
Deep Neural Networks
Scanning for patterns

(aka convolutional networks)

Bhiksha Raj
11-785, Fall 2021

1

Story so far

• MLPs are universal function approximators
– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of
gradient descent
– Gradients can be computed by backpropagation

2

The model so far

• Can recognize patterns in data
– E.g. digits
– Or any other vector data

input
layer

output layer

Or, more generally
a vector input

A new problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
4

Finding a Welcome

• Trivial solution: Train an MLP for the entire
recording

5

Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data

to cover every case
6

Finding a Welcome

• Need a simple network that will fire regardless
of the location of “Welcome”
– and not fire when there is none

7

Flowers

• Is there a flower in any of these images

8

A problem

• Will an MLP that recognizes the left image as a flower
also recognize the one on the right as a flower?

input
layer

output layer

9

A problem

• Need a network that will “fire” regardless of
the precise location of the target object

10

The need for shift invariance

• In many problems the location of a pattern is not
important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern
– Moving it by one component results in an entirely different

input that the MLP won’t recognize

• Requirement: Network must be shift invariant
11

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

12

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

13

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

14

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

15

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

16

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

17

Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually
– “Welcome” may have occurred in any of them

18

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

19

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

20

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 21

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

22

Its actually just one giant network

• The entire operation can be viewed as one giant network
– With many subnetworks, one per window
– Restriction: All subnets are identical

• The network is shift-invariant!
23

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

24

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(x)

25

The 2-d analogue: Does this picture
have a flower?

• Scan for the desired object
– “Look” for the target object at each position 26

Input
(the pixel data)

Solution: Scan

27

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

28

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

29

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

30

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

31

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

32

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

33

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

34

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

35

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

36

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

37

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

38

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

39

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Solution: Scan

40

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent
through the MLP

Scanning the picture to find a flower

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the
input figure

– The score output by the MLP

– Look at the maximum value
• If the picture has a flower, the location with the flower will result in high output value

max

41

Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it

classifies one location in the input figure
– The score output by the MLP

– Look at the maximum value
– Or pass it through a softmax or even an MLP 42

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

43

Its just a giant network with common
subnets

• The entire operation can be viewed as a single giant network
– Composed of many “subnets” (one per window)
– With one key feature: all subnets are identical

• The network is shift invariant.
44

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

45

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(img)

46

Poll 1

47

Poll 1

48

We can determine if a picture has a flower by scanning it for a flower with an MLP

 True
 False

Scanning a picture for a flower to determine if the picture has a flower in it is strictly the same as
analyzing the entire picture with a single large shared-parameter MLP

 True
 False

Regular networks vs. scanning networks

• In a regular MLP every neuron in a layer is connected by a unique weight
to every unit in the previous layer
– All entries in the weight matrix are unique
– The weight matrix is (generally) full 49

time

M
or

e
la

ye
rs

Regular network

• Consider the first layer
– Assume inputs and outputs

• The weights matrix is a full matrix
– Requiring unique parameters 50

(ଵ) (ଵ)

ଵଵ ଶଵ ଷଵ ସଵ ேଵ

ଵଶ ଶଶ ଷଶ ସଶ ேଶ

ଵଷ ଶଷ ଷଷ ସଷ ேଷ

ଵସ ଶସ ଷସ ସସ ேସ

ଵெ ଶெ ଷெ ସெ ேெ

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks

51

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks

52

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons
in the previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared parameter model 53

(ଵ)

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଷଵ ଷଶ

(ଵ)

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer

– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared-parameter model

• Also, far fewer parameters (we return to this topic shortly) 54

(ଵ)

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଷଵ ଷଶ

(ଵ)

Effective in any situation where the data are expected to be composed of
similar structures at different locations

time

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

55

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

56

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

57

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

58

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

59

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

60

time
• A modified drawing

– Indicates progression of time/space
• The progression of “bars” of neurons is indicative of time
• Note: bars at the lowest level are also vectors of inputs

– More appropriate
• Since vertical bars are vectors

Scanning networks

61

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes, NxM connections

time

Scanning networks

62

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes, NxM connections

time
Visualizing scanning with a stride of 1

Training the network

• These are really just large networks
• Can just use conventional backpropagation to learn the parameters

– Provide many training examples
• Images with and without flowers

– Target output 1 for flower images, 0 for non-flower images

• Speech recordings with and without the word “welcome”
– Target output 1 for “welcome” recordings, 0 for recordings without “welcome”

– Gradient descent to minimize the total divergence between predicted and
desired outputs

• Will actually learn the lower-level flower (or welcome) detector 63

Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the
subnet must equally update all copies

64

Learning in shared parameter
networks

• Consider a simple network with
shared weights

– A weight
 is required to be

identical to the weight

• For any training instance , a small
perturbation of perturbs both

and identically
– Each of these perturbations will

individually influence the
divergence

Div

65

Computing the divergence of shared
parameters

𝒮

𝒮

𝒮

• Each of the individual terms can be computed
via backpropagation 66

Influence diagram

𝒮

Div

Computing the divergence of shared
parameters

• More generally, let be any set of edges that have a common value, and 𝒮 be
the common weight of the set

– E.g. the set of all red weights in the figure

𝒮
∈𝒮

• The individual terms in the sum can be computed via backpropagation

ଵ ଵ ே

67

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
68

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
69

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
70

• For every training instance
• For every set :

• For every :

𝒮
,
()

• 𝒮
ௗ௦௦

ௗ௪𝒮

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
71

• For every training instance
• For every set :

• For every :

𝒮
,
()

• 𝒮
ௗ௦௦

ௗ௪𝒮

Computed by
Backprop

Story so far
• Position-invariant pattern classification can be performed by

scanning
– 1-D scanning for sound
– 2-D scanning for images
– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating
subnets
– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be
modified to combine gradients from parameters that share the
same value
– The principle applies in general for networks with shared parameters

72

Scanning: A closer look

• The entire MLP operates on each “window” of
the input
– Using the “bar” visual to represent the network

73

Scanning : A closer look

• Let’s take a closer look at the scanning solution
• At each location, each neuron computes a value based on its inputs

– Which may either be the input spectrogram or the outputs of the
previous layer 74

The “bar” figure
to the left actually
represents the
network to the right

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram

– 75

The “bar” figure
to the left actually
represents the
network to the right

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram or the outputs of the

previous layer
76

The “bar” figure
to the left actually
represents the
network to the right

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram or the outputs of the

previous layer
77

The “bar” figure
to the left actually
represents the
network to the right

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram or the outputs of the

previous layer
78

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

79

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

80

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

81

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

82

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

83

Scanning the input

• We get a complete set of values (represented as
a column) at each location evaluated by the
MLP during the scan 84

Scanning the input

• We get a complete set of values (represented as a column) at each
location evaluated by the MLP during the scan
– Which we put through our final softmax to decide if the recording

includes the word “Welcome” 85

Softmax

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 86

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 87

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 88

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 89

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 90

Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest

of the network
– “Scan” the input 91

Let’s do it in
a different order

• Subsequently the rest of the layers operate on the first block
– From the values computed by the impatient first layer

• Would the output of the MLP at the first block be different?
92

Let’s do it in
a different order

• Subsequently the rest of the layers operate on the first block
– From the values computed by the impatient first layer

• Would the output of the MLP at the first block be different?
93

The output here does not change due to the reordered computation

Let’s do it in a different order

94

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

95

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

96

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

97

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

98

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

99

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

100

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

101

• But now, since the first layer neurons have already produced outputs for
every location, the second layer neurons can go ahead and produce outputs
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 102

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 103

The output here does not change due to the reordered computation

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 104

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 105

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 106

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 107

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 108

Let’s do it in a different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– Scan the outputs of the second layer neurons 109

Let’s do it in a different order

• The final softmax will give us the correct answer
for the entire input

110

Softmax

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

111

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j) # bias

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

112

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j)

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

113

Over time

Over layers

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j)

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

114

Over time

Over layers

Scanning with an MLP
for l = 1:L # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j)

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

115

Over time

Over layers

Scanning with an MLP
for l = 1:L # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j)

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

116

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

117

Over time

Over layers

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

118

Over time

Over layers

Scanning with an MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

119

Scanning with an MLP: Vector notation

for l = 1:L # layers operate at location t

for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,1)..y(L,T-K+1))

120

Scanning in 2D: A closer look

• Scan for the desired object

• At each location, the entire region is sent
through an MLP

Input
(the pixel data)

121

Scanning: A closer look

• The “input layer” is just the pixels in the image
connecting to the hidden layer

Input layer Hidden layer

122

Scanning: A closer look

• Scanning: Analyze windows of pixels starting
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
123

Scanning: A closer look

• Scanning: Analyze windows of pixels starting
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
124

Scanning: A closer look

• Scanning: Analyze windows of pixels starting
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
125

Scanning: A closer look

• Scanning: Analyze windows of pixels starting
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
126

Scanning: A closer look

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

•
–

127

,

Scanning: A closer look

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

,

128

Scanning: A closer look

129

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

130

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

131

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

132

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

133

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

134

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

135

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

136

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

137

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

138

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

139

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

140

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

141

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the

picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons
– “Scanning” the image with just the neuron
– We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

142

• Let us compute the output of the first neuron for all the windows in
the picture before computing the rest of the neurons

• Eventually, we can arrange the outputs from the response at the
scanned positions into a rectangle that’s proportional in size to the
original picture

BR2

Slide 142

BR2 Bhiksha Raj, 9/28/2021

Scanning: A closer look

• We can repeat the process for each of the first-layer
neurons
– “Scan” the input with the neuron

– Arrange the neuron’s outputs from the scanned positions
according to their positions in the original image 143

Scanning: A closer look

• To classify a specific “window” in the image,
we send the first level activations from the
positions corresponding to that position to the
next layer 144

Scanning: A closer look

145

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

146

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

147

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

148

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

149

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

150

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

151

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

152

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

• To detect a picture at any location in the
original image, the output layer must consider
the corresponding outputs of the last hidden
layer

153

Detecting a picture anywhere in the
image?

• Recursing the logic, we can create a map for
the neurons in the next layer as well
– The map is a flower detector for each location of

the original image
154

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original
image, only need to consider the corresponding
location of the output map Actual problem? Is there a
flower in the image
– Not “detect the location of a flower”

155

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
only need to consider the corresponding location of the
output map

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”

156

Detecting a picture anywhere in the
image?

• Is there a flower in the picture?

• The entire output map can be sent into a final
“max” to detect a flower in the full picture
– Or a softmax, or a full MLP…

157

Detecting a picture in the image

• Redrawing the final layer
– “Flatten” the output of the neurons into a single

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP
158

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

159

Scanning with an MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

160

Scanning with an MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

161

Scanning with an MLP
for l = 1:L

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

162

Scanning with an MLP
for l = 1:L

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

163

Scanning with an MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

164

Scanning with an MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

165

Scanning with an MLP
for l = 1:L # layers

for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

166

Reordering the computation:
Vector notation

for l = 1:L # layers operate on vector at (x,y)

for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

167

Story so far

• Position-invariant pattern classification can be performed
by scanning the input for a target pattern
– Scanning is equivalent to composing a large network with

shared subnets

• The operations in scanning the input with a full network
can be equivalently reordered as
– scanning the input with individual neurons in the first layer to

produce scanned “maps” of the input

– Jointly scanning the “map” of outputs by all neurons in the
previous layers by neurons in subsequent layers

168

Poll 2

169

Poll 2

170

Scanning an input image with an MLP is mathematically equivalent to first scanning it with the individual
neurons in the first hidden layer, and then scanning the output maps of the first layer neurons with rest
of the network

 True
 False

This operation can be recursed: Scanning the output maps of the first layer with the rest of the network
is equivalent to scanning the first layer maps with the second layer, and then scanning the second layer
maps with the remaining network

 True
 False

What representations does the
network learn?

• The entire MLP looks for a flower-like pattern
at each location

171

The behavior of the layers

• The first layer neurons “look” at the entire “window” to extract window-
level features
– Subsequent layers only perform classification over these window-level features

• The first layer neurons is responsible for evaluating the entire window of
pixels
– Subsequent layers only look at a single pixel in their input maps

172

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

173

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

174

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

175

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

176

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

177

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

178

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

179

Distributing the scan

• We can distribute the pattern matching over two layers and still
achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates the windows of outputs from the first layer
– This effectively evaluates the larger window of the original image

180

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates windows of outputs from the first layer
– This effectively evaluates the larger window of the original image

181

Distributing the scan

• The window has been distributed over two layers

• The higher layer implicitly learns the
arrangement of sub patterns that represents the
larger pattern (the flower in this case)

182

Distributing the scan

• If second layer neurons scan the maps output by first-layer
neurons, they effectively scan the input with the full-sized
window
– Jointly scan all the first-layer maps
– Each output of the second-layer neuron represents the output for

one full-sized input window 183

Distributing the scan

184

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the
values of the second layer maps

Distributing the scan

185

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the
values of the second layer maps (and send it to a subsequent softmax)

S
o
f
t
m
a
x

This is still just scanning with a shared
parameter network

• With a minor modification…

186

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.

187

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

188

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block

This logic can be recursed

• Building the pattern over 3 layers

189

This logic can be recursed

• Building the pattern over 3 layers

190

This logic can be recursed

• Building the pattern over 3 layers

191

This logic can be recursed

• Building the pattern over 3 layers

192

This logic can be recursed

• Building the pattern over 3 layers

193

This logic can be recursed

• Building the pattern over 3 layers

194

Does the picture have a flower

• Building the pattern over 3 layers

• The final classification for the entire image views the
outputs from all locations, as seen in the final map

195

The 3-layer shared parameter net

• Building the pattern over 3 layers

196

Showing a simpler 2x2x1
network to fit on the slide

The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique

197

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

198

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

199

This logic can be recursed

We are effectively evaluating the
yellow block with the shared parameter
net to the right

Every block is evaluated using the same
net in the overall computation

200

Using hierarchical build-up of features

• The individual blocks are now themselves shared-parameter
networks

• We scan the figure using the shared parameter network
• The entire operation can be viewed as a single giant network

– Where individual subnets are themselves shared-parameter nets
201

Scanning with an MLP (2D)
(without distribution)

• KxK = size of “window” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

202

for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers

for (l==1)

Segment = Y(0,1:C,x:x+K-1,y:y+K-1)

else

Segment = Y(l-1,1:Dl-1,x,y)

for j = 1:Dl
Compute z(l,j,x,y)from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
203

Scanning with an MLP (2D)
(without distribution)

Reordering the computation
(without distribution)

for l = 1:L # layers

for x = 1:W-K+1

for y = 1:H-K+1

for (l==1)

Segment = Y(0,1:C,x:x+K-1,y:y+K-1)

else

Segment = Y(l-1,1:Dl-1,x,y)

for j = 1:Dl
Compute z(l,j,x,y) [from Segment]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
204

Reordered scanning with distribution

for l = 1:L # layers

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

205

Each layer now scans the output maps from
the previous layer in windows of KlxKl

This operation is a “convolution”

Convolution

for l = 1:L # layers

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

206

This is a “convolutional neural net”

Convolutional neural network

for l = 1:L # layers

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

207

Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
208

Reordered scanning with distribution

Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
209

Reordered scanning with distribution

This operation is a “convolution”

“Convolutional Neural Network”
(aka scanning with an MLP)

Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
210

Convolutional neural net:
Vector notation

The weight W(l)is now a 4D DlxDl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,x,y) = W(l).segment + b(l)
#tensor inner prod.

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L))
211

Poll 3

212

Poll 3

213

Mark all that are true

 Non-distributed scanning requires the output maps of the neurons to be arranged in the same
shape as the input

 Non-distributed scanning does not require the output maps of neurons to be arranged in the
same shape as the input

 Distributed scanning requires the output maps of the neurons to be arranged in the same
shape as the input

 Distributed scanning does not require the output maps of neurons to be arranged in the same
shape as the input

Why distribute?

• Distribution forces hierarchical representations
with localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters

214

Why distribute?

• Distribution forces hierarchical representations
with localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters

215

Hierarchies of local patterns are
better

• The neurons in an MLP build up complex
patterns from simple pattern hierarchically
– Each layer learns to “detect” simple combinations of

the patterns detected by earlier layers

• Ideally must encourage such hierarchical learning
– More data/parameter efficient

216

Why distribute?

• Distribution forces hierarchical representations
with localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters

217

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a
stride of two time steps

time

softmaxA simpler 1D visualization

218

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a stride of two time steps
• Each column (scanning net) operates independently of every other column

– No computation is shared across columns

time

softmaxA simpler 1D visualization

219

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a
stride of two time steps

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

220

Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

 is the number of neurons in a block in the kth layer

221

Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

222

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons

Identical sets of neurons

223

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

ଵ identical blocks

224

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxHighlighting all unique weights

ଵ

ଶ

ଷ

ଵ identical blocks

225

Distributed vs non-distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

Highlighting all unique
weights for distributed scan

ଵ

ଶ

ଷ

Equivalent non-distributed net has
ଵ ଵ ଶ ଶ ଷ

parameters (not including bias terms)

ଵ

ଶ

ଷ

226

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

227

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

228

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

229

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

230

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

231

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

232

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

233

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

234

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

235

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over
two layers

– At each position higher level neurons reuse some of the computations performed at the
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons

236

Distributed scanning

• Much of the computation is reusable
– No need to recompute the circled yellow blocks for the second position
– Large additional benefit from the fact that scans at neighboring positions

share the computation of lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Reuses the outputs of three
of the layer-1 blocks in the
first location

237

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ Identical blocks

ଵ

ଶ

238

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ Identical blocks

Unique parameters highlighted

ଵ

ଶ

239

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Equivalent non-distributed net has
ଵ ଵ ଶ ଶ ଷ

neurons

Identical blocks

ଵ

ଶ

ଷ

ଵ

ଶ

240

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

241

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan by network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ All the circled blocks directly
reuse some of the computation
performed for scanning the
first location

242

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

243

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

244

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

245

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons
– Also benefits much more from shared computation in the scans of adjacent locations

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Which adjacent-location scans
reuse computations from scanning
the first location?

246

The computational benefits of
distributed representation

• We reuse computation
– E.g. for the two adjacent windows shown in black and yellow,

the 12 central values are reused
– The response is computed only once for each smaller block, and

reused in many adjacent windows
• This occurs at each layer of the network

247

Images: Undistributed network

• Only need to consider what happens in one block
– All other blocks are scanned by the same net

• ଶ
ଵ weights in first layer

• ଵ ଶweights in second layer
– ିଵ weights in subsequent ith layer

• Total parameters: ଶ
ଵ ଵ ଶ ଶ ଷ

– Ignoring the bias term

N1 units

N2 units
window

248

2-D version

When distributed over 2 layers

249

• First layer: ଵ lower-level units, each looks at
ଶ pixels

– ଵ
ଶ weights

• Second layer needs ଵ ଶ weights
– ଵ

ଶ
ଵ ଶ weights

• Subsequent layers need ିଵ weights when distributed over only 2 layers
– Total parameters:

ଶ
ଵ ଵ

ଶ
ଵ ଶ ଶ ଷ

• (ignoring bias)

ଵ
ଶ

ଵ

When distributed over 3 layers

• First layer: 𝑁ଵ lower-level (groups of) units, each looks at 𝐾ଶ pixels
– 𝑁ଵ(𝐾

ଶ + 1) weights

• Second layer: 𝑁ଶ (groups of) units looking at groups of 𝐾ଵ × 𝐾ଵ connections from each of 𝑁ଵ first-level
neurons

– (𝐾ଵ
ଶ𝑁ଵ + 1)𝑁ଶ weights

• Third layer:
– (𝐾ଶ

ଶ𝑁ଶ + 1)𝑁ଷ weights

• Subsequent layers need 𝑁ିଵ𝑁 neurons
– Total parameters: 𝒪 𝐾

ଶ𝑁ଵ + 𝐾ଵ
ଶ𝑁ଵ𝑁ଶ + 𝐾ଶ

ଶ𝑁ଶ𝑁ଷ +⋯
250

ଵ
ଶ

ଷ

ଵ ଵ

ଶ ଶ

Comparing Number of Parameters

• ଶ
ଵ ଵ ଶ ଶ ଷ

• For this example, let
ଵ ଶ ଷ

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

•

• Here, let ,
,

• Total 64+128+2 = 194
weights

251

Why distribute?
• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…
– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

– Significant gains from shared computation

• Key intuition: Regardless of the distribution, we can view the
network as “scanning” the picture with an MLP
– The only difference is the manner in which parameters are shared in

the MLP

252

Story so far

• Position-invariant pattern classification can be performed by scanning
the input for a target pattern
– Scanning is equivalent to composing a large network with shared subnets

• The operations in scanning the input with a full network can be
equivalently reordered as
– scanning the input with individual neurons in the first layer to produce

scanned “maps” of the input
– Jointly scanning the “map” of outputs by all neurons in the previous layers

by neurons in subsequent layers

• The scanning block can be distributed over multiple layers of the
network
– Results in significant reduction in the total number of parameters

253

Poll 3

254

Poll 3

255

What are the benefits of distributed scanning (mark all that are true)

 It enables hierarchical composition of patterns, which results in more generalizable models
 It results in greatly reduced number of parameters
 It provides computational advantage through reuse of computation
 It results in reduced memory requirement for intermediate variables during inference

Some final touches

• Terminology
– Filters and receptive fields

• Shrinking the maps
– Scanning with strides

• Accounting for jitter
– Pooling

256

Hierarchical composition: A different
perspective

• The entire operation can be redrawn as before as maps
of the entire image

• Each neuron scans and “redraws” the input with some
features enhanced
– The specific features that the neuron detects

257

Building up patterns

• The first layer looks at small sub regions of the
input image
– Sufficient to detect, say, petals

• And enhances those
258

The higher-level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input image

259

The higher-level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input

image
260

Still-higher level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
261

Still-higher level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
262

Terminology: Filters

• Each of the scanning neurons is generally
called a “filter”
– Each filter scans for a pattern in the map it

operates on
263

Terminology: Receptive fields

• The pattern in the input image that each neuron responds to is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer neuron is simply its arrangement of weights
• For the higher layer neurons, the actual receptive field is not immediately obvious and

must be calculated
– What patterns in the input do the filters actually respond to?
– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”

264

Terminology: “Flattening”

• The rectangular maps of the neurons in the final layer of
the scanning network will generally be reorganized into a
vector before passing them to the final softmax or MLP

• This restructuring of the maps is often called “flattening”
265

Modification 1: Convolutional “Stride”

• The scans of the individual “filters” may advance by more than one pixel at a time
– The “stride” may be greater than 1
– Effectively increasing the granularity of the scan

• Saves computation, sometimes at the risk of losing information

• This will result in a reduction of the size of the resulting maps
– They will shrink along each axis by a factor equal to the stride
– To prevent guaranteed loss of information by the shrinking, the number of output maps (neurons) must

be S2 the number of input maps, where S is the stride

• This can happen at any layer 266

CNN with strides
The weight W(l)is now a 4D DlxDl-1xKlxKl tensor (assuming
square receptive fields)

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

m = 1

for x = 1:stride:Wl-1-Kl+1

n = 1

for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1,x:x+Kl-1,y:y+Kl-1)

z(l,m,n) = W(l).segment #tensor inner prod.

Y(l,m,n) = activation(z(l,m,n))

n++

m++

Y = softmax(Y(L))
267

Modification 2: Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?

• Solution: “Pooling” neurons
– Replace with ଵ

– The pool activation computes a jitter (or permutation) invariant
function of its inputs

268

Pooling Activations

• Max pooling:
𝑓 𝑥ଵ,⋯ , 𝑥 = max 𝑥ଵ,⋯ , 𝑥

• Mean pooling:
𝑓 𝑥ଵ,⋯ , 𝑥 = mean 𝑥ଵ,⋯ , 𝑥

• Other options exist

• Must always follow a layer of “regular” neurons
– The “regular” filters detect patterns; the pooling activations introduce jitter invariance on their outputs

• Typically used with a stride > 1
– Result in a shrinking, or “downsampling” of the maps

Max

1 1

5 6

Max 6

269

The overall structure

• This entire structure is called a Convolutional
Neural Network

270

Convolutional Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling

271

1-D convolution

• The 1-D scan version of the convolutional neural
network is the time-delay neural network
– Used primarily for speech recognition 272

1-D scan version

• The 1-D scan version of the convolutional
neural network

273

The spectrographic time-frequency components are
the input layer

1-D scan version

• The 1-D scan version of the convolutional
neural network

274

1-D scan version

• The 1-D scan version of the convolutional
neural network

275

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
276

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
277

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
278

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
279

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
280

1-D scan version

• The 1-D scan version of the convolutional neural network
• A final perceptron (or MLP) to aggregate evidence

– “Does this recording have the target word”
281

Time-Delay Neural Network

• This structure is called the Time-Delay Neural
Network

282

Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to
scanning with individual neurons

– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final

decision

• The scanned “block” can be distributed over multiple layers for efficiency
• At each layer, a scan by a neuron may optionally be followed by a “max” (or any

other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network 283

