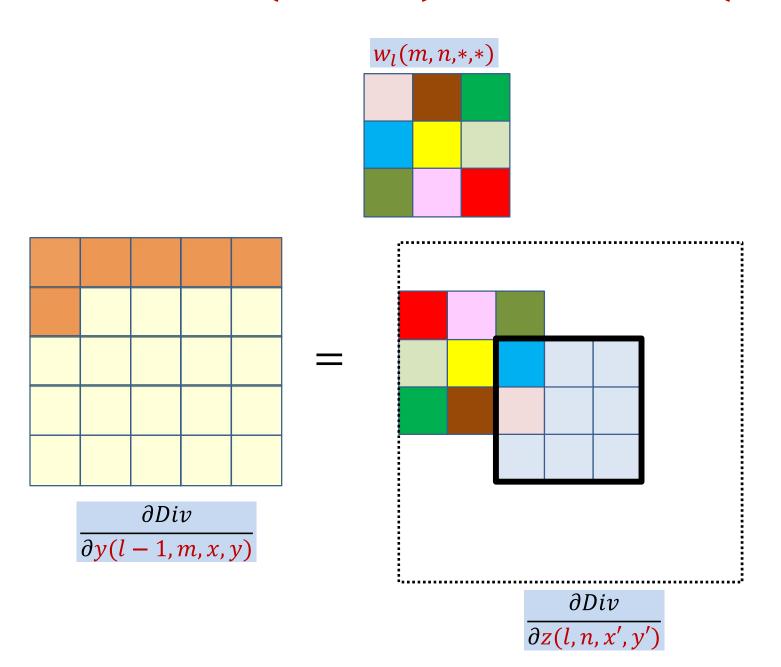


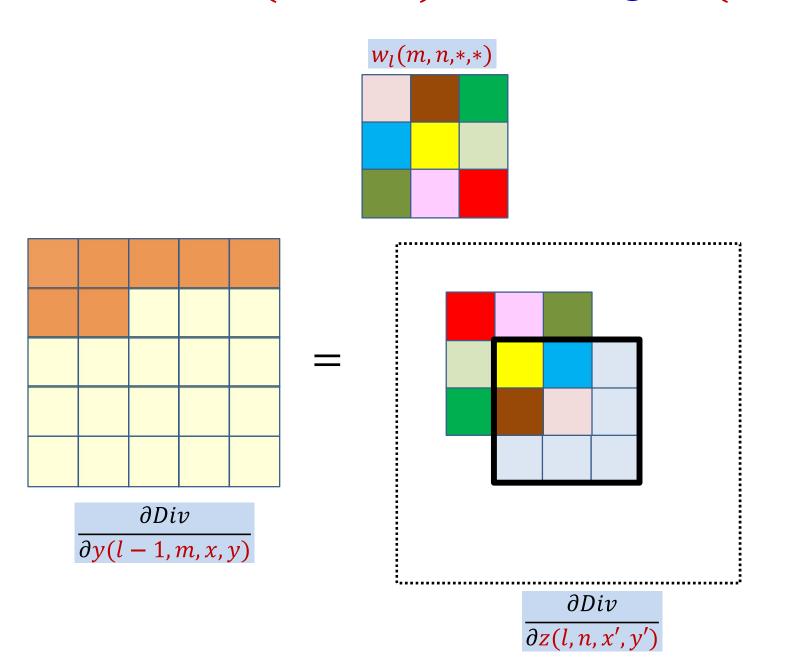


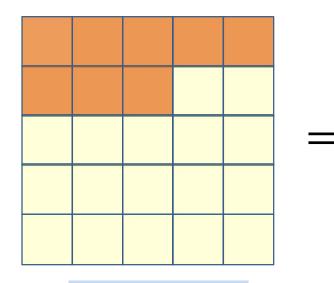




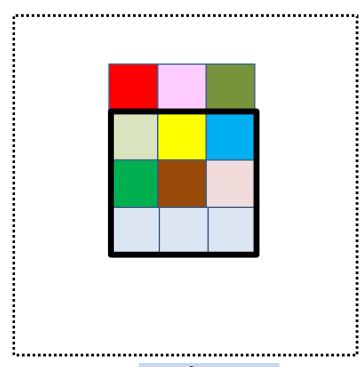


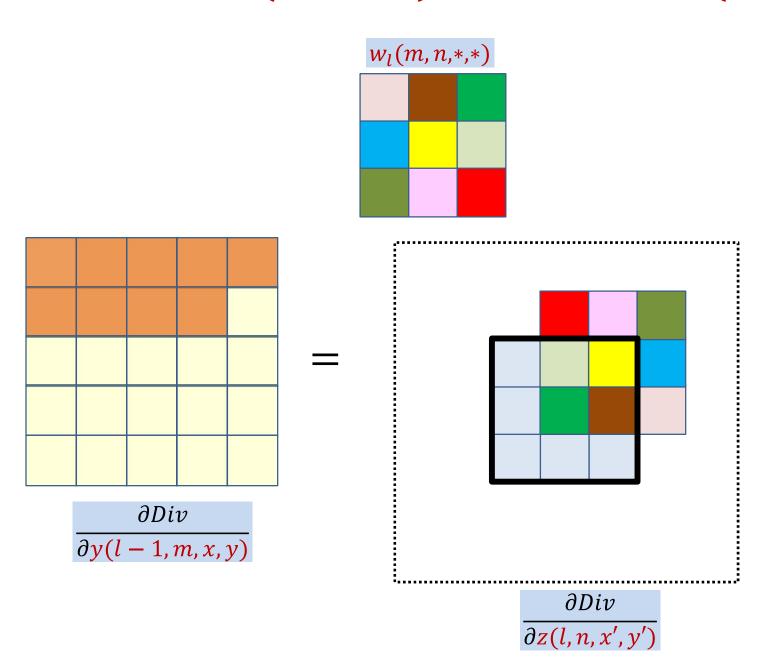


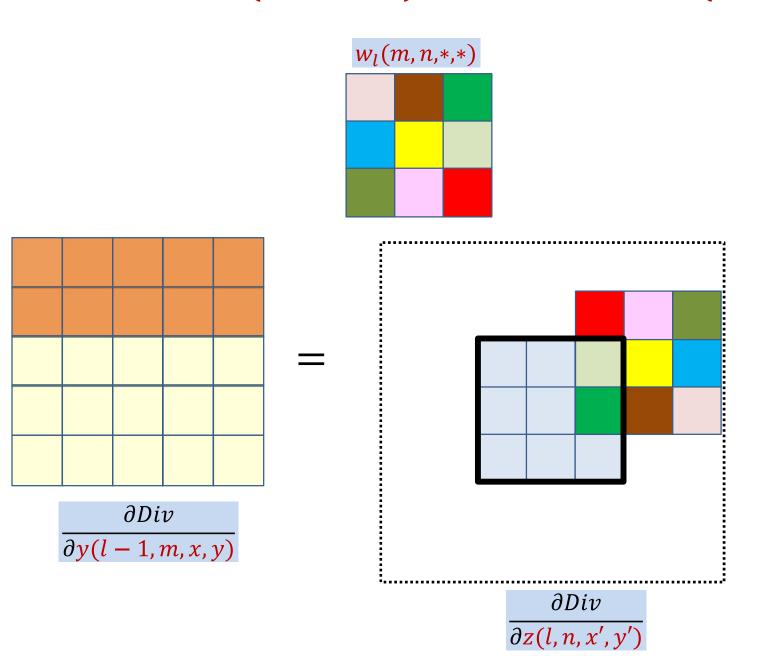


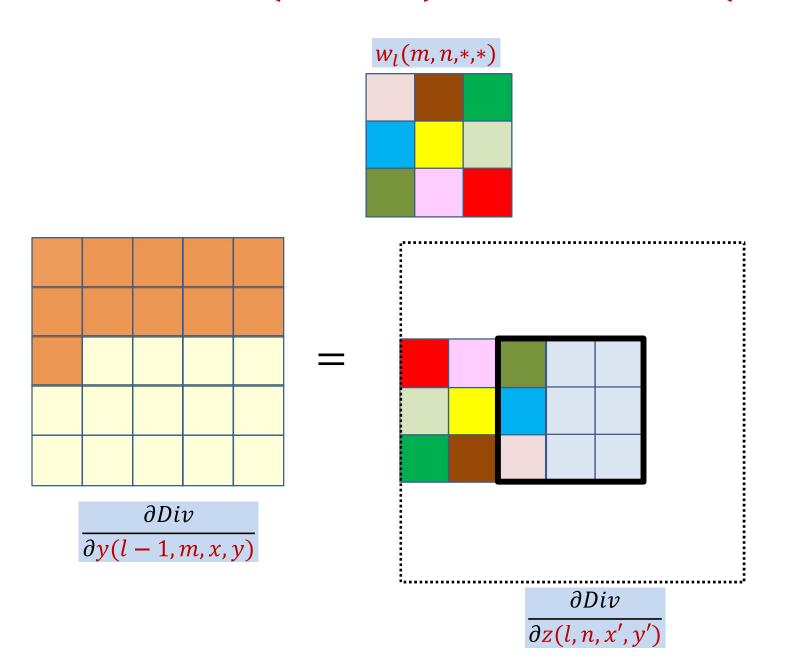


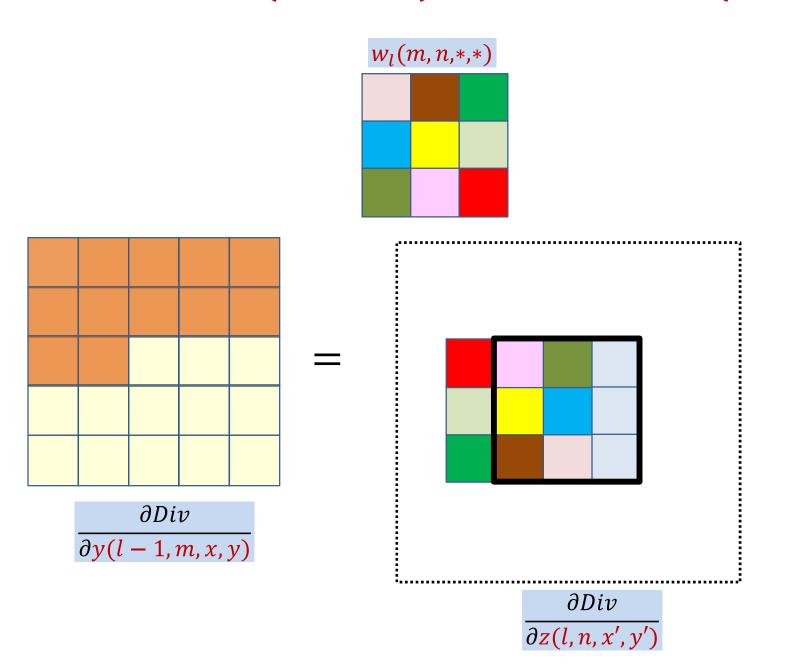
 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

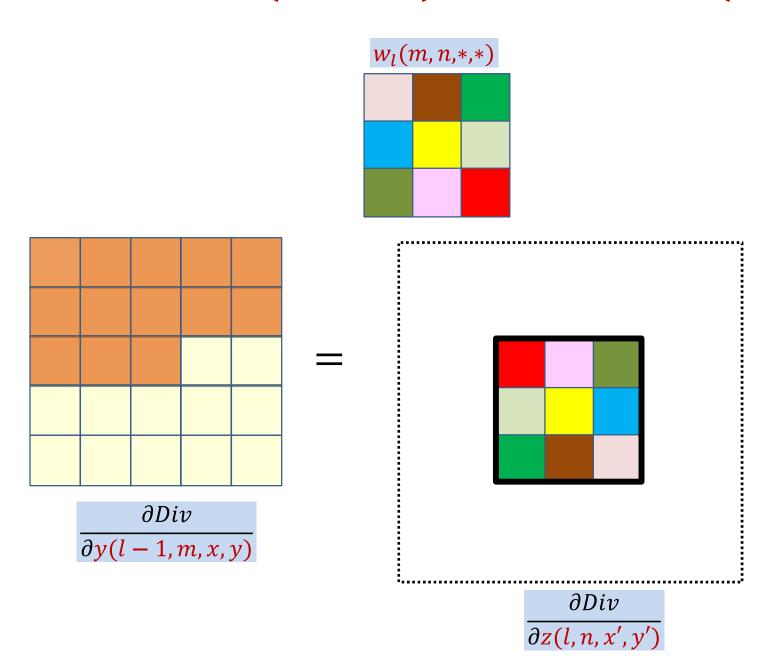


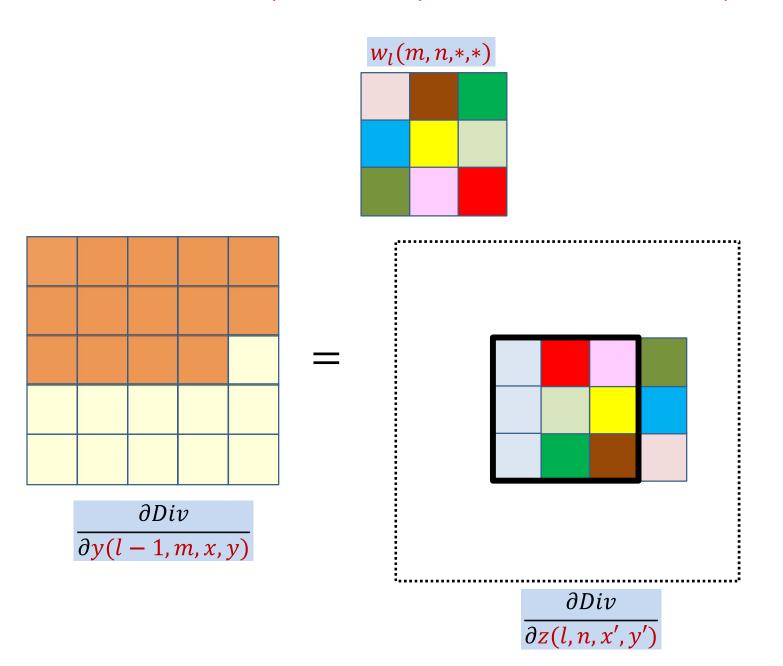


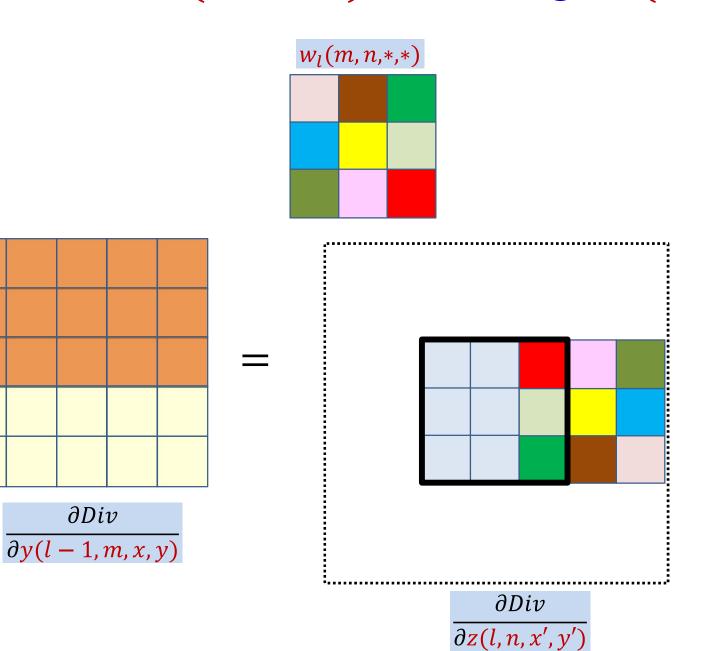


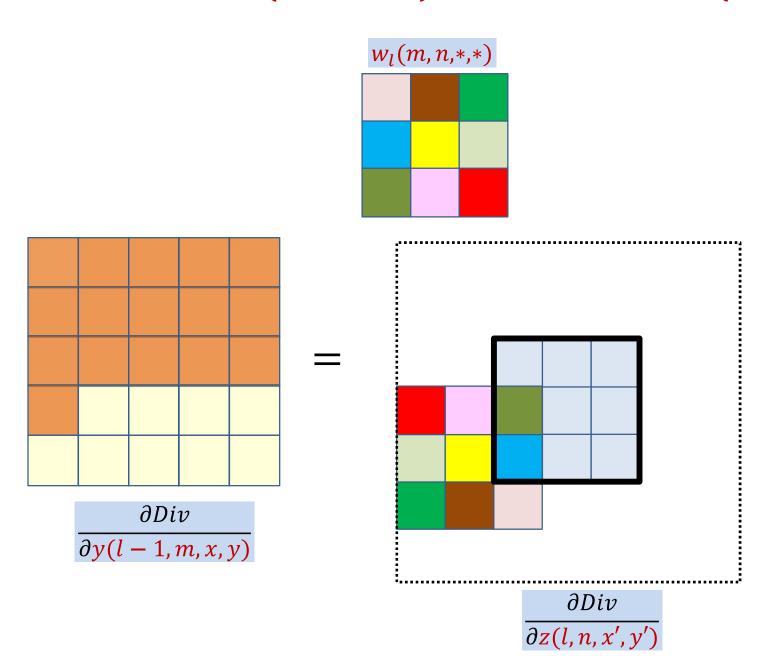


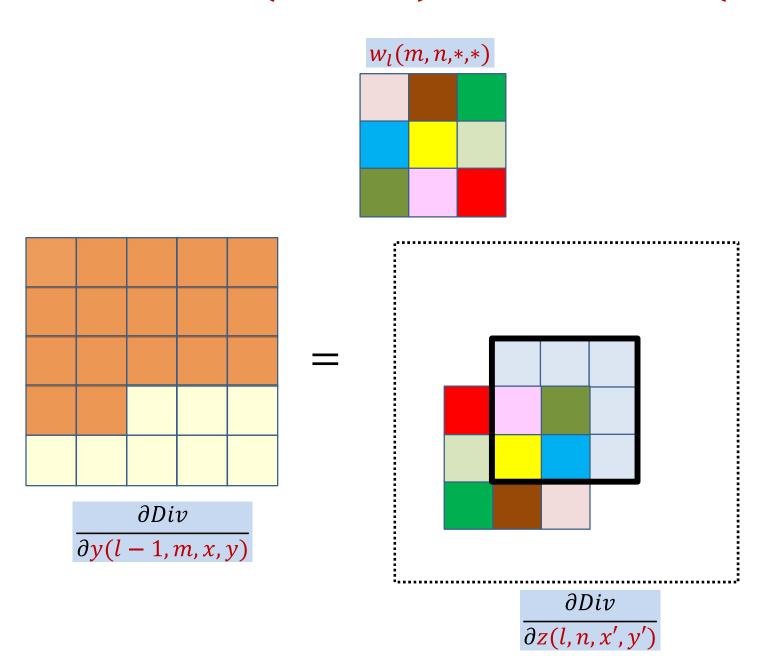


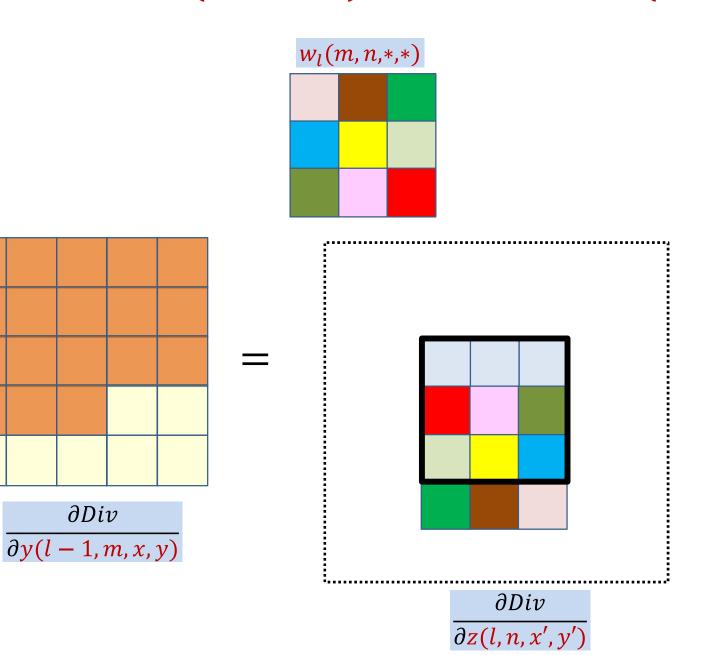


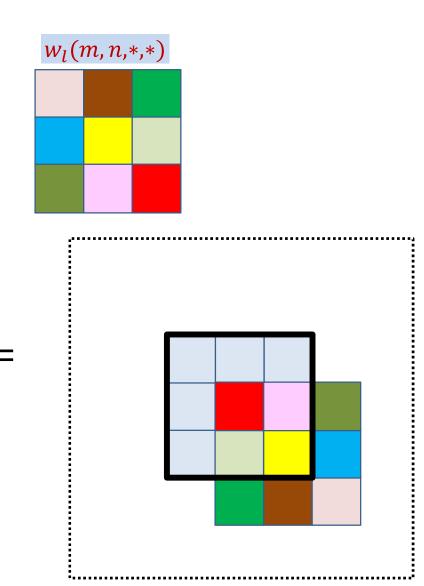


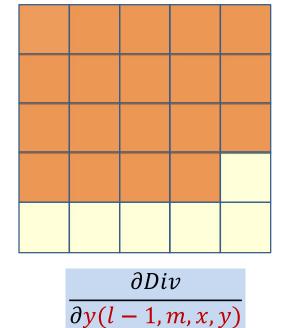




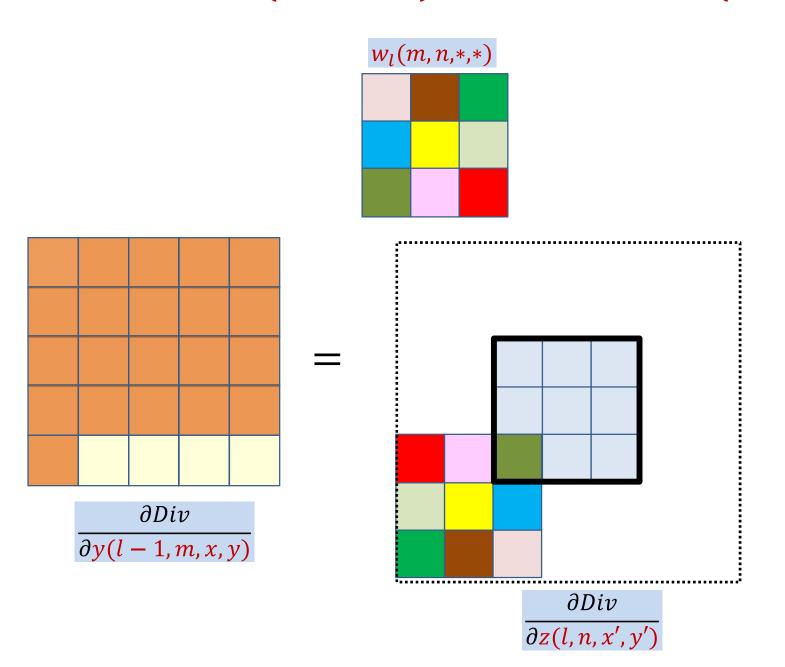


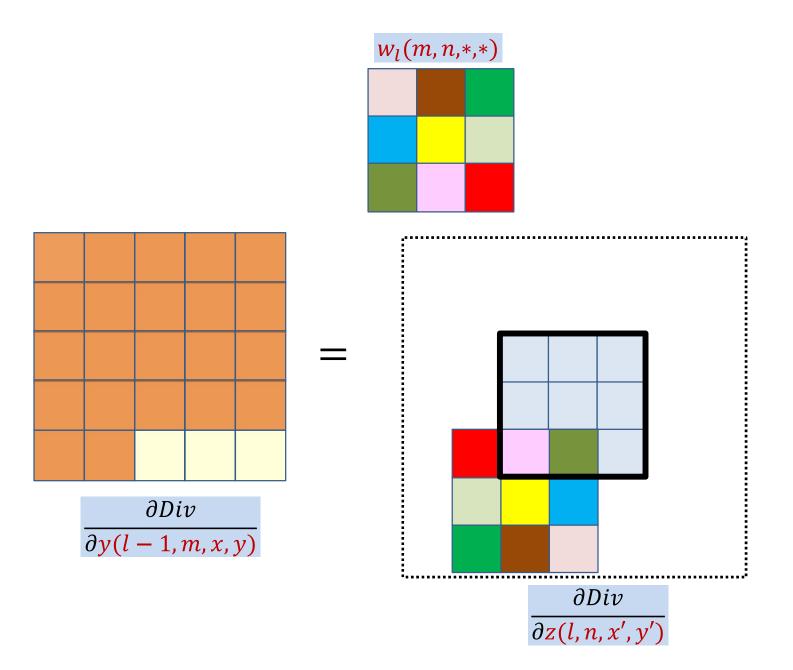


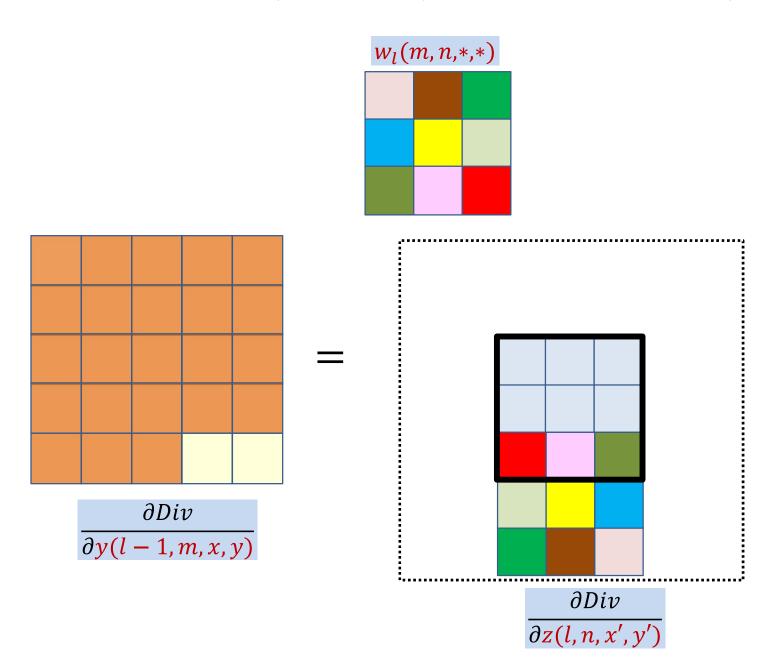


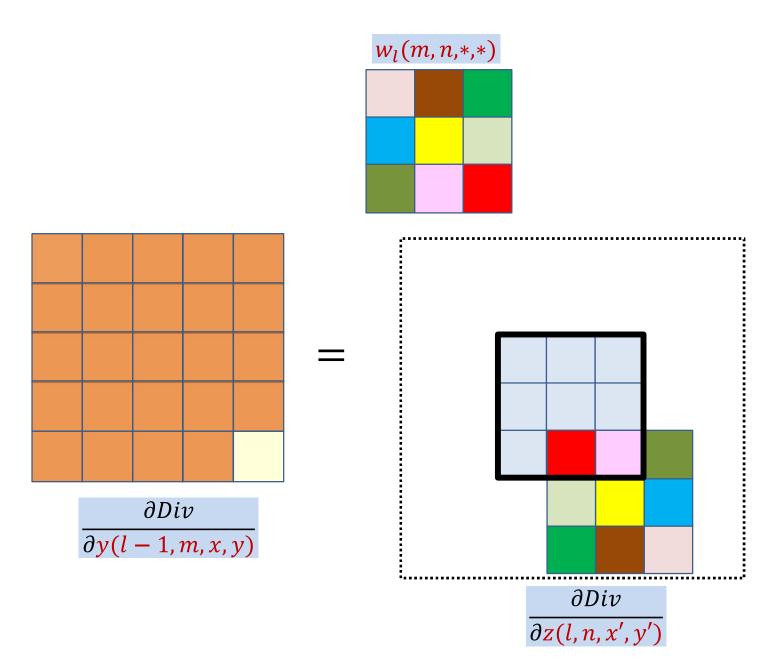


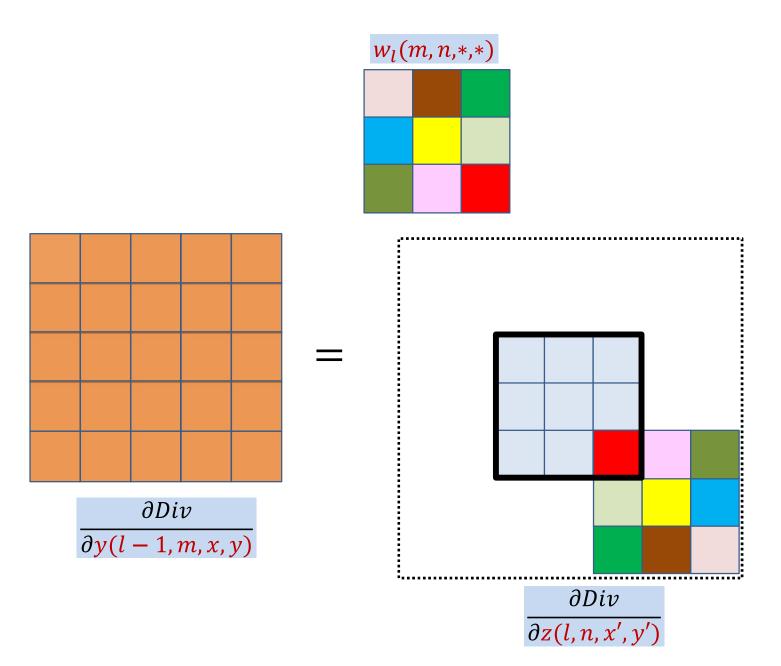




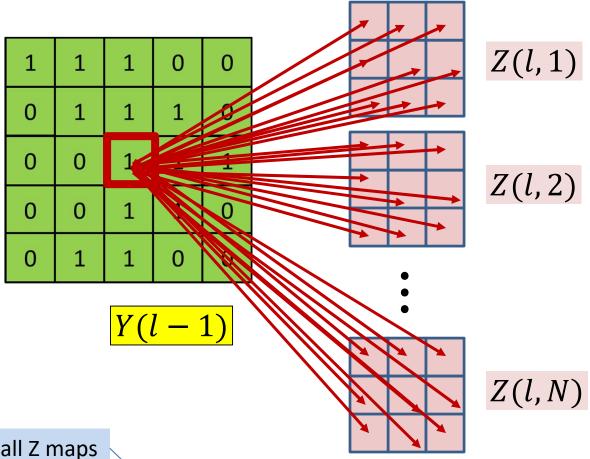








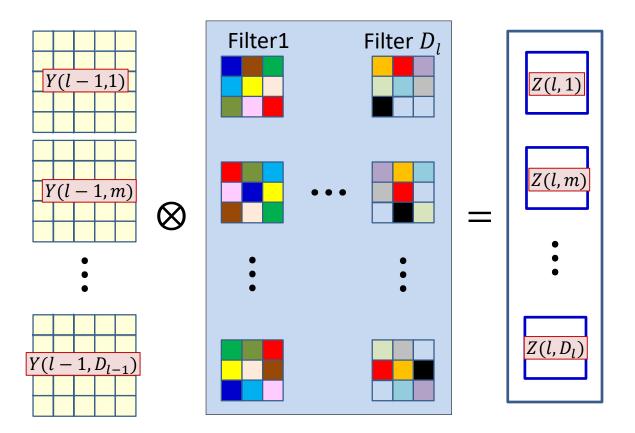
BP: Convolutional layer



Summing over all Z maps

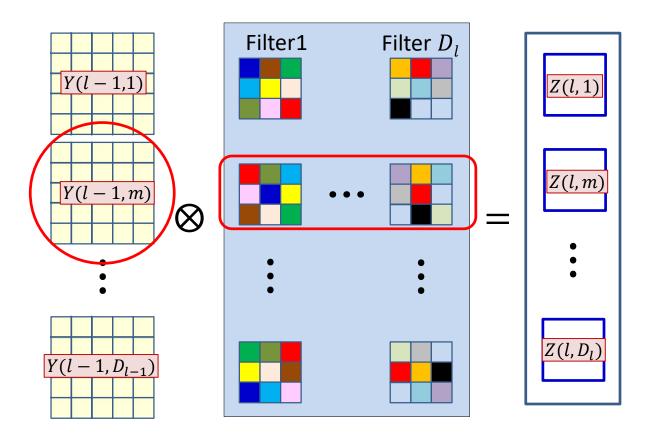
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

The actual convolutions

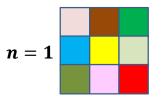


• The D_l affine maps are produced by convolving with D_l filters

The actual convolutions

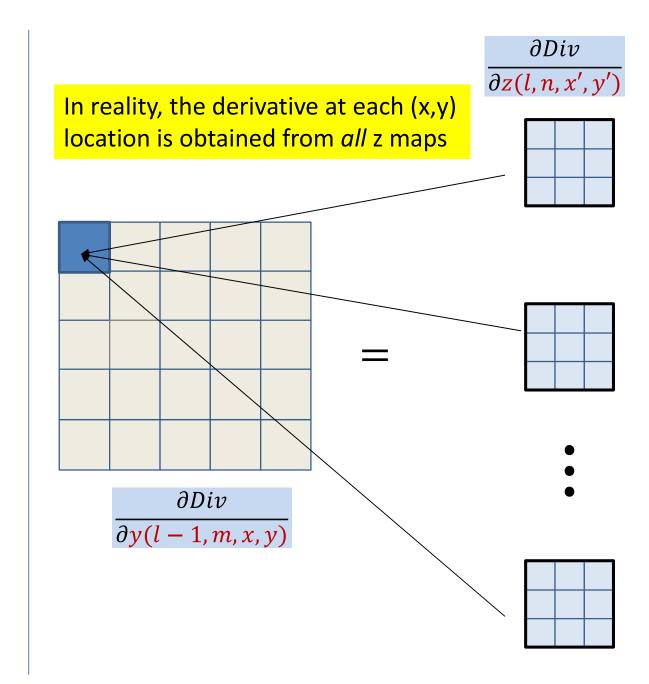


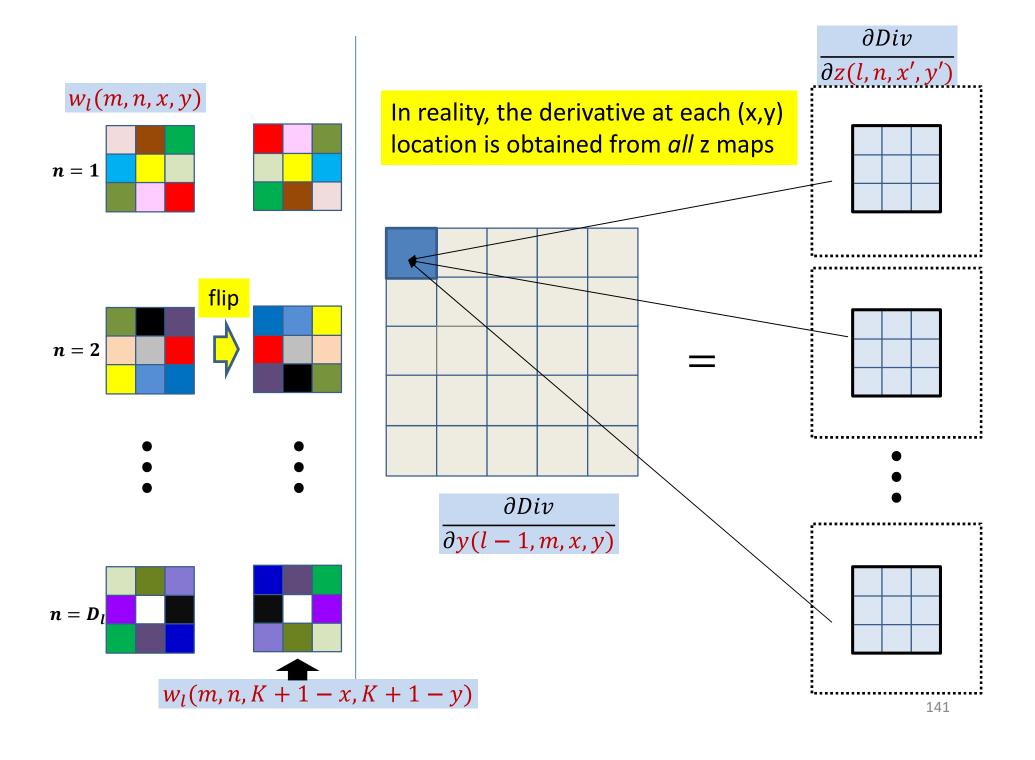
- The D_l affine maps are produced by convolving with D_l filters
- The m^{th} Y map always convolves the m^{th} plane of the filters
- The derivative for the m^{th} Y map will invoke the m^{th} plane of all the filters

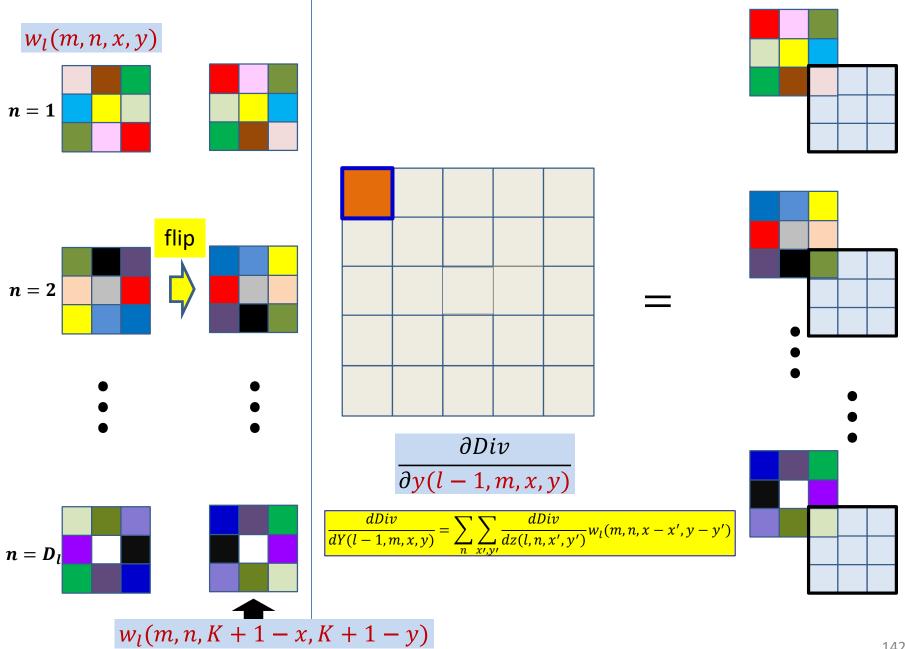


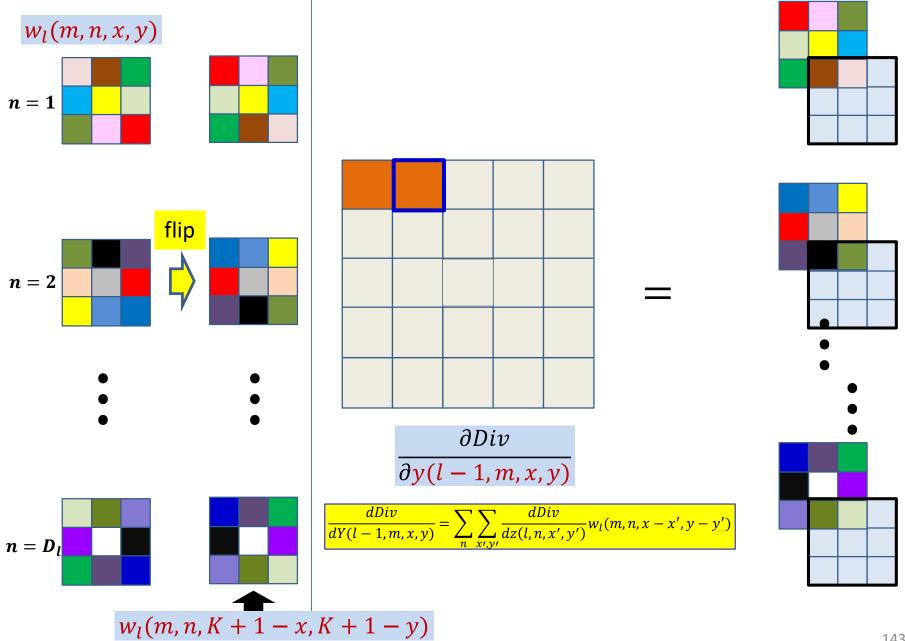
$$n=2$$

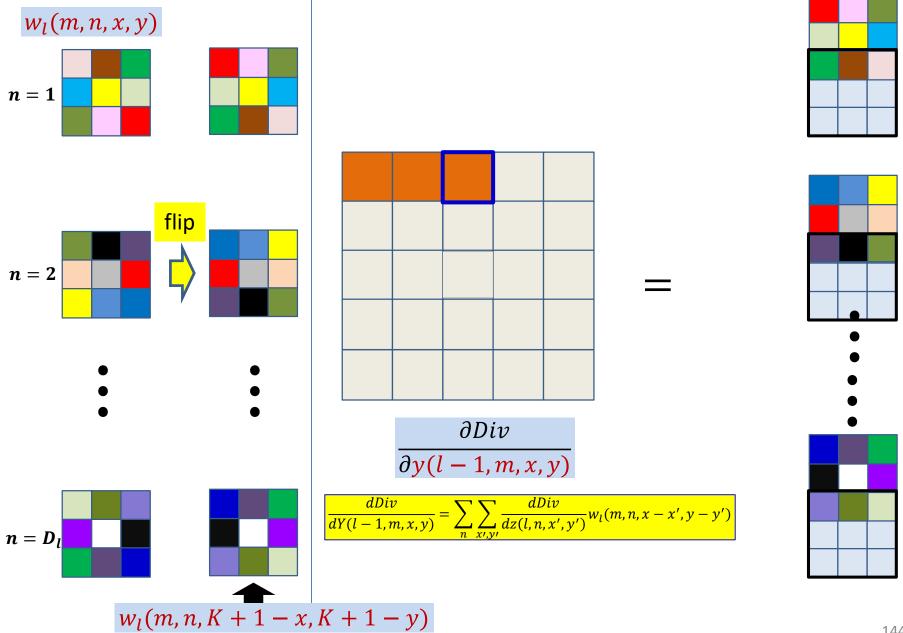
$$n = D_l$$

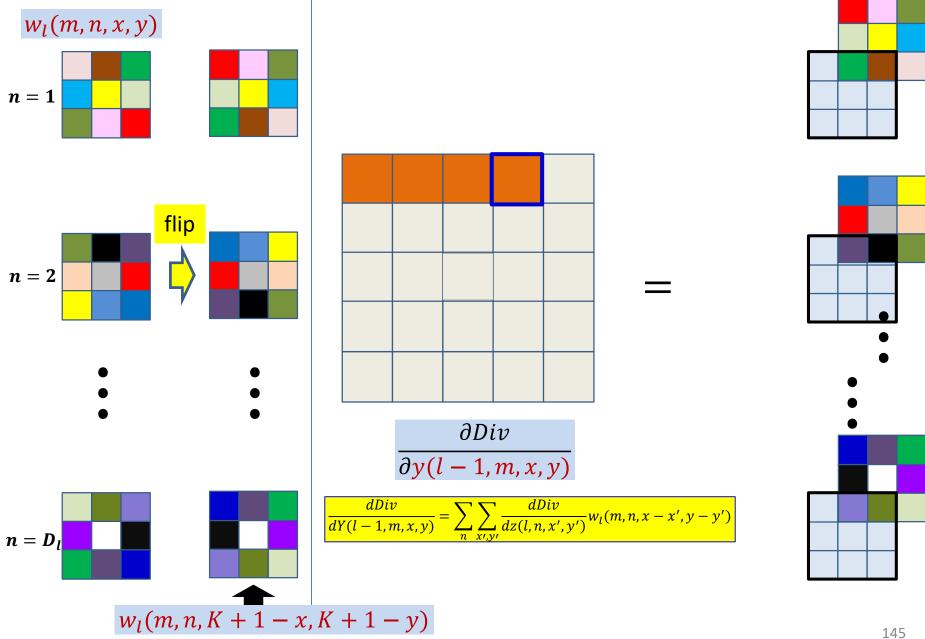


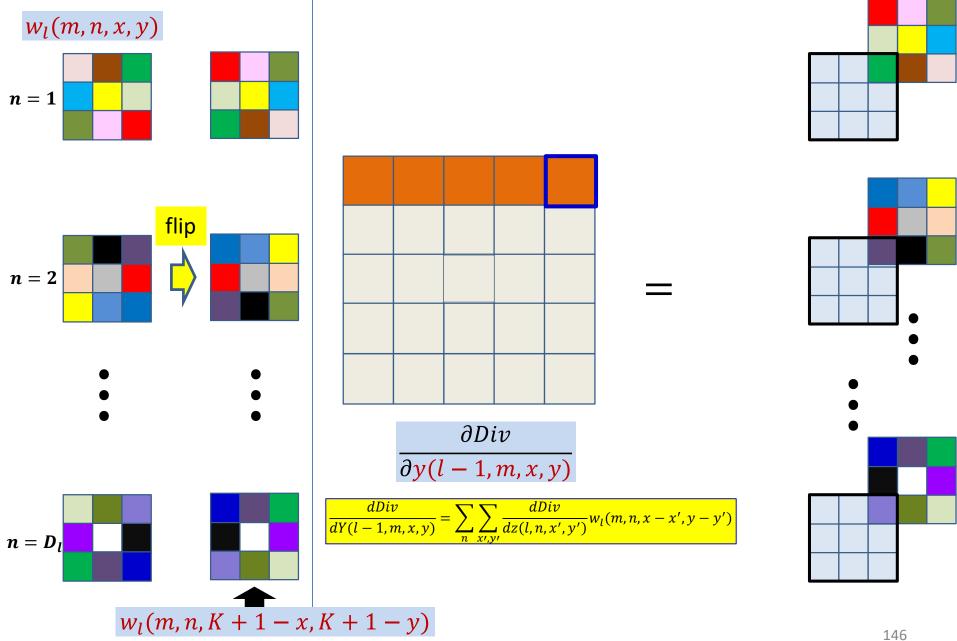


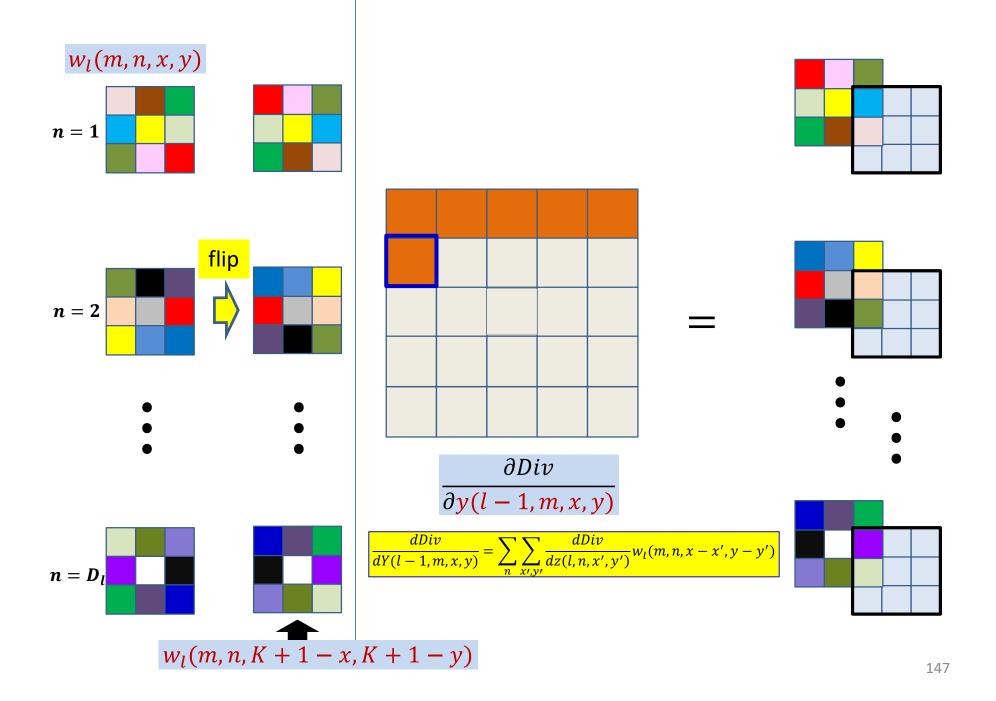


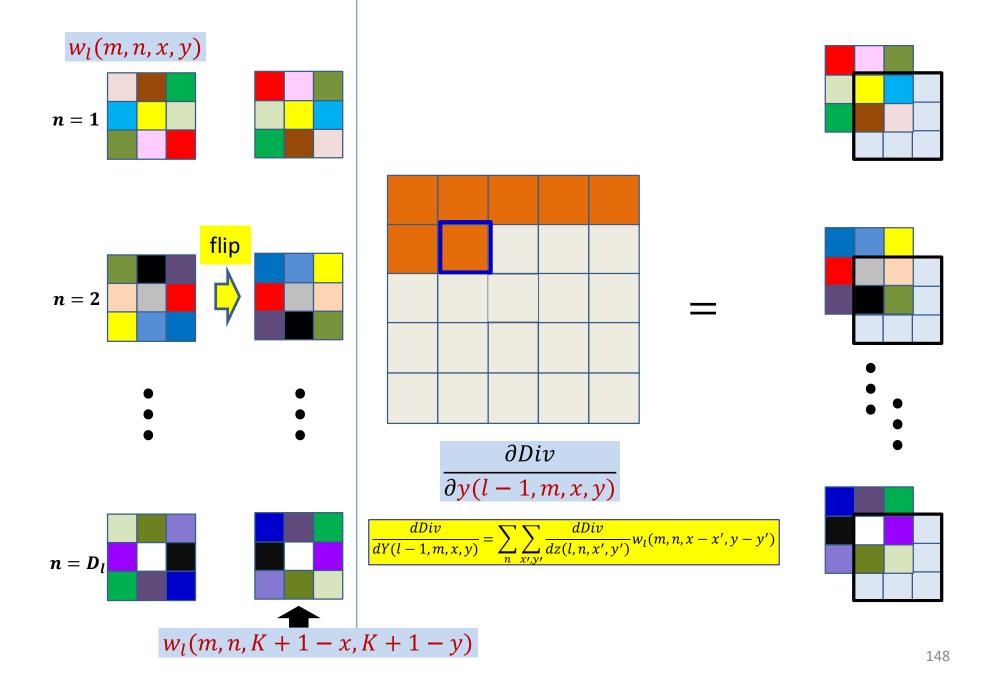


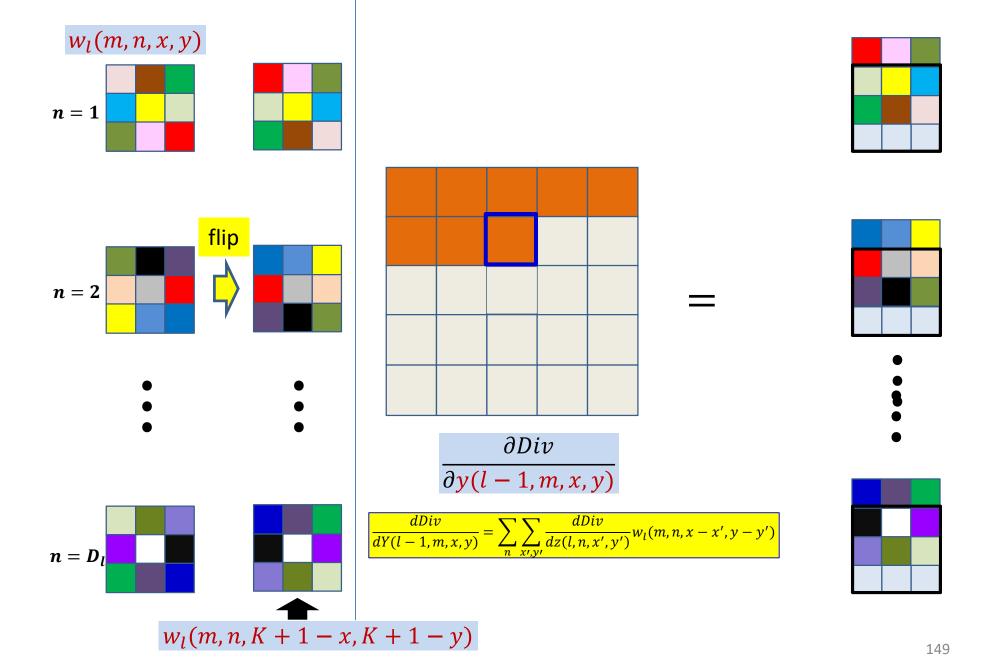


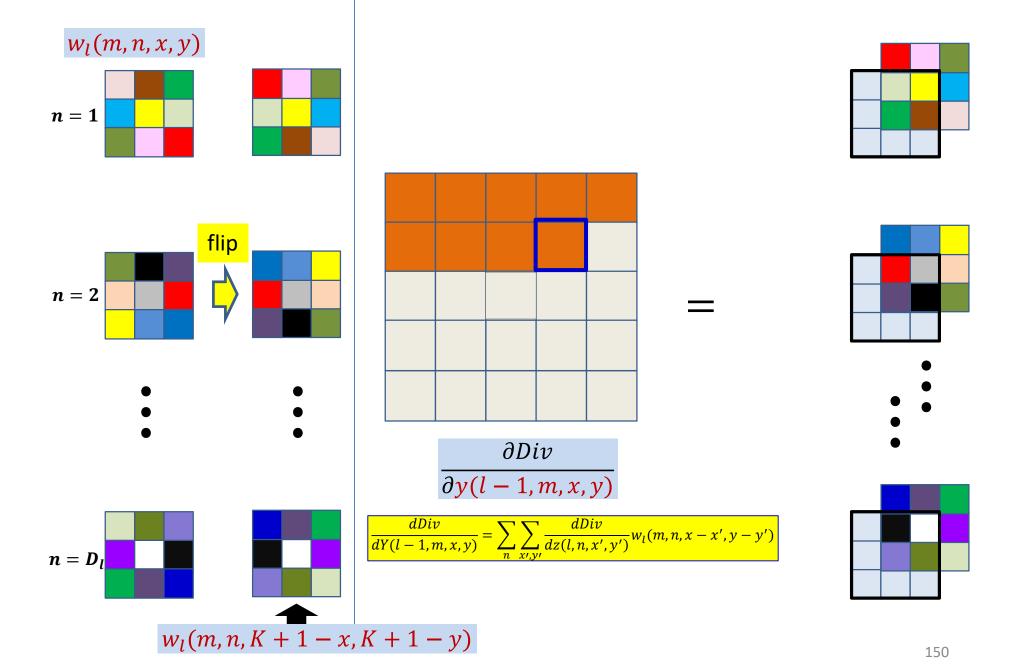


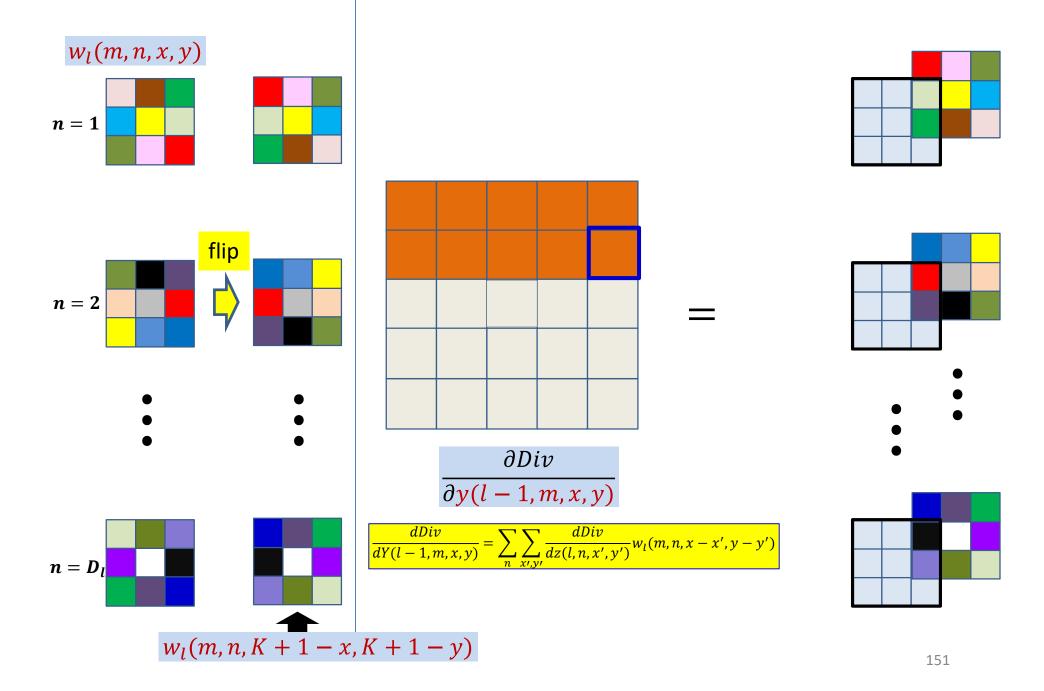


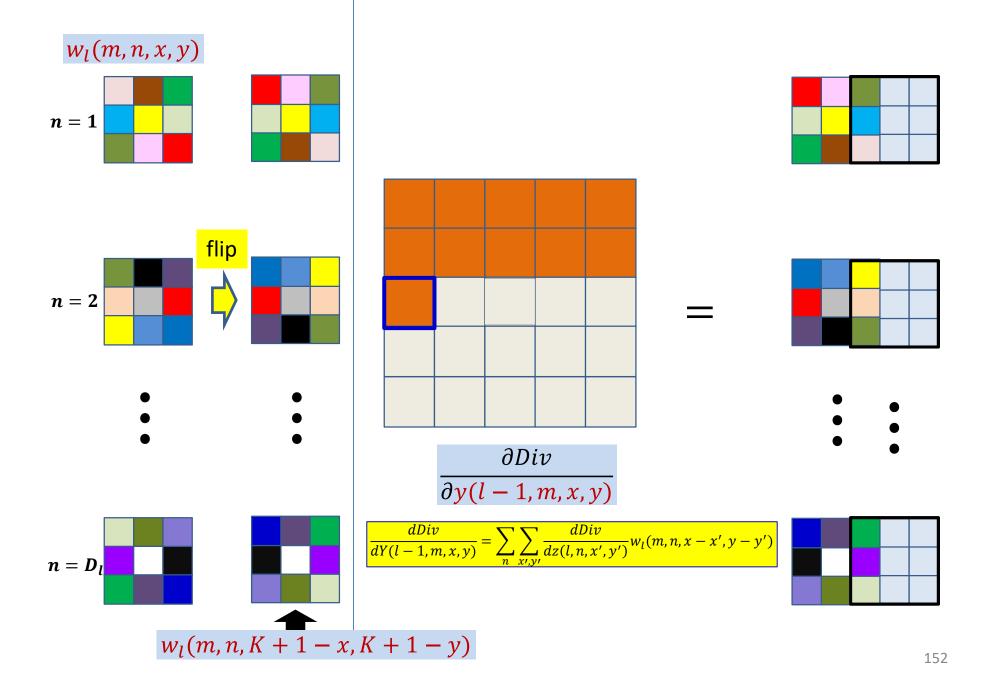


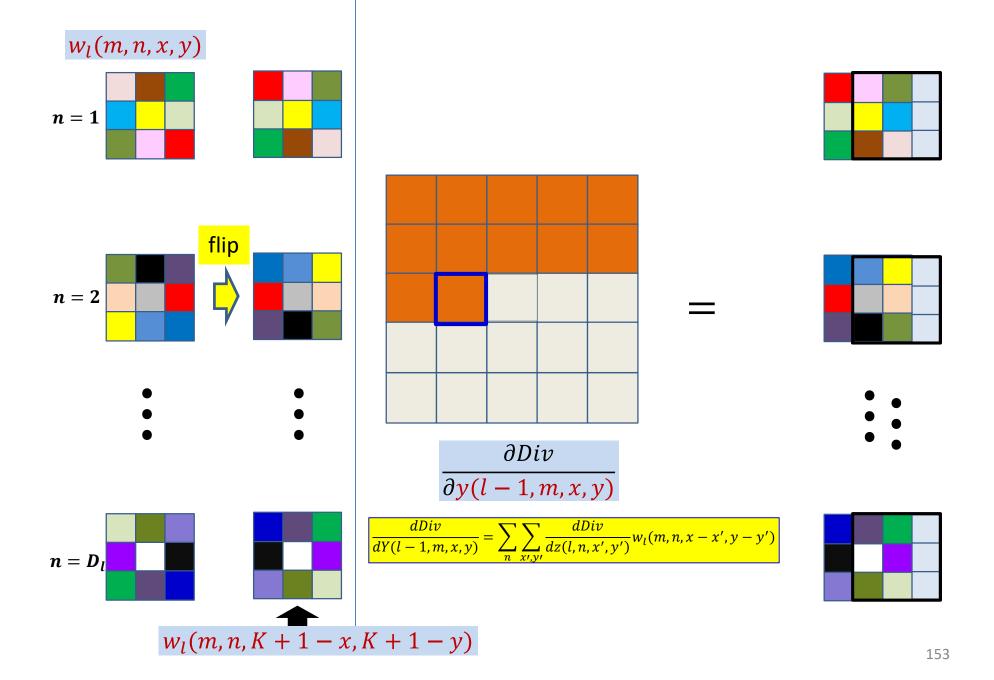


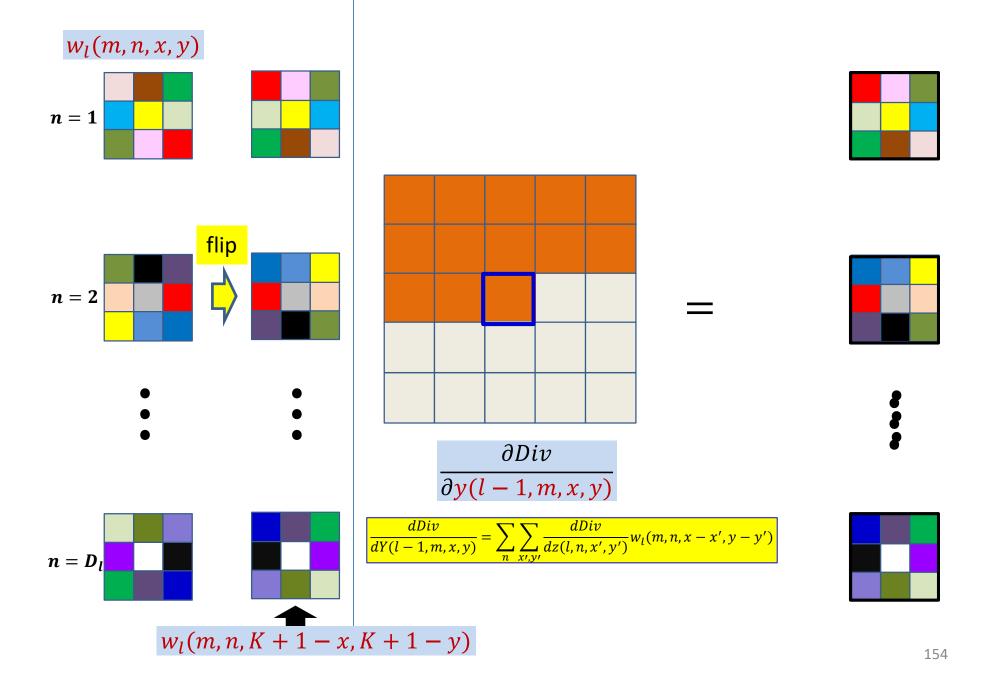


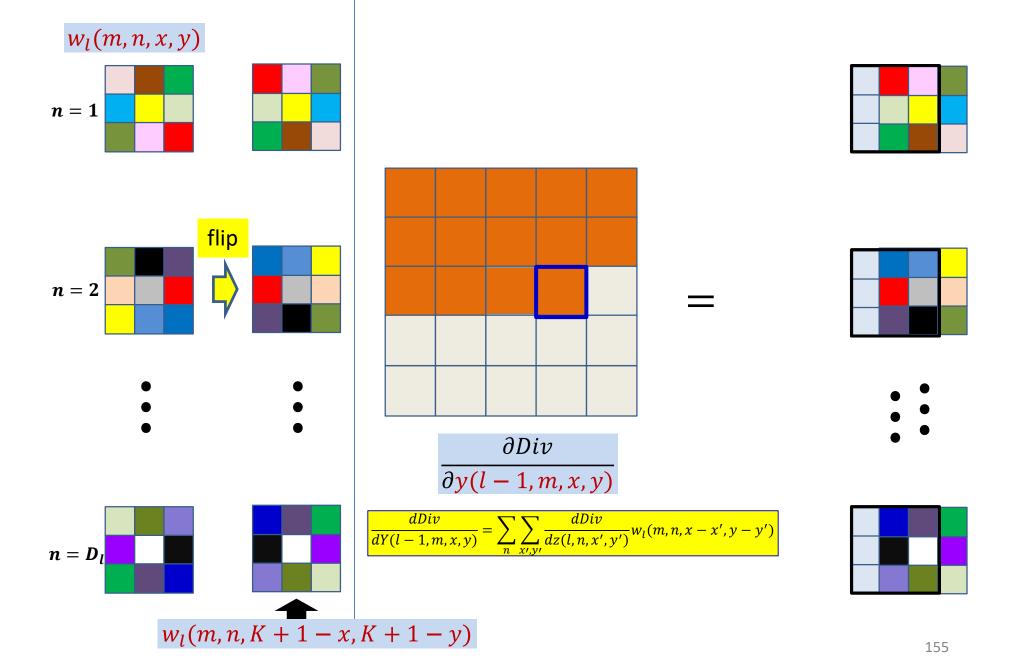


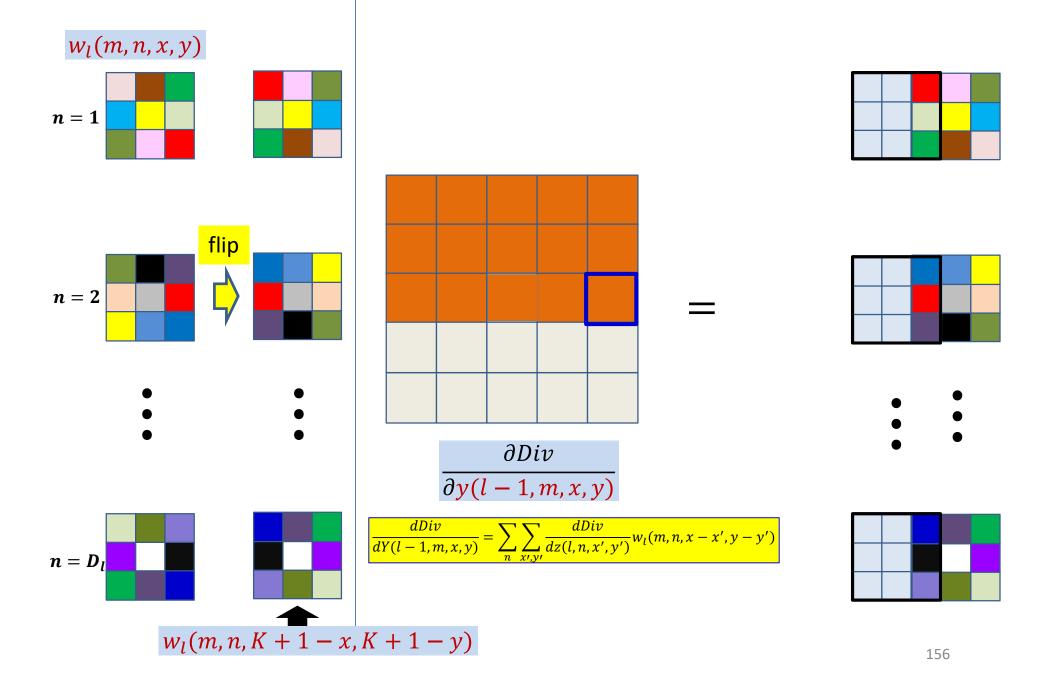


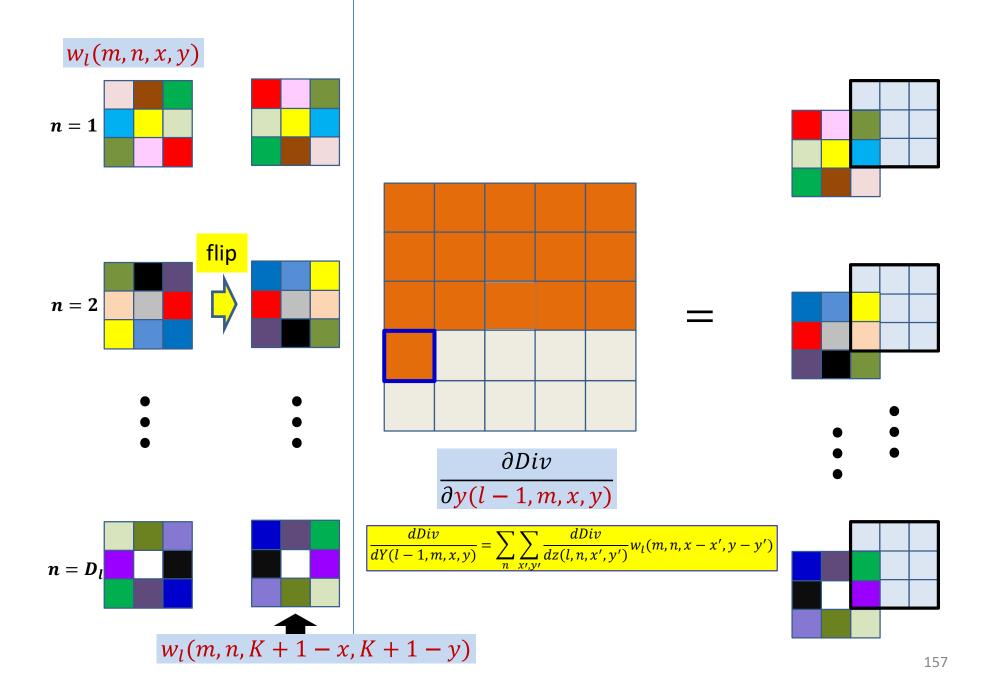


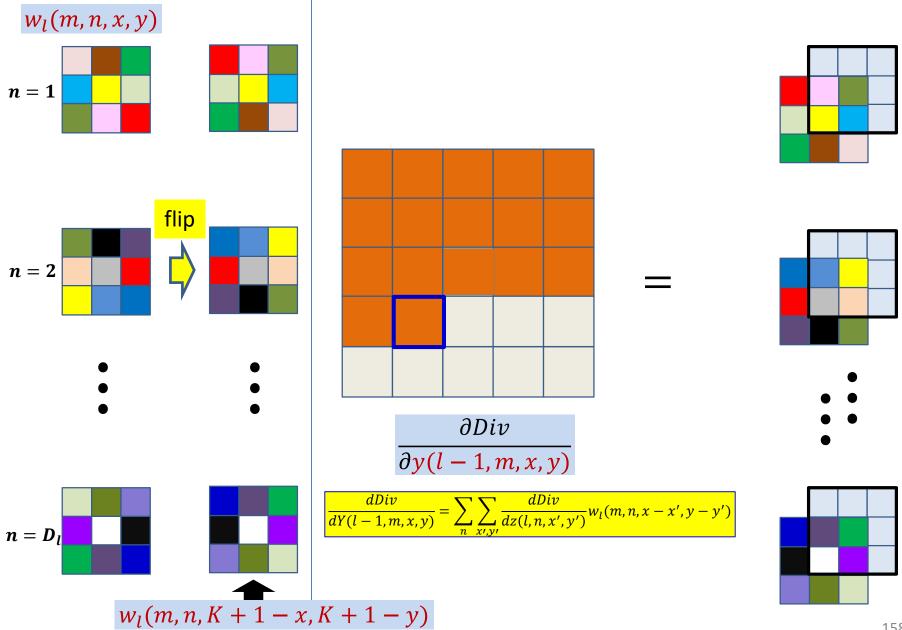


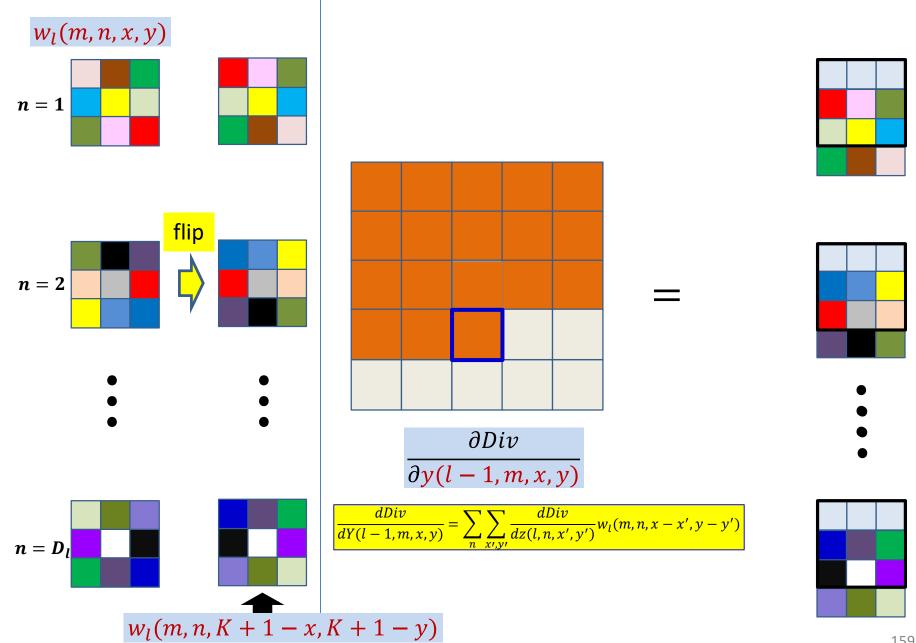




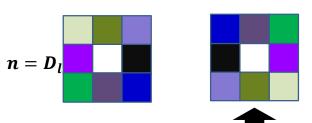


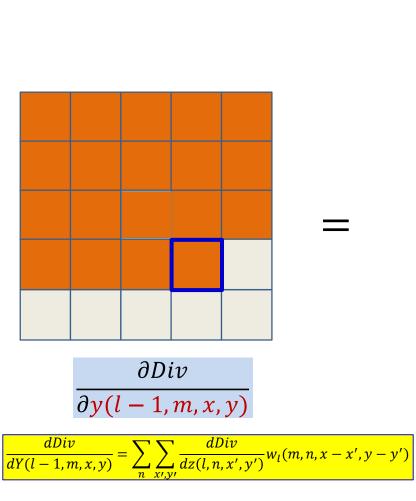


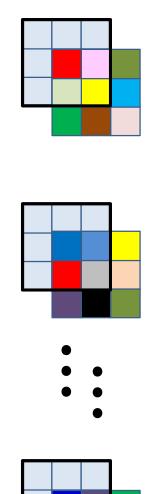


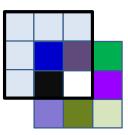


$w_l(m, n, x, y)$ n = 1flip n = 2

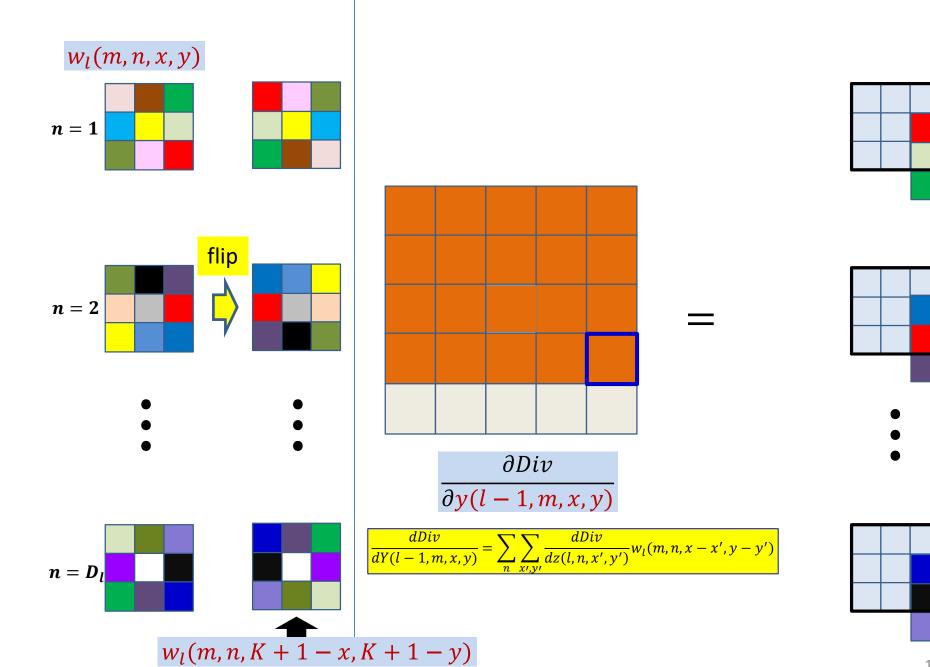


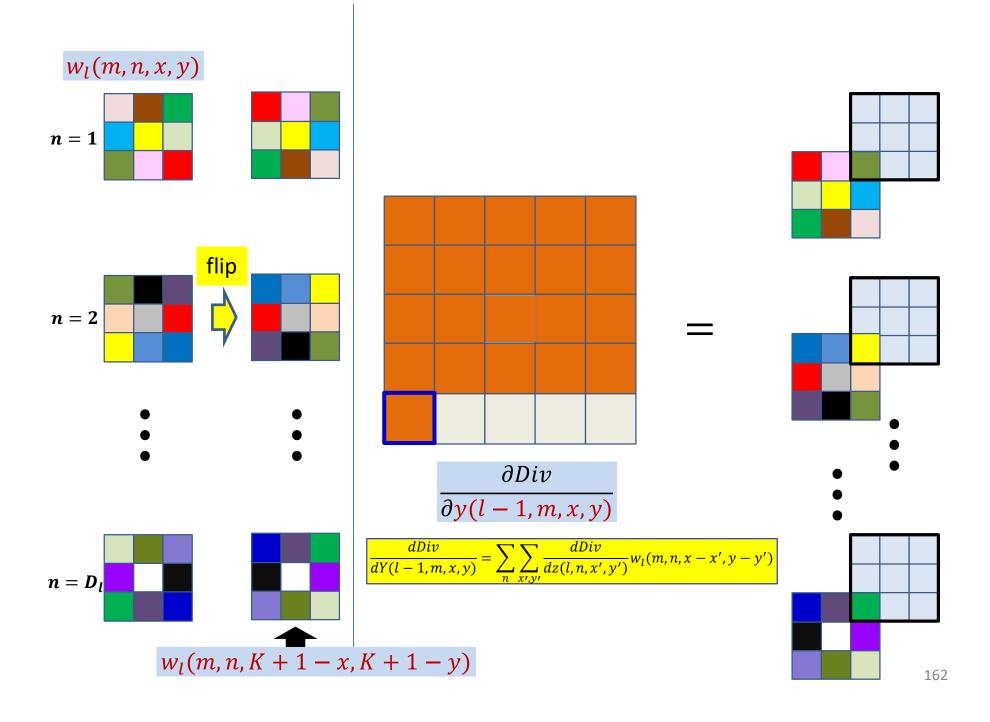


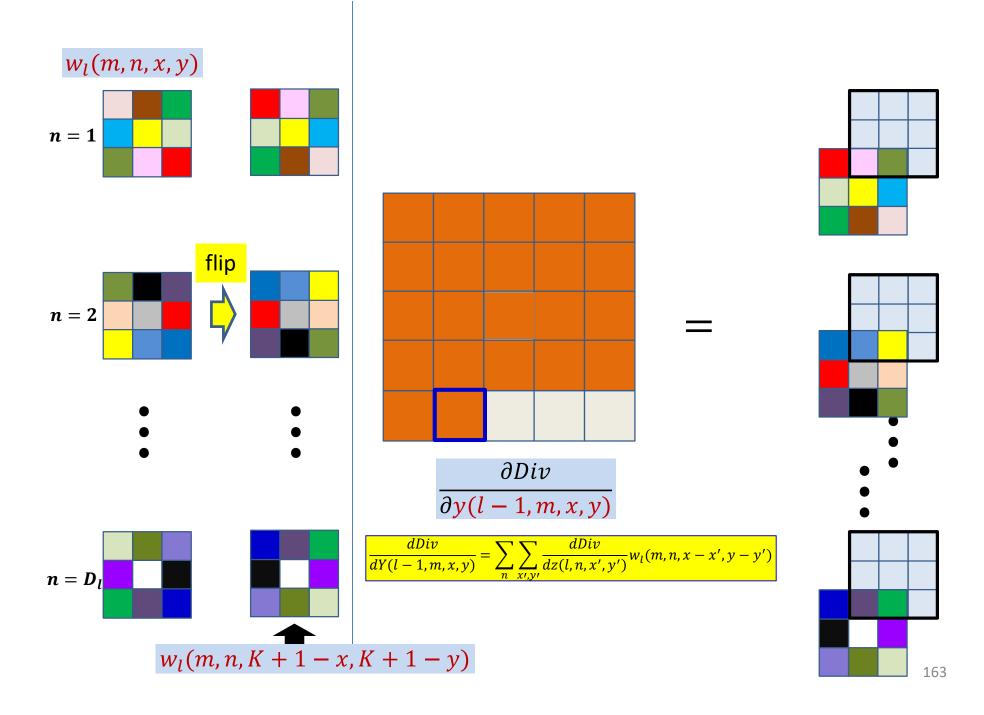


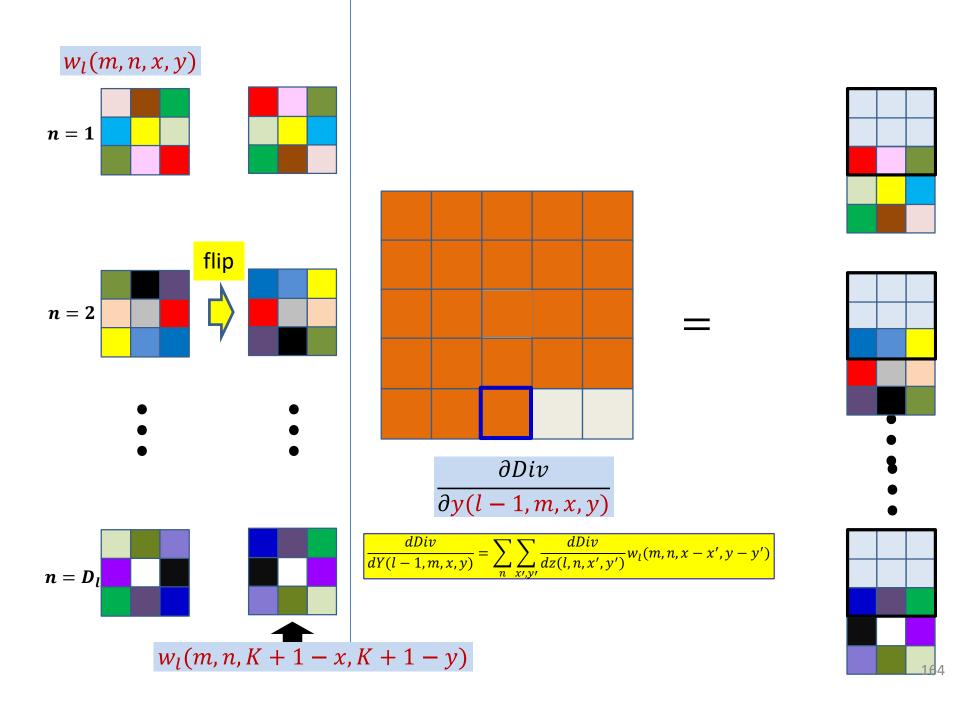


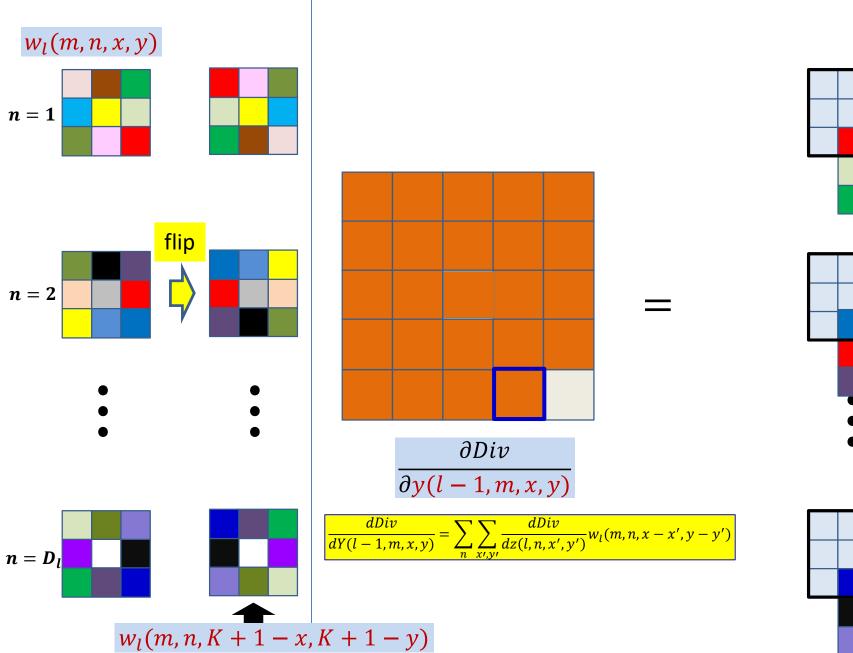
 $w_l(m, n, K + 1 - x, K + 1 - y)$

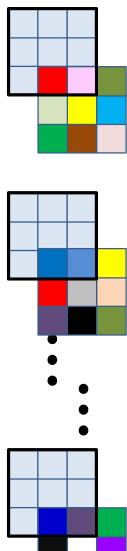


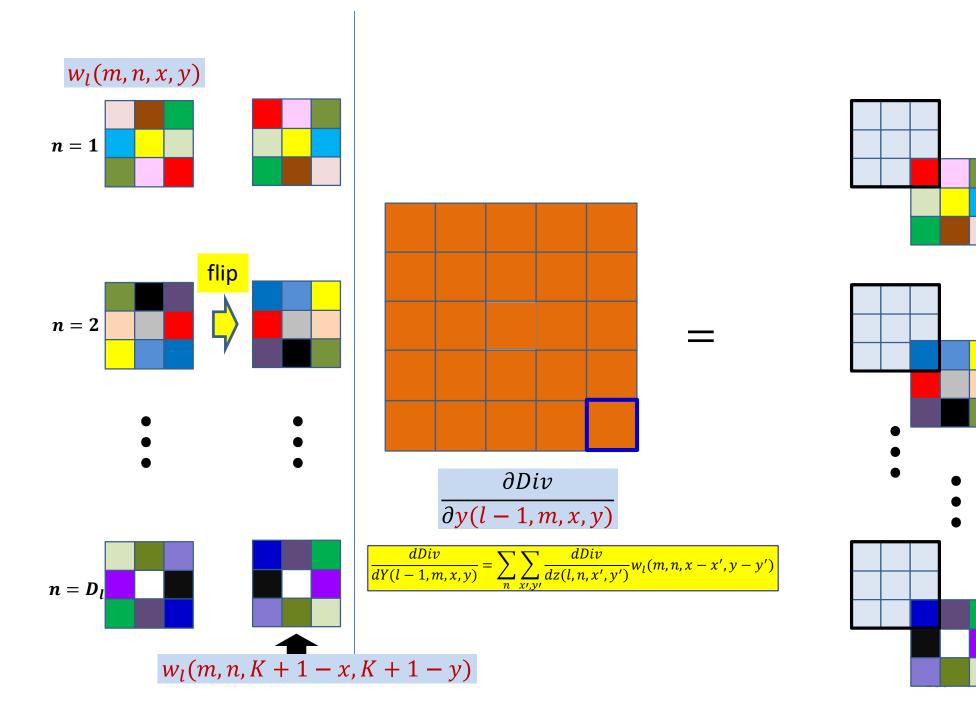




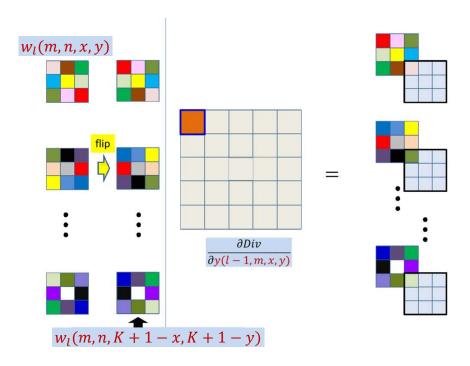






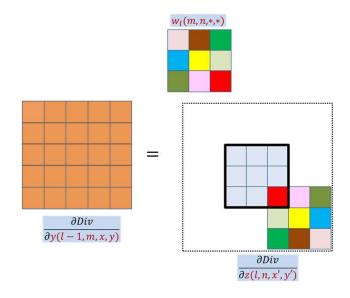


Computing the derivative for Y(l-1,m)



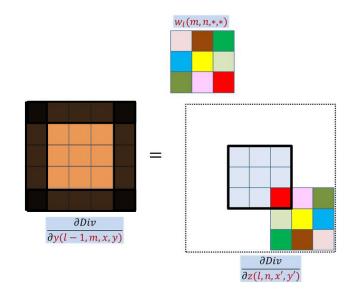
- This is just a convolution of the zero-padded $\frac{\partial Dlv}{\partial z(l,n,x,y)}$ maps by the transposed and flipped filter
 - After zero padding it first with K-1 zeros on every side

The size of the Y-derivative map

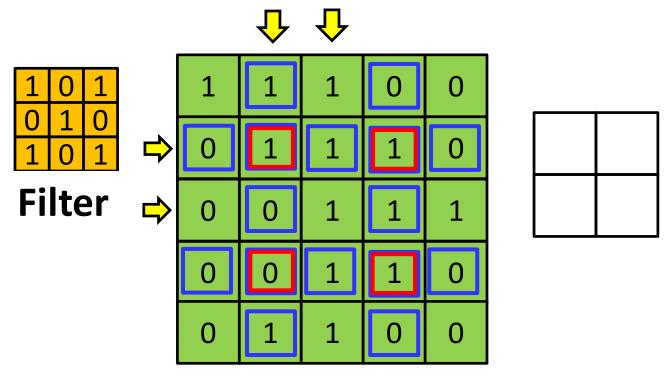


- We continue to compute elements for the derivative Y map as long as the (flipped) filter has at least one element in the (unpadded) derivative Zmap
 - I.e. so long as the Y derivative is non-zero
- The size of the Y derivative map will be $(H + K 1) \times (W + K 1)$
 - H and W are heidght and width of the Zmap
- This will be the size of the actual Y map that was originally convolved

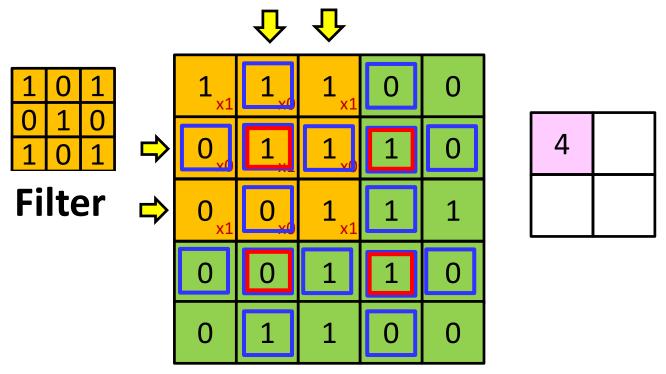
The size of the Y-derivative map



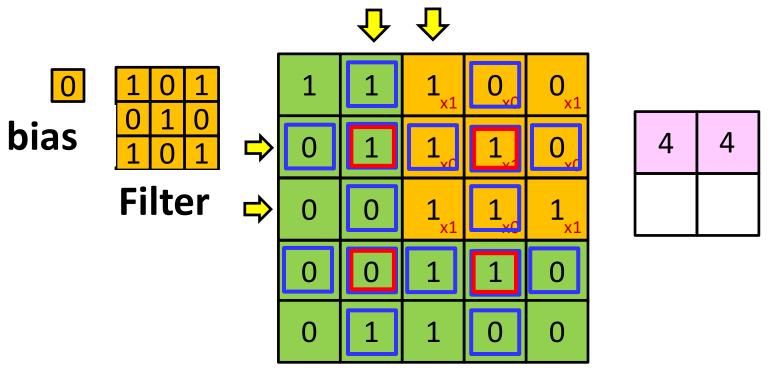
- If the Y map was zero-padded in the forward pass, the derivative map will be the size of the zero-padded map
 - The zero padding regions must be deleted before further backprop



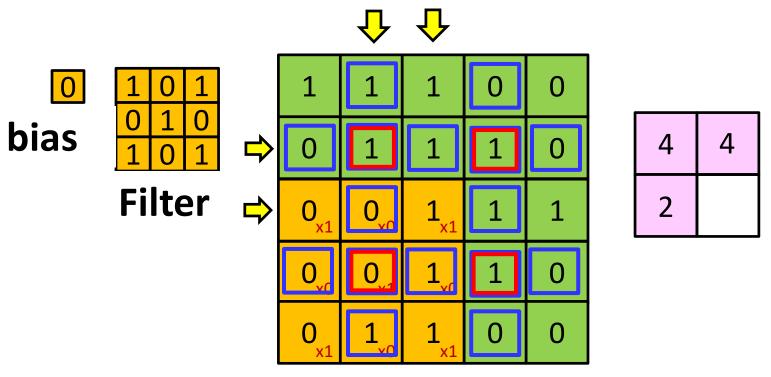
- When the stride is greater than 1, some positions of Y(l-1,m) contribute to more locations on the Z(l,n) maps than others
 - With a stride of 2, the boxed-in-blue Y(l-1,m) locations contribute to half as many Z(l,n) locations as the unboxed locations
 - The double-boxed (blue and red boxes) Y(l-1,m) locations contribute to only a quarter as many Z(l,n) locations as the unboxed ones



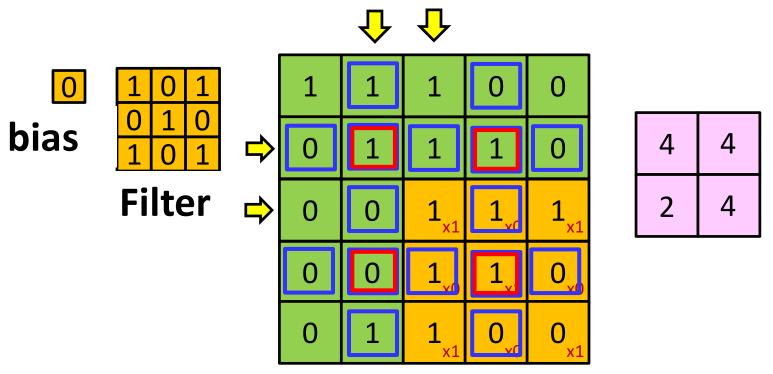
- When the stride is greater than 1, some positions of Y(l-1,m) contribute to more locations on the Z(l,n) maps than others
 - With a stride of 2, the boxed-in-blue Y(l-1,m) locations contribute to half as many Z(l,n) locations as the unboxed locations
 - The double-boxed (blue and red boxes) Y(l-1,m) locations contribute to only a quarter as many Z(l,n) locations as the unboxed ones



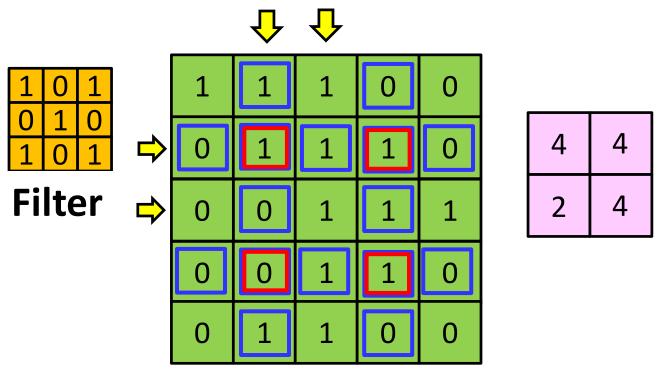
- When the stride is greater than 1, some positions of Y(l-1,m) contribute to more locations on the Z(l,n) maps than others
 - With a stride of 2, the boxed-in-blue Y(l-1,m) locations contribute to half as many Z(l,n) locations as the unboxed locations
 - The double-boxed (blue and red boxes) Y(l-1,m) locations contribute to only a quarter as many Z(l,n) locations as the unboxed ones



- When the stride is greater than 1, some positions of Y(l-1,m) contribute to more locations on the Z(l,n) maps than others
 - With a stride of 2, the boxed-in-blue Y(l-1,m) locations contribute to half as many Z(l,n) locations as the unboxed locations
 - The double-boxed (blue and red boxes) Y(l-1,m) locations contribute to only a quarter as many Z(l,n) locations as the unboxed ones

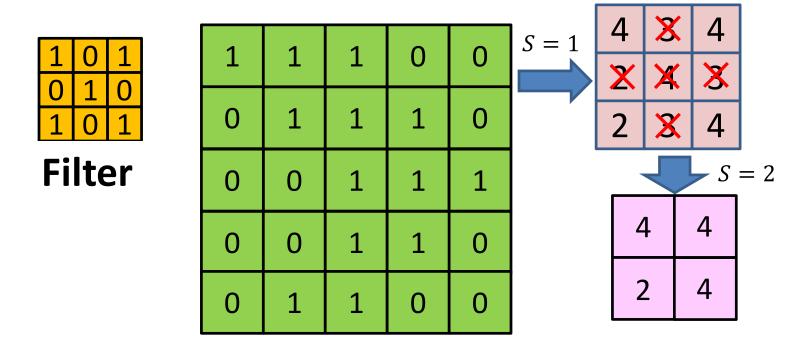


- When the stride is greater than 1, some positions of Y(l-1,m) contribute to more locations on the Z(l,n) maps than others
 - With a stride of 2, the boxed-in-blue Y(l-1,m) locations contribute to half as many Z(l,n) locations as the unboxed locations
 - The double-boxed (blue and red boxes) Y(l-1,m) locations contribute to only a quarter as many Z(l,n) locations as the unboxed ones



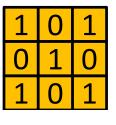
• We must make adjustments for when the stride is greater than 1.

Stride greater than 1



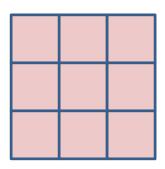
- Observation: Convolving with a stride S greater than 1 is the same as convolving with stride 1 and "dropping" S-1 out of every S rows, and S-1 of every S columns
 - Downsampling by S
 - E.g. for stride 2, it is the same as convolving with stride 1 and dropping every 2nd entry

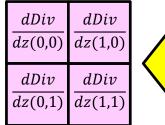
Derivatives with Stride greater than 1

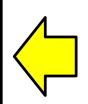


Filter

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

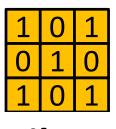






• Derivatives: Backprop gives us the derivatives of the divergence with respect to the elements of the downsampled (strided) Z map

Derivatives with Stride greater than 1



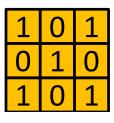
Filter

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

d	Div			dDiv	
dz	(0,0))		dz(1,0)	
Т					1
d	.Div			dDiv	
_		_			ļ
dz	(0,1])		dz(1,1)	
					•
	4	4	1	ς:	= 2
•			_		_
	dD)i12	۱,	dDiv	
					1
	dz(0,0)	d	z(1,0)	
				15.	
	dD	iv	(dDiv	
	dz(0 1)	d	$\overline{z(1,1)}$	V
	u2(o, ⊥)		2(1,1)	

- Derivatives: Backprop gives us the derivatives of the divergence with respect to the elements of the downsampled (strided) Z map
- We can place these derivative values back into their original locations of the full-sized \boldsymbol{Z} map

Derivatives with Stride greater than 1



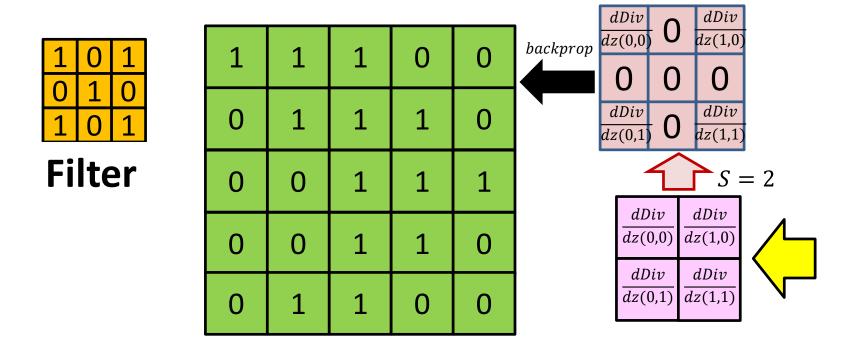
Filter

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

dDiv dz(0,0	0		dDiv dz(1,0)				
0	0		0				
dDiv dz(0,1	₃ 0		dDiv dz(1,1)				
	S=2						
	0,0)		$\frac{dDiv}{z(1,0)}$	<u> </u>			
	0iv (0,1)		dDiv z(1,1)	7			

- **Derivatives:** Backprop gives us the derivatives of the divergence with respect to the elements of the *downsampled* (strided) Z map
- We can place these values back into their original locations of the full-sized Z map
- The remaining entries of the Z map do not affect the divergence
 - Since they get dropped out
- The derivative of the divergence w.r.t. these values is 0

Computing derivatives with Stride > 1



Upsampling derivative map:

- Upsample the downsampled derivatives
- Insert zeros into the "empty" slots
- This gives us the derivatives w.r.t. all the entries of a full-sized (stride 1) Z map
- We can compute the derivatives for Y, using the full map

Poll 3

• @888

Poll 3

Select all statements that are true about how to compute the derivative of the divergence w.r.t Ith layer activation maps by backpropagation

- To compute the derivative w.r.t. the mth activation map of the lth convolutional layer, we must select the mth "planes" of all the (l+1)th layer filters
- The selected filter planes must be flipped left-right and up-down
- They must convolve the derivative (maps) for the (I+1)th layer affine values
- The output of the convolution must be flipped back left-right and up-down
- If the forward convolution has a stride S, the derivative maps must be upsampled by S prior to convolution
- If the forward convolution has stride S, the backpropagtion convolution must also have a stride S

Overall algorithm for computing derivatives w.r.t. Y(l-1)

- Given the derivatives $\frac{dDiv}{dz(l,n,x,y)}$
- If stride S > 1, upsample derivative map

$$\hat{z}(l,n,Sx,Sy) = \frac{dDiv}{dz(l,n,x,y)}$$

$$\hat{z}(l,n,x,y) = 0 \quad \forall \ x \ , y \neq integer \ multiples \ of \ S$$

• For S = 1,

$$\hat{z}(l,n,x,y) = \frac{dDiv}{dz(l,n,x,y)}$$

Compute derivatives using:

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \hat{z}(l,n,x',y') w_l(m,n,x-x',y-y')$$

Derivatives for a single layer *l*: Vector notation

```
# The weight W(1,m) is a 3D D_{1-1} \times K_1 \times K_1

# Assuming dz has already been obtained via backprop

if (stride > 1) #upsample

dz = upsample(dz,stride, W_{1-1}, H_{1-1}, K_1)

dzpad = zeros(D_1 \times (H_1 + 2(K_1 - 1)) \times (W_1 + 2(K_1 - 1))) # zeropad

for j = 1:D_1

for i = 1:D_{1-1} # Transpose and flip

Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(1,i,j,:,:)))

dzpad(j,K_1:K_1+H_1-1,K_1:K_1+W_1-1) = dz(1,j,:,:) #center map

end
```

```
for j = 1:D_{l-1}

for x = 1:W_{l-1}

for y = 1:H_{l-1}

segment = dzpad(:, x:x+K_l-1, y:y+K_l-1) #3D tensor

dy(l-1, j, x, y) = Wflip.segment #tensor inner prod.
```

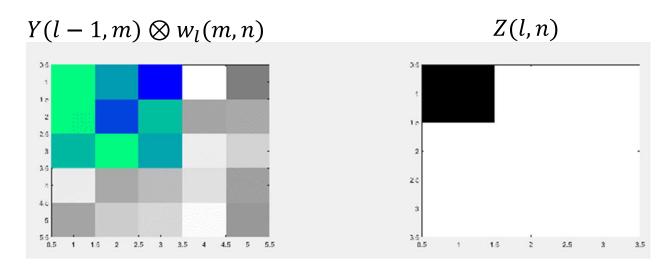
Upsampling

```
# Upsample dz to the size it would be if stride was 1
function upsample(dz, S, W, H, K)
    if (S > 1) #Insert S-1 zeros between samples
       Hup = H - K + 1
        Wup = W - K + 1
        dzup = zeros(Wup, Hup)
        for x = 1:S:H
            xdownsamp = (x-1)/S+1 \#Downsampled index
            for v = 1:S:W
                ydownsamp = (x-1)/S+1
                dzup(x,y) = dz(xdownsamp, ydownsamp)
    else
       dzup = dz
    return dzup
```

Backpropagating through affine map

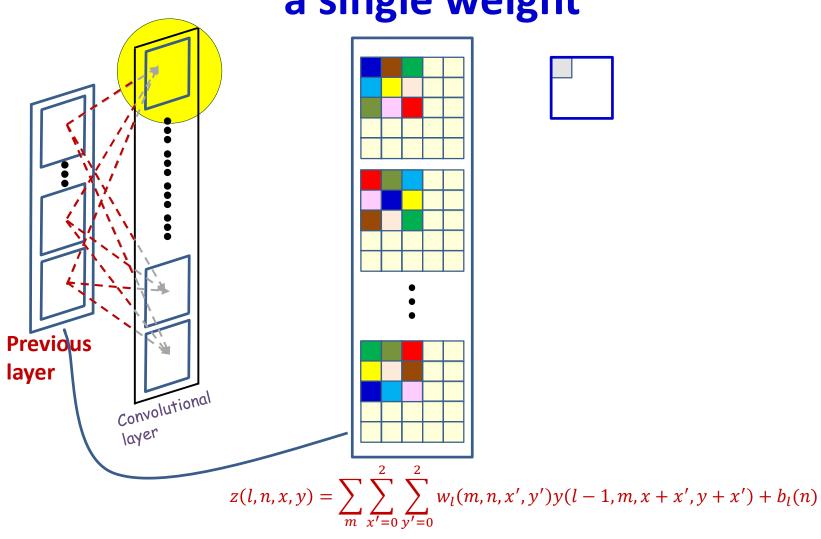
- Forward affine computation:
 - Compute affine maps z(l, n, x, y) from previous layer maps y(l-1, m, x, y) and filters $W_l(m, n, x, y)$
- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$ Compute derivative w.r.t. y(l-1,m,x,y)
 - - Compute derivative w.r.t. $w_l(m, n, x, y)$

The derivatives for the weights

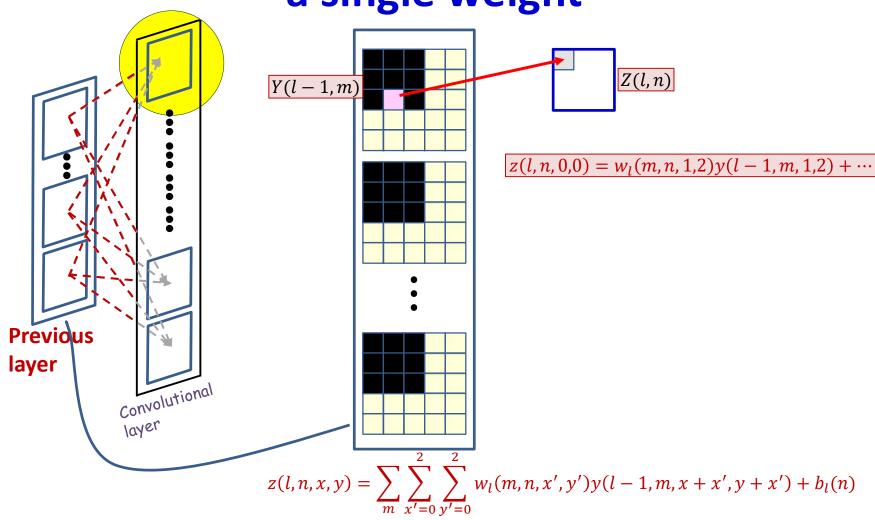


$$z(l,n,x,y) = \sum_{m} \sum_{x',y'} w_l(m,n,x',y') y(l-1,m,x+x',y+y') + b_l(n)$$

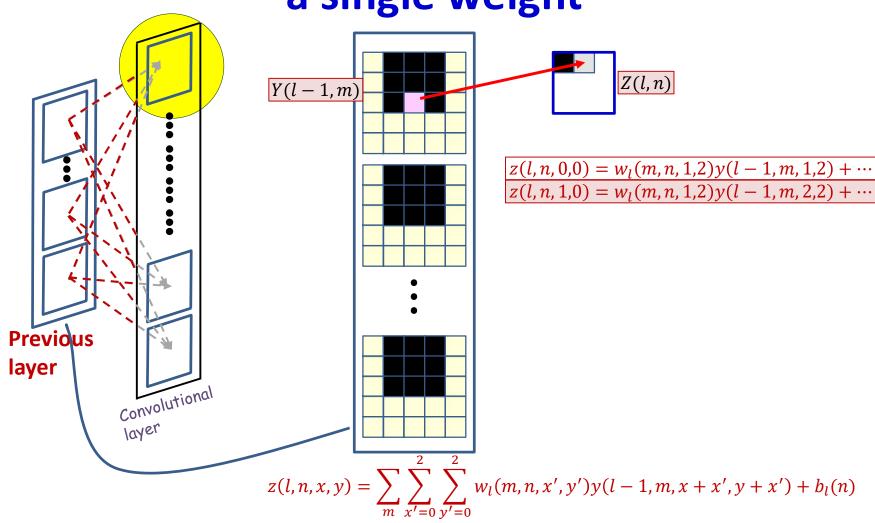
- Each weight $w_l(m, n, x', y')$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: $w_l(m, n, i, j)$ (e.g. $w_l(m, n, 1, 2)$)



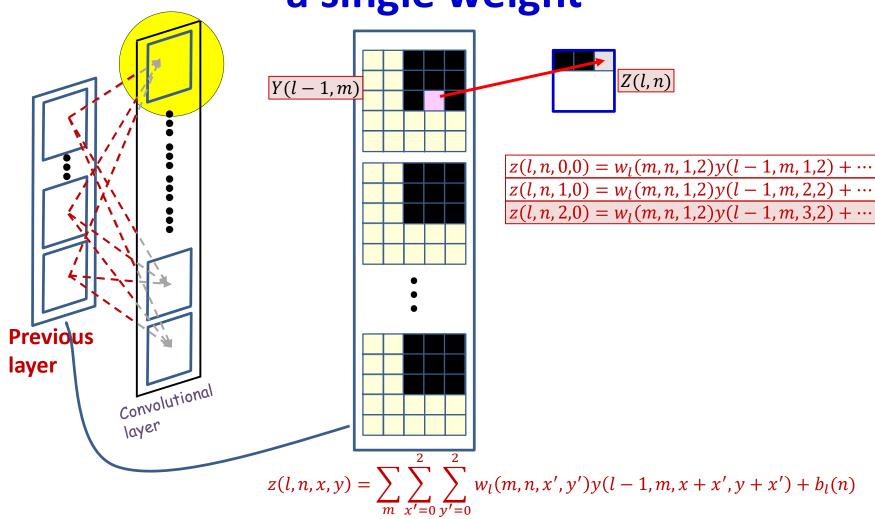
- Each affine output is computed from multiple input maps simultaneously
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)



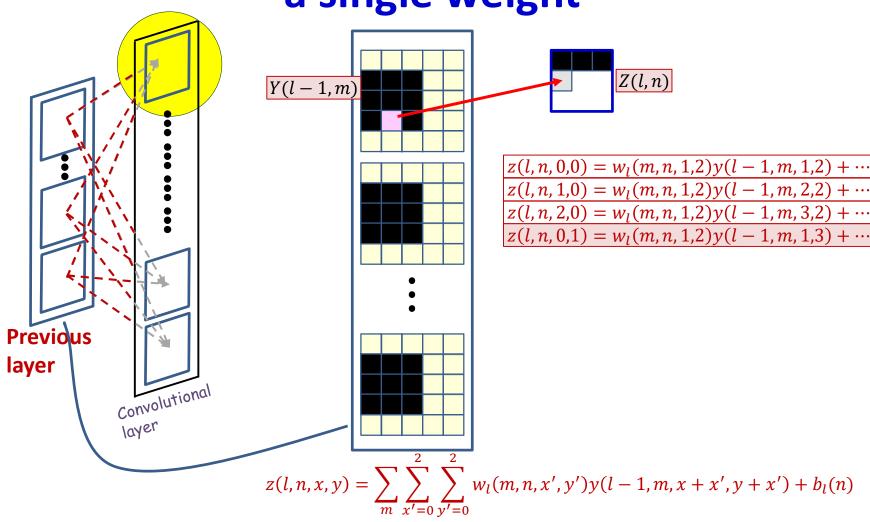
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{89}$



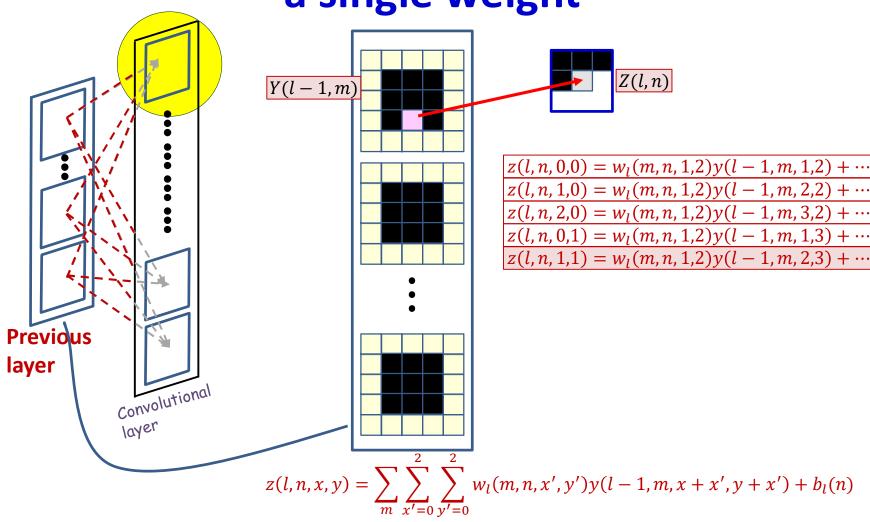
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



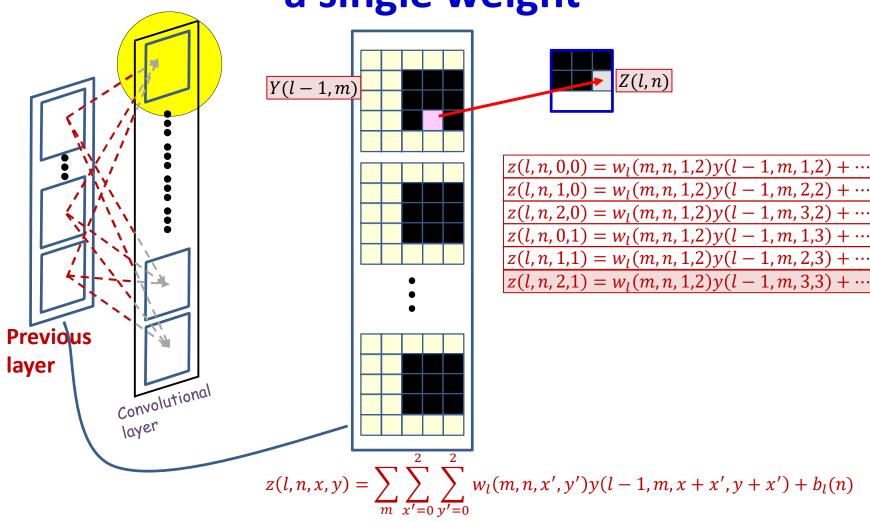
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



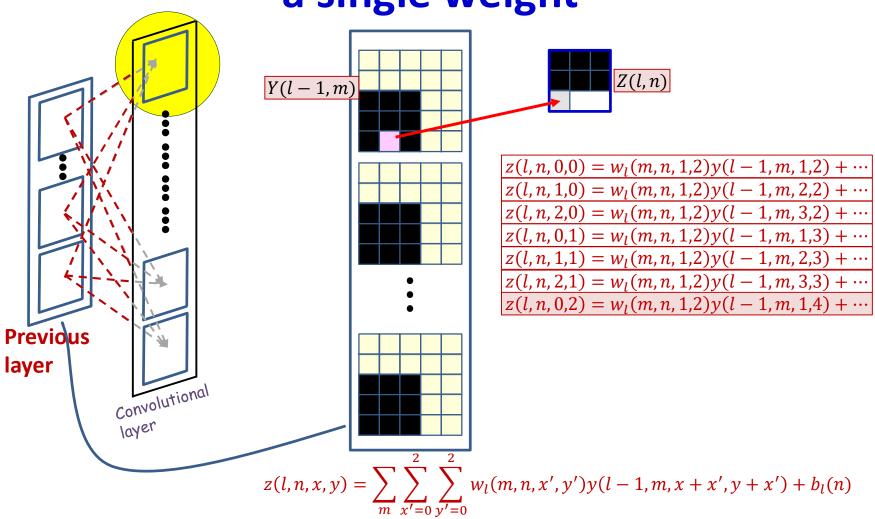
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{92}$



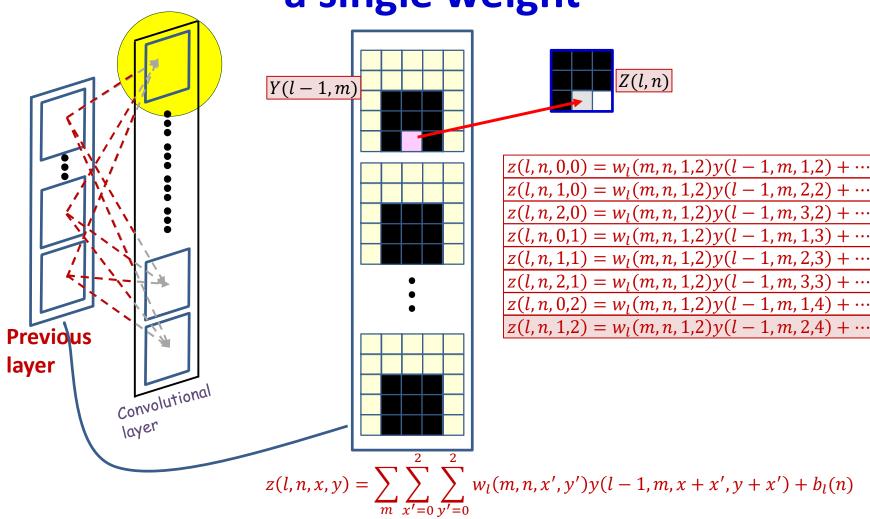
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{93}$



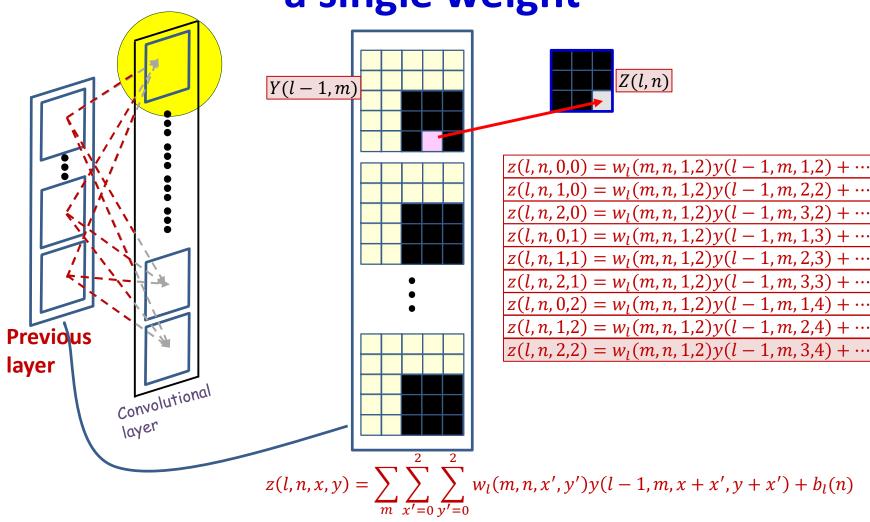
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{94}$



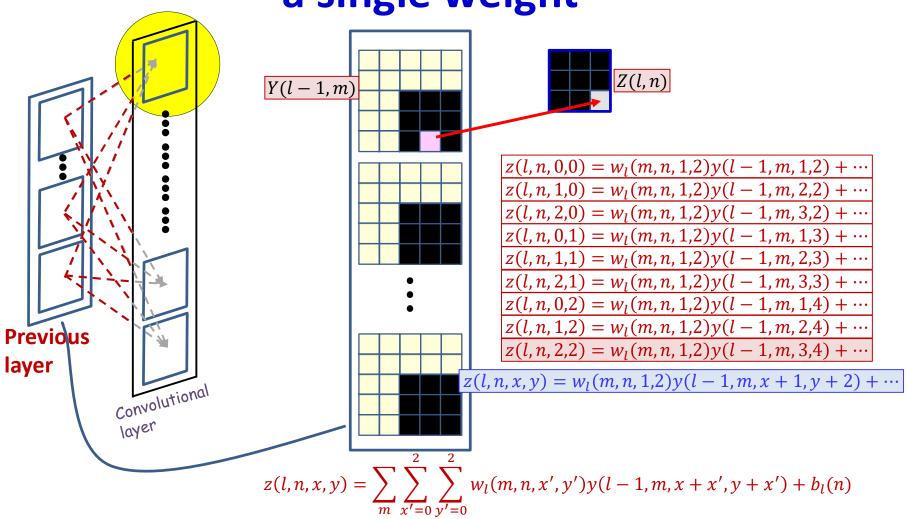
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{95}$



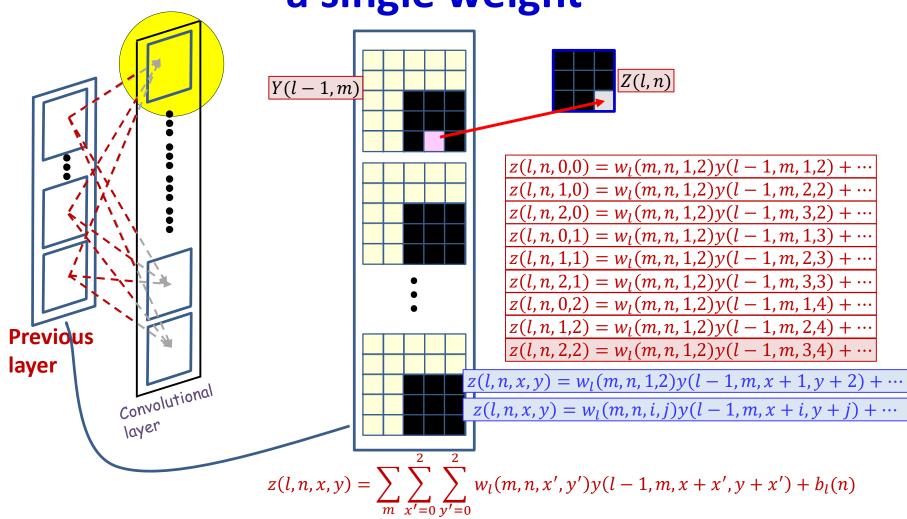
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{96}$



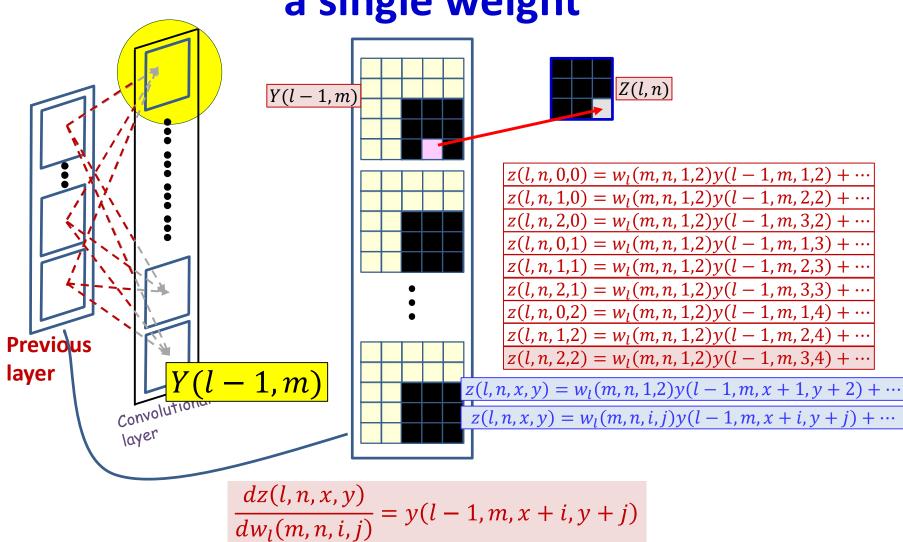
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{97}$

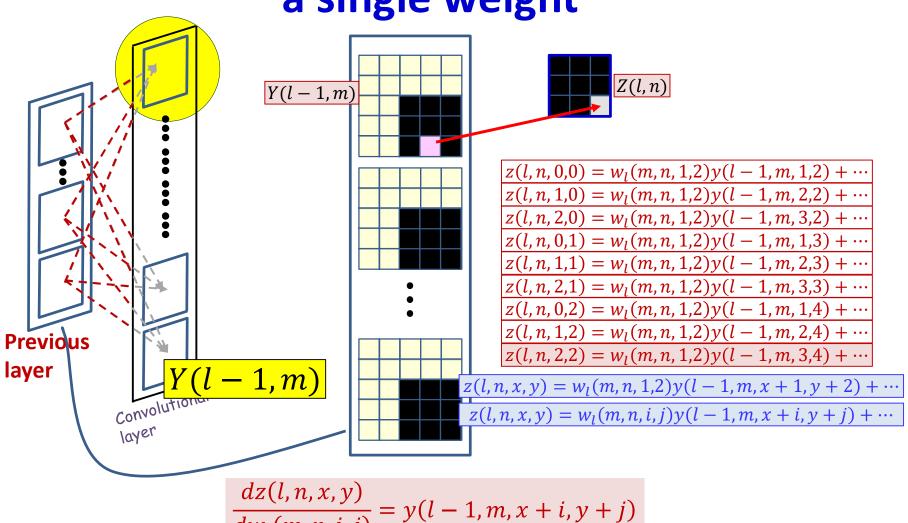


- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{98}$



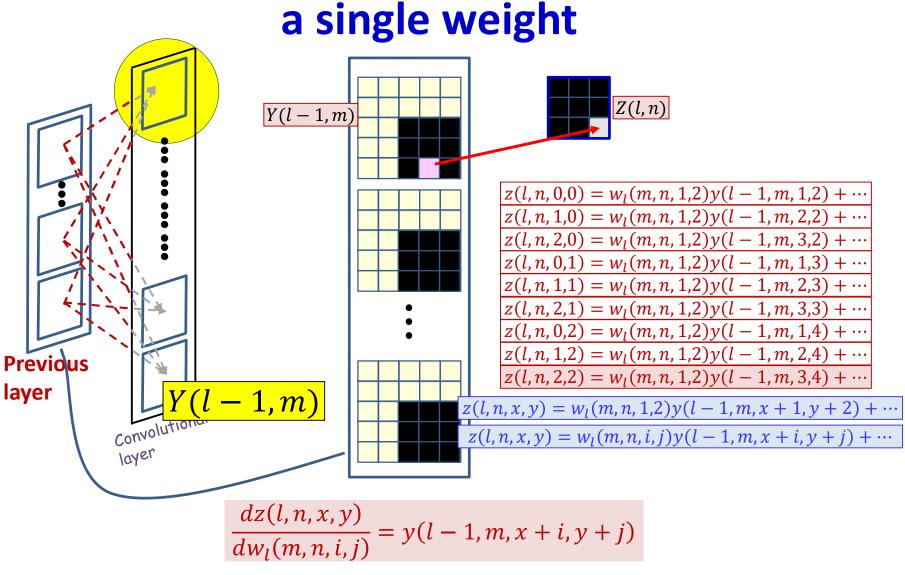
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)_{99}$





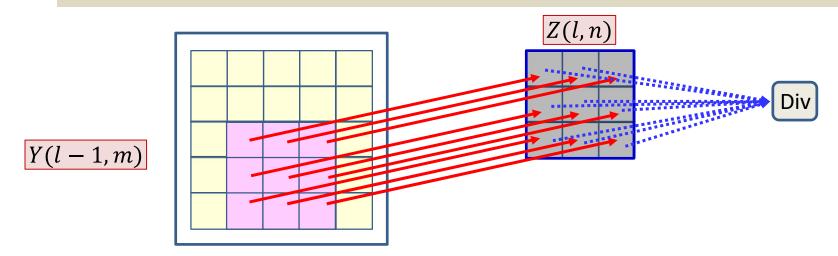
$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

$$\frac{dDiv}{dw_l\left(m,n,i,j\right)} += \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l\left(m,n,i,j\right)}$$



$$\frac{dDiv}{dw_l(m,n,i,j)} += \frac{dDiv}{dz(l,n,x,y)}y(l-1,m,x+i,y+j)$$

202

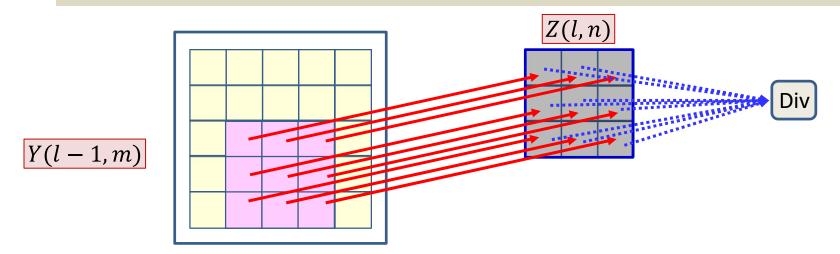


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l, n, x, y)}{dw_l(m, n, i, j)} = y(l - 1, m, x + i, y + j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$

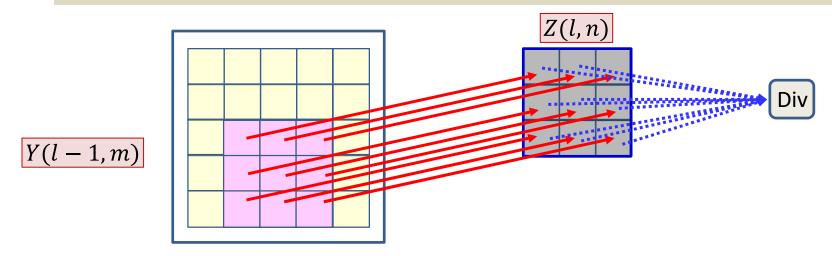


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivati Already computed v r.t $w_l(m,n,i,j)$ must sum over all z(l,n,x,y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$

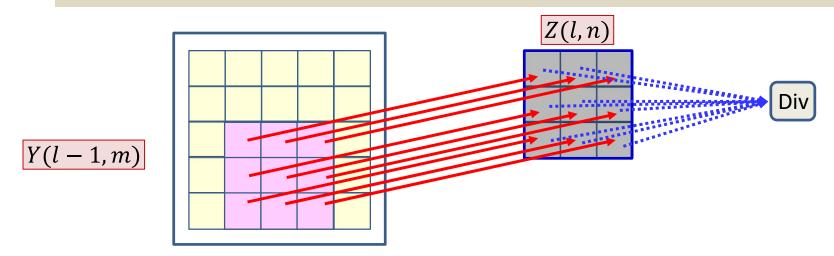


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(1, n, x, y)
- The derivati Already computed v r.t $w_l(m,n|i,j)$ must sum over all z(l,n,x,y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$



- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} y(l-1,m,x+i,y+j)$$

But this too is a convolution

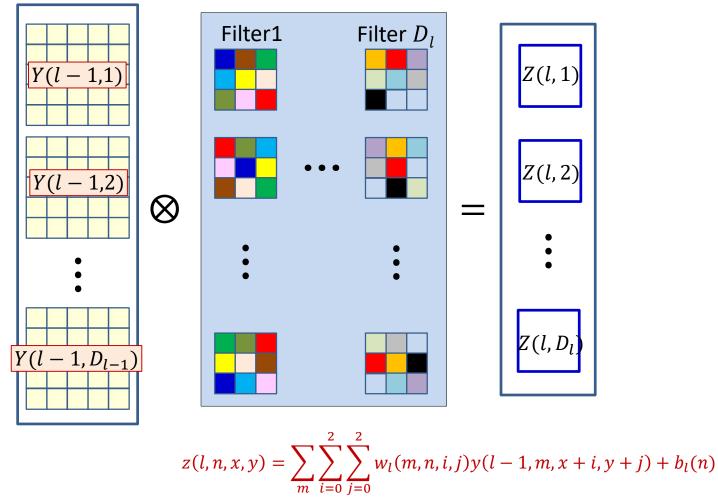
$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} y(l-1,m,x+i,y+j)$$

- The derivatives for all components of all filters can be computed directly from the above formula
- In fact it is just a convolution

$$\frac{dDiv}{dw_l(m,n,i,j)} = \frac{dDiv}{dz(l,n)} \otimes y(l-1,m)$$

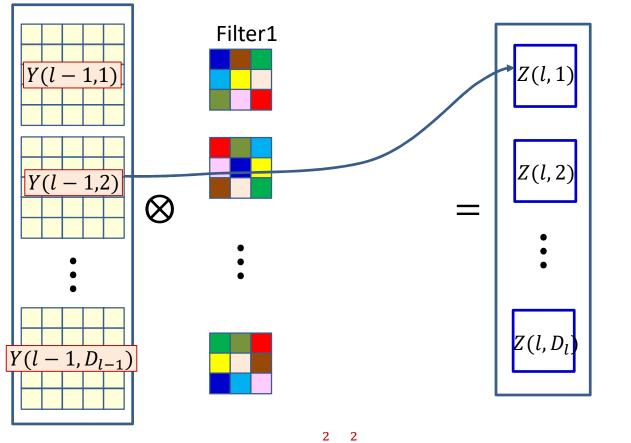
How?

Recap: Convolution



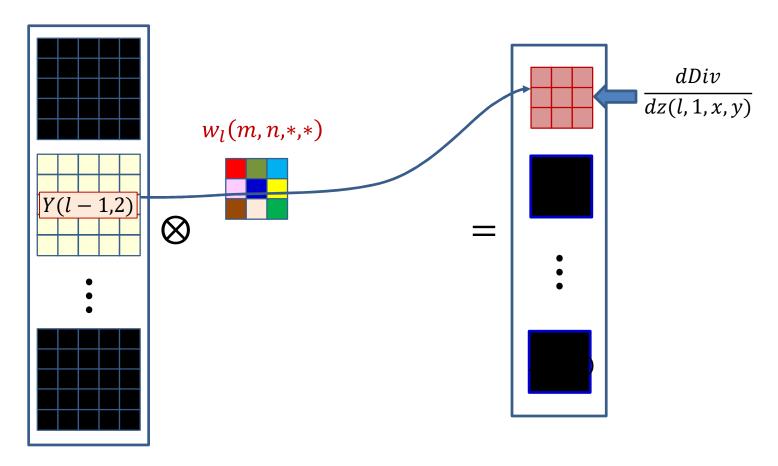
Forward computation: Each filter produces an affine map

Recap: Convolution

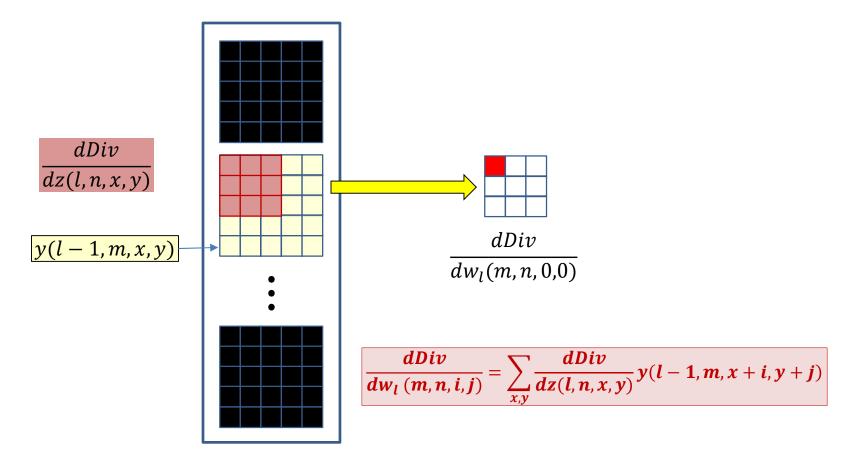


$$z(l,n,x,y) = \sum_{m} \sum_{i=0}^{2} \sum_{j=0}^{2} w_{l}(m,n,i,j)y(l-1,m,x+i,y+j) + b_{l}(n)$$

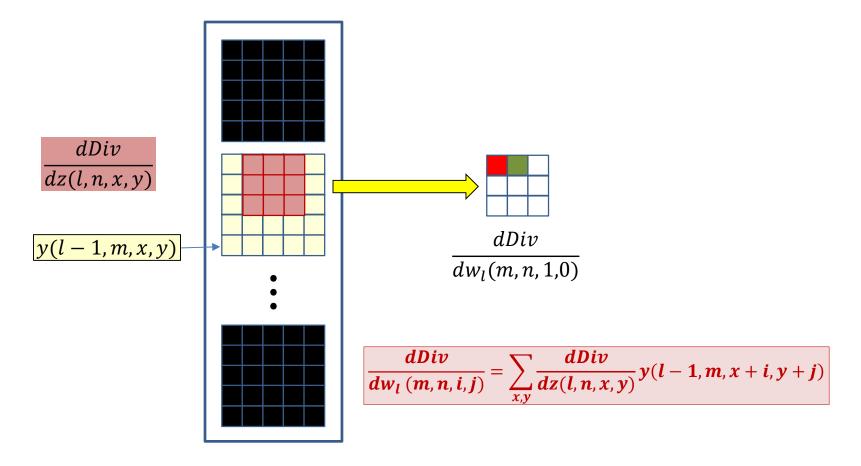
• Y(l-1,m) influences Z(l,n) through $w_l(m,n)$



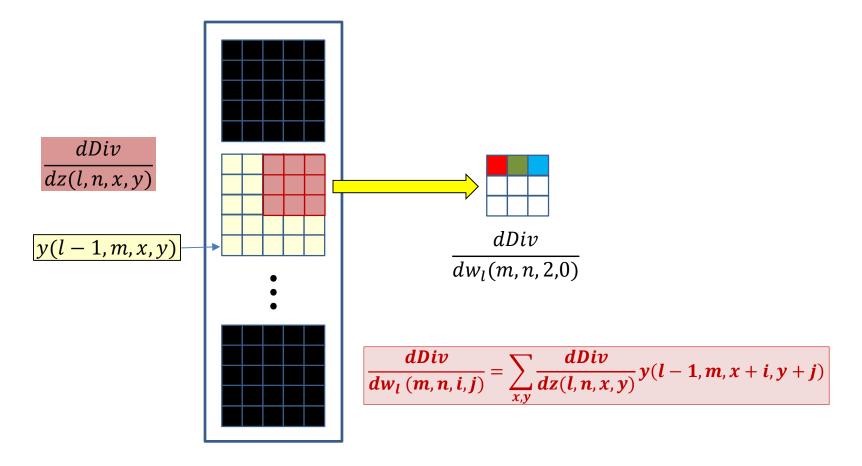
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{10}$



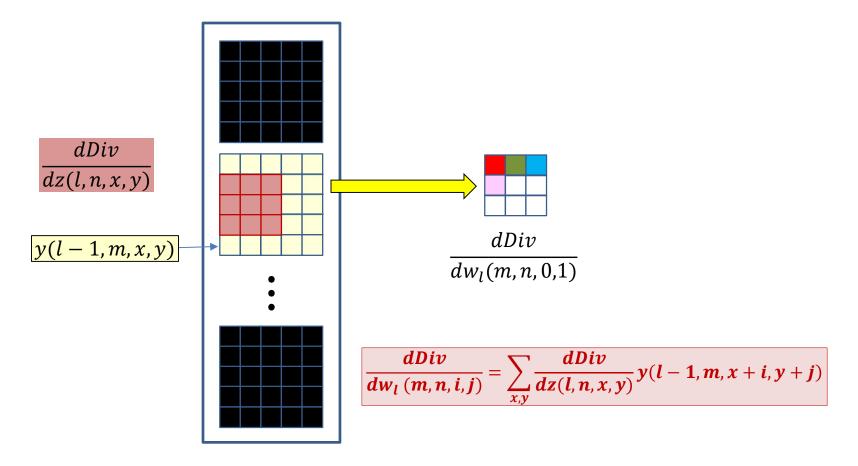
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{11}$



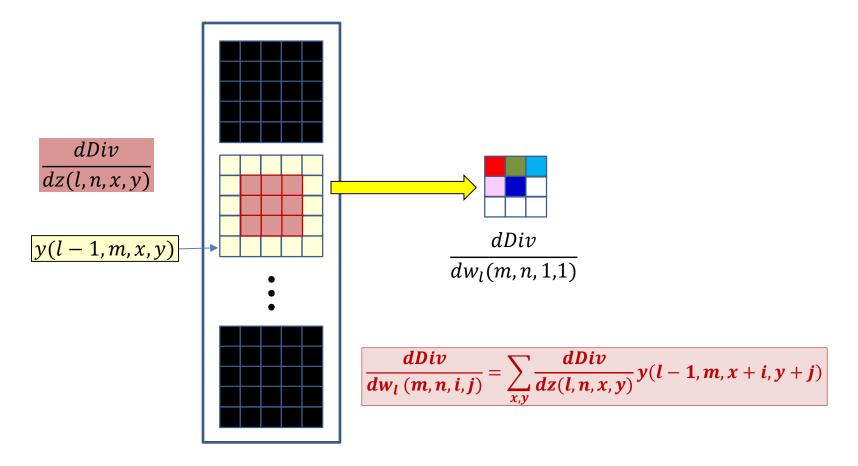
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{12}$



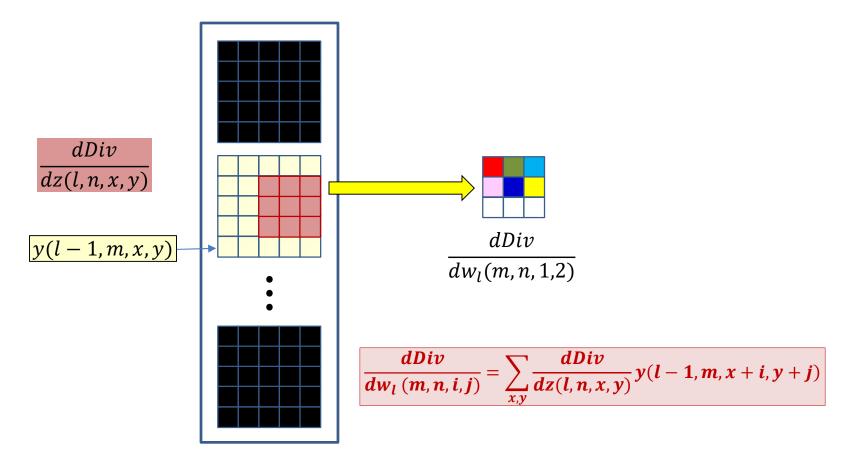
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{13}$



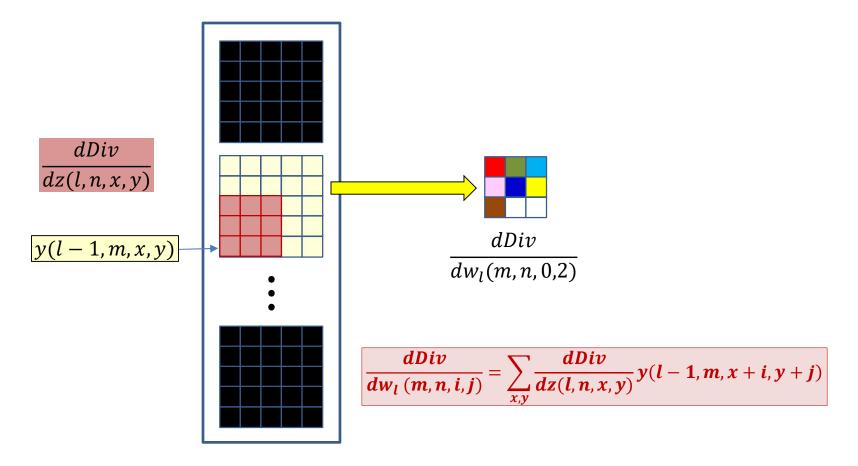
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{14}$



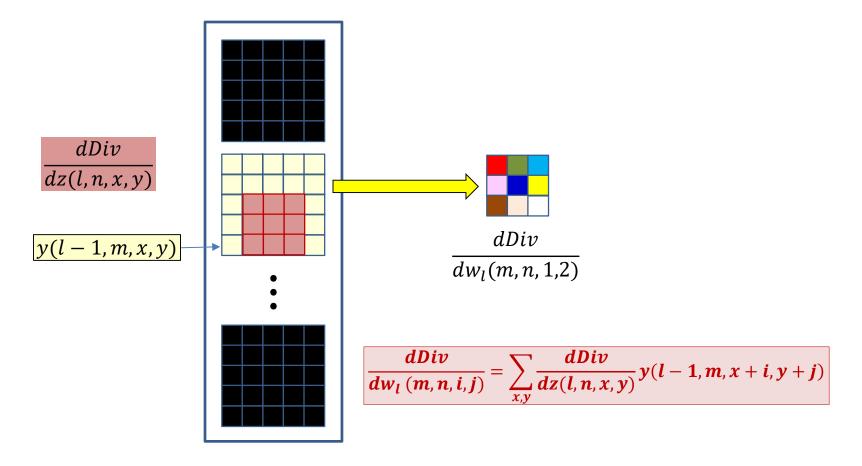
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{15}$



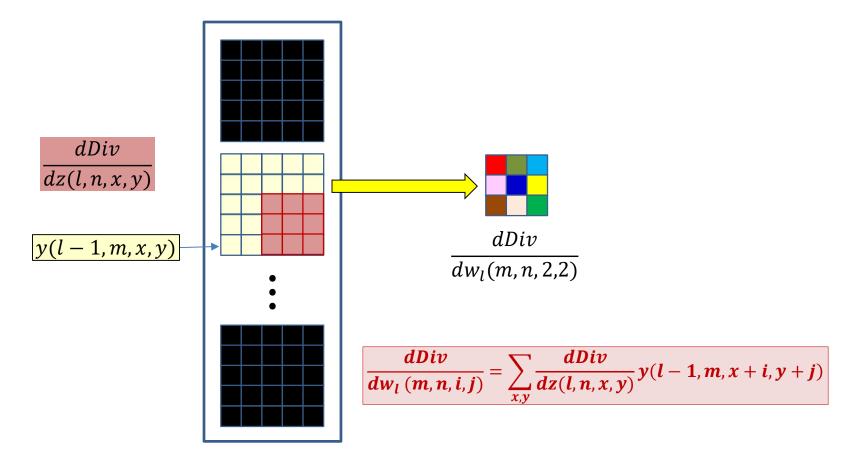
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{16}$



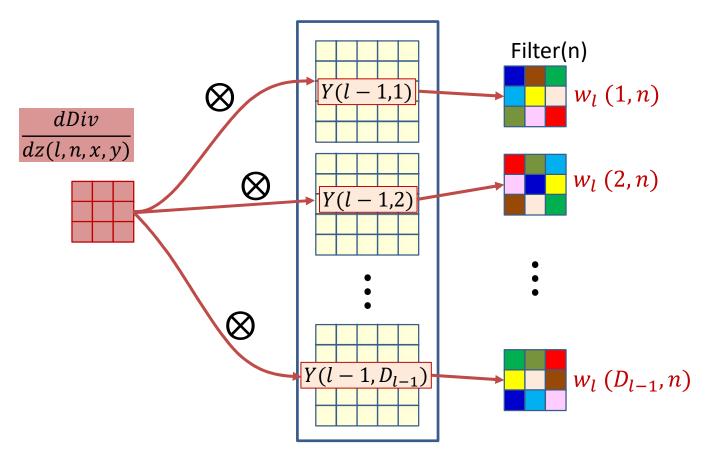
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{17}$



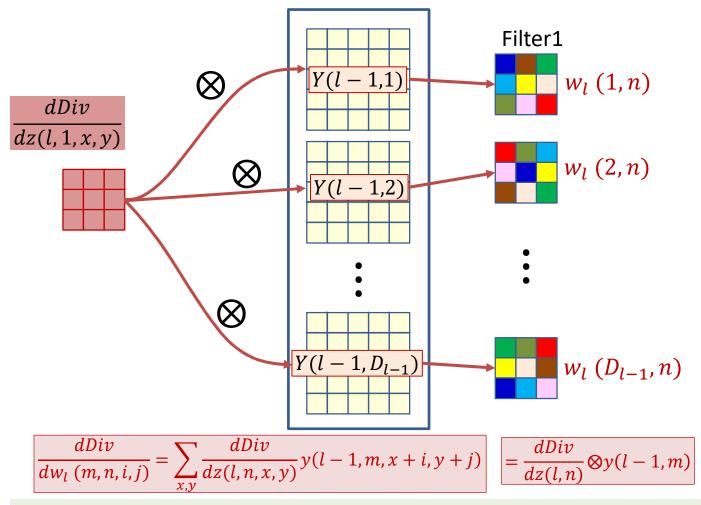
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{18}$



- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{19}$



• The derivative of the $n^{\rm th}$ affine map Z(l,n) convolves with every output map Y(l-1,m) of the $(l-1)^{\rm th}$ layer, to get the derivative for $w_l(m,n)$, the $m^{\rm th}$ "plane" of the $n^{\rm th}$ filter



 $\frac{dDiv}{dz(l,n,x,y)}$ must be upsampled if the stride was greater than 1 in the forward pass

If Y(l-1,m) was zero padded in the forward pass, it must be zero padded for backprop

Poll 4

• @889

Poll 4

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer filters using backpropagation

- The derivative for the mth plane of the nth filter is computed by convolving the mth input (I1th) layer map with the nth output (Ith) layer affine derivative map
- The output map must be flipped left-right/up-down before convolution
- If the forward convolution has a stride S, the derivative maps must be upsampled by S prior to convolution
- If the forward convolution has stride S, the backpropagtion convolution must also have a stride S

Derivatives for the filters at layer *l*: Vector notation

```
# The weight W(1,j)is a 3D D<sub>1-1</sub>×K<sub>1</sub>×K<sub>1</sub>
# Assuming that derivative maps have been upsampled
# if stride > 1
# Also assuming y map has been zero-padded if this was
# also done in the forward pass
# The width and height of the dz map are W and H
```

```
for n = 1:D_1

for x = 1:K_1

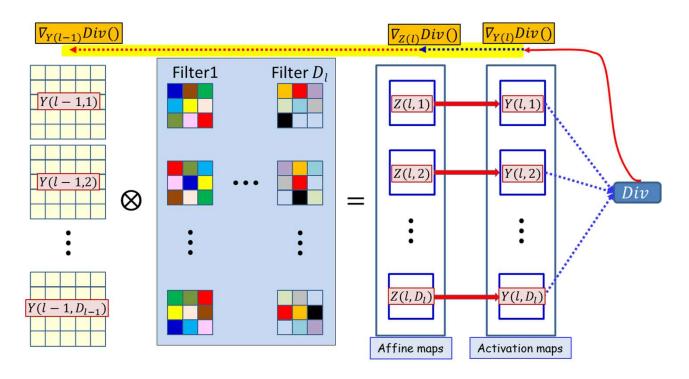
for y = 1:K_1

for m = 1:D_{1-1}

dw(1,m,n,x,y) = dz(1,n,:,:). #dot product

y(1-1,m,x:x+H-1,y:y+W-1)
```

Backpropagation: Convolutional layers



For convolutional layers:

How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)

How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)

CNN: Forward

```
Y(0,:,:,:) = Image
for l = 1:L # layers operate on vector at (x,y)
   for x = 1:W_{1-1}-K_1+1
                                          Switching to 1-based
      for y = 1:H_{1-1}-K_1+1
                                          indexing with appropriate
          for j = 1:D_1
                                          adjustments
             z(1,j,x,y) = 0
             for i = 1:D_{1-1}
                  for x' = 1:K_1
                      for y' = 1:K_1
                           z(1,j,x,y) += w(1,j,i,x',y')
                                    Y(1-1, i, x+x'-1, y+y'-1)
             Y(l,j,x,y) = activation(z(l,j,x,y))
Y = softmax(Y(L,:,1,1)...Y(L,:,W-K+1,H-K+1))
                                                            226
```

Backward layer *l*

```
dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
for x = W_{1-1}-K_1+1:downto:1
  for y = H_{1-1}-K_1+1:downto:1
      for j = D_1:downto:1
         dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
         for i = D_{1-1}:downto:1
            for x' = K_1:downto:1
              for y' = K_1:downto:1
                 dY(1-1, i, x+x'-1, y+y'-1) +=
                               w(1, i, i, x', v') dz(1, i, x, v)
                dw(1,j,i,x',y') +=
                        dz(1, j, x, y) Y (1-1, i, x+x'-1, y+y'-1)
```

Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for l = L:downto:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
   for x = W_{1-1}-K_1+1:downto:1
       for y = H_{1-1} - K_1 + 1 : downto: 1
          for j = D_1:downto:1
              dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
              for i = D_{1-1}:downto:1
                  for x' = K_1:downto:1
                       for y' = K_1:downto:1
                            dY(1-1, i, x+x'-1, y+y'-1) +=
                               w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1, j, i, x', y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1)
```

Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for l = L:downto:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
                                         Multiple ways of recasting this
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
                                         as tensor/vector operations.
   for x = W_{1-1}-K_1+1:downto:1
                                         Will not discuss here
       for y = H_{1-1}-K_1+1:downto:1
          for j = D_1:downto:1
              dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
              for i = D_{1-1}:downto:1
                   for x' = K_1:downto:1
                       for y' = K_1:downto:1
                            dY(1-1, i, x+x'-1, y+y'-1) +=
                                w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1, j, i, x', y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1,a)
```

Complete Backward (with strides)

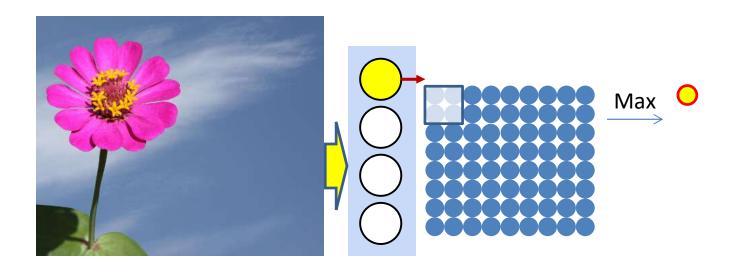
```
dY(L) = dDiv/dY(L)
for 1 = L:downto:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
   for x = W_1:downto:1
      m = (x-1) stride
      for y = H_1:downto:1
          n = (y-1) stride
          for j = D_1:downto:1
             dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
             for i = D_{1-1}:downto:1
                  for x' = K_1:downto:1
                       for y' = K_1:downto:1
                           dY(1-1,i,m+x',n+y') +=
                               w(1, j, i, x', v') dz(1, j, x, v)
                           dw(1,i,i,x',v') +=
                               dz(1,j,x,y)y(1-1,i,m+x',n+y')_{30}
```

Backpropagation: Convolutional and Pooling layers

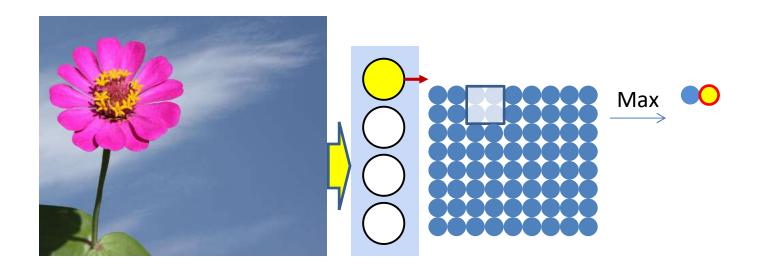
- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

Required:

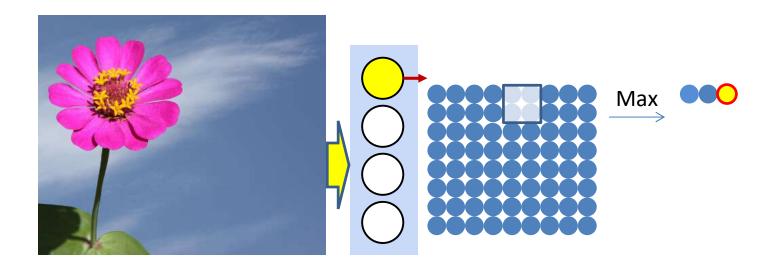
- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)



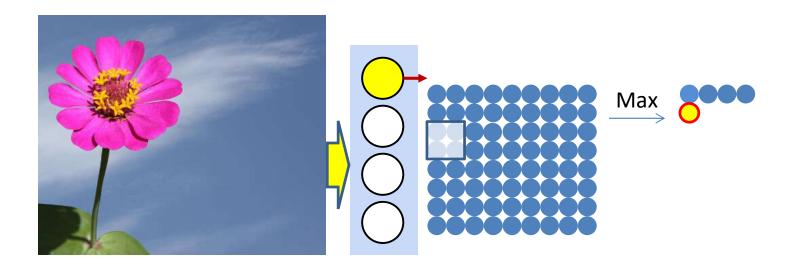
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



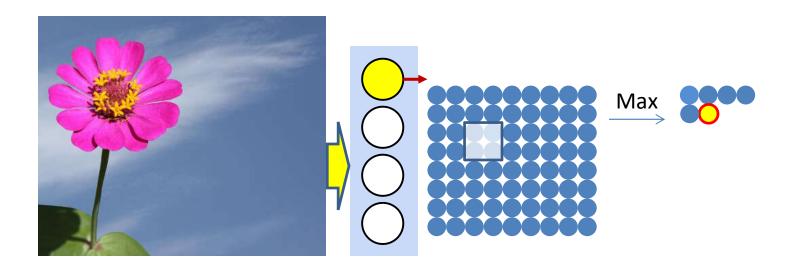
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



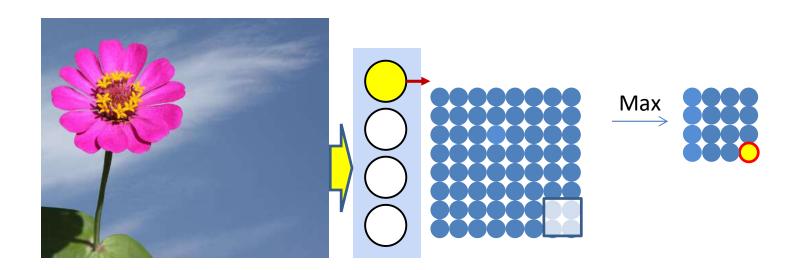
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

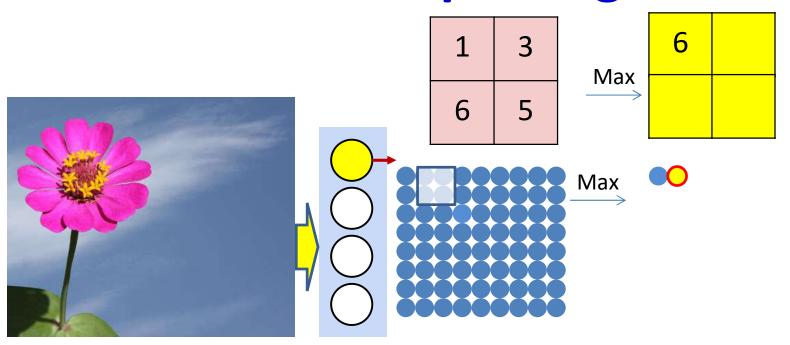


- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

Max pooling



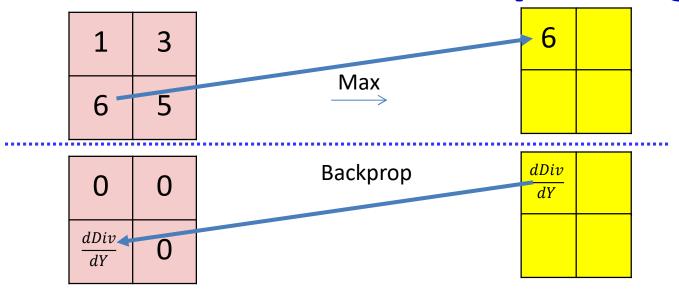
- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\},}{\operatorname{argmax}} Y(l-1, m, k, n)$$

$$n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}$$

$$Y(l, m, i, j) = Y(l - 1, m, P(l, m, i, j))$$

Derivative of Max pooling



$$\frac{dDiv}{dy(l-1,m,k,l)} = \begin{cases} \frac{dDiv}{dy(l,m,i,j)} & \text{if } (k,l) = P(l,m,i,j) \\ 0 & \text{otherwise} \end{cases}$$

Max pooling selects the largest from a pool of elements

$$P(l, m, i, j) = \underset{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\},\\ n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}\}$$

$$y(l, m, i, j) = y(l-1, m, P(l, m, i, j))$$

239

Max Pooling layer at layer *l*

- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
for j = 1:D<sub>1</sub>
  m = 1
  for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1
    n = 1
    for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1
       pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))
       y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))
       n = n+1
    m = m+1
```

Derivative of max pooling layer at layer *l*

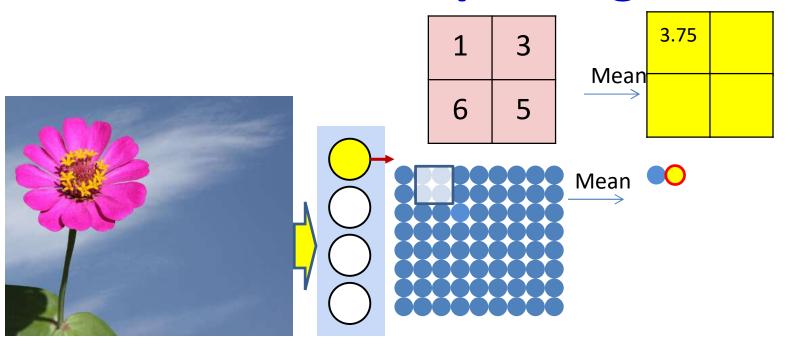
- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
\begin{array}{l} \mathrm{d}y(:,:,:) = \mathrm{zeros}(D_1 \times W_1 \times H_1) \\ \\ \mathrm{for} \ \mathrm{j} = 1:D_1 \\ \\ \mathrm{for} \ \mathrm{x} = 1:W_{1\_\mathrm{downsampled}} \\ \\ \mathrm{for} \ \mathrm{y} = 1:H_{1\_\mathrm{downsampled}} \\ \\ \mathrm{d}y(1-1,\mathrm{j},\mathrm{pidx}(1,\mathrm{j},\mathrm{x},\mathrm{y})) \ += \ \mathrm{d}y(1,\mathrm{j},\mathrm{x},\mathrm{y}) \end{array}
```

"+=" because this entry may be selected in multiple adjacent overlapping windows

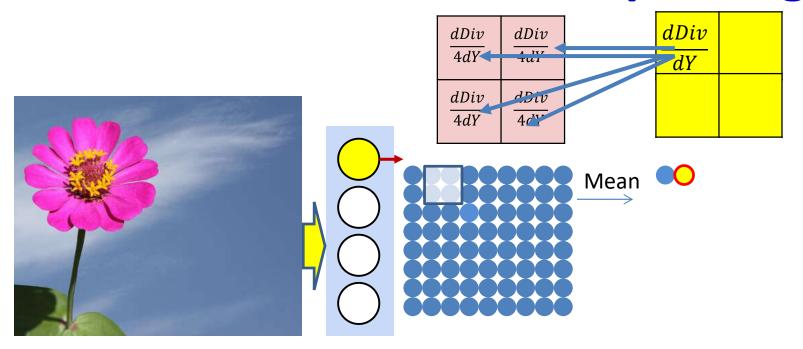
Mean pooling



- Mean pooling compute the mean of a pool of elements
- Pooling is performed by "scanning" the input

$$y(l, m, i, j) = \frac{1}{K_{lpool}^{2}} \sum_{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\}, \\ n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}} y(l-1, m, k, n)$$

Derivative of mean pooling



The derivative of mean pooling is distributed over the pool

$$k \in \{(i-1)d+1, (i-1)d+K_{lpool}\}, dy(l-1, m, k, n) = \frac{1}{K_{lpool}^2} dy(l, m, k, n)$$

$$n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}$$

Mean Pooling layer at layer *l*

- a) Performed separately for every map (j).
 - *) Not combining multiple maps within a single mean operation.

Mean pooling

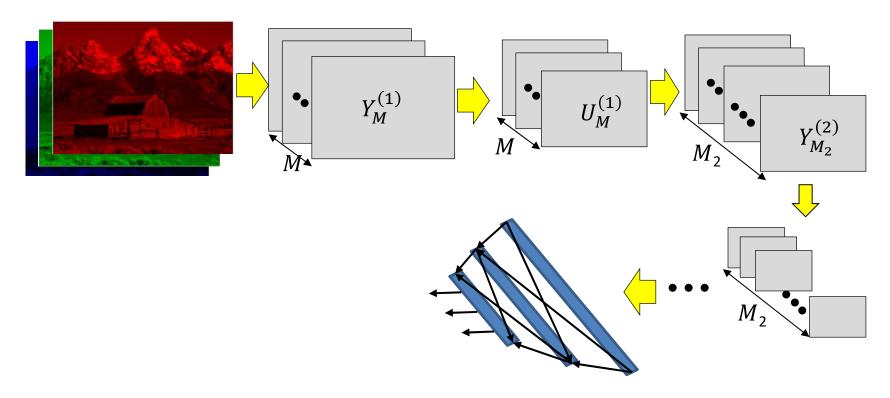
Derivative of mean pooling layer at layer *l*

Mean pooling

```
\begin{array}{l} dy(:,:,:) = zeros(D_1 \times W_1 \times H_1) \\ for j = 1:D_1 \\ for x = 1:W_{1\_downsampled} \\ n = (x-1)*stride \\ for y = 1:H_{1\_downsampled} \\ m = (y-1)*stride \\ for i = 1:K_{1pool} \\ for j = 1:K_{1pool} \\ dy(1-1,j,p,n+i,m+j) += (1/K_{1pool}^2)y(1,j,x,y) \end{array}
```

[&]quot;+=" because adjacent windows may overlap

Learning the network



- Have shown the derivative of divergence w.r.t every intermediate output, and every free parameter (filter weights)
- Can now be embedded in gradient descent framework to learn the network

Story so far

- The convolutional neural network is a supervised version of a computational model of mammalian vision
- It includes
 - Convolutional layers comprising learned filters that scan the outputs of the previous layer
 - Downsampling layers that operate over groups of outputs from the convolutional layer to reduce network size
- The parameters of the network can be learned through regular back propagation
 - Maxpooling layers must propagate derivatives only over the maximum element in each pool
 - Other pooling operators can use regular gradients or subgradients
 - Derivatives must sum over appropriate sets of elements to account for the fact that the network is, in fact, a shared parameter network