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Story so far

• MLPs are universal function approximators
– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of 
gradient descent
– Gradients can be computed by backpropagation
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The model so far

• Can recognize patterns in data
– E.g. digits
– Or any other vector data

input 
layer

output layer

Or, more generally
a vector input



A new problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
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Finding a Welcome

• Trivial solution:  Train an MLP for the entire 
recording
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Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in 
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data 

to cover every case
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Finding a Welcome

• Need a simple network that will fire regardless 
of the location of “Welcome”
– and not fire when there is none
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Flowers

• Is there a flower in any of these images
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A problem

• Will an MLP that recognizes the left image as a flower 
also recognize the one on the right as a flower?

input 
layer

output layer
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A problem

• Need a network that will “fire” regardless of 
the precise location of the target object
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The need for shift invariance

• In many problems the location of a pattern is not 
important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the 
pattern
– Moving it by one component results in an entirely different 

input that the MLP won’t recognize

• Requirement:  Network must be shift invariant
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Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a 

“window” are input to a “welcome-detector” MLP
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Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a 

“window” are input to a “welcome-detector” MLP
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Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually
– “Welcome” may have occurred in any of them
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Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX
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Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find 
noise

Perceptron
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Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 21



Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))
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Its actually just one giant network

• The entire operation can be viewed as one giant network
– With many subnetworks, one per window
– Restriction: All subnets are identical

• The network is shift-invariant!
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Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))
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Just the final layer of the overall
MLP



Scanning with an MLP

Y = giantMLP(x)
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The 2-d analogue: Does this picture 
have a flower?

• Scan for the desired object
– “Look” for the target object at each position 26

Input 
(the pixel data)



Solution: Scan

27

Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent 
through the MLP
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Solution: Scan
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Flower detector MLP

• Scan for the desired object

• At each location, the entire region is sent 
through the MLP



Scanning the picture to find a flower

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the 
input figure

– The score output by the MLP

– Look at the maximum value
• If the picture has a flower, the location with the flower will result in high output value

max
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Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it 

classifies one location in the input figure
– The score output by the MLP

– Look at the maximum value
– Or pass it through a softmax or even an MLP 42



Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1 
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax( y(1,1)..y(W-K+1,H-K+1) )
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Its just a giant network with common 
subnets

• The entire operation can be viewed as a single giant network
– Composed of many “subnets” (one per window)
– With one key feature: all subnets are identical 

• The network is shift invariant.
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Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1 
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax( y(1,1)..y(W-K+1,H-K+1) )
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Just the final layer of the overall
MLP



Scanning with an MLP

Y = giantMLP(img)
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Poll 1
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Poll 1
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We can determine if a picture has a flower by scanning it for a flower with an MLP 

 True 
 False 

 

Scanning a picture for a flower to determine if the picture has a flower in it is strictly the same as 
analyzing the entire picture with a single large shared-parameter MLP 

 True 
 False 



Regular networks vs. scanning networks

• In a regular MLP every neuron in a layer is connected by a unique weight 
to every unit in the previous layer
– All entries in the weight matrix are unique 
– The weight matrix is (generally) full 49
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Regular network

• Consider the first layer
– Assume inputs and outputs

• The weights matrix is a full matrix
– Requiring unique parameters 50
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks

51
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons 
in the previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared parameter model 53
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer

– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared-parameter model

• Also, far fewer parameters (we return to this topic shortly) 54
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Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

55
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Scanning networks

60

time
• A modified drawing

– Indicates progression of time/space
• The progression of “bars” of neurons is indicative of time
• Note:  bars at the lowest level are also vectors of inputs 

– More appropriate
• Since vertical bars are vectors



Scanning networks

61

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the 

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes,  NxM connections

time



Scanning networks
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• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the 

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes,  NxM connections

time
Visualizing scanning with a stride of 1



Training the network

• These are really just large networks
• Can just use conventional backpropagation to learn the parameters

– Provide many training examples
• Images with and without flowers

– Target output 1 for flower images, 0 for non-flower images

• Speech recordings with and without the word “welcome”
– Target output 1 for “welcome” recordings,  0 for recordings without “welcome”

– Gradient descent to minimize the total divergence between predicted and 
desired outputs

• Will actually learn the lower-level flower (or welcome) detector 63



Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the 
subnet must equally update all copies
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Learning in shared parameter 
networks

• Consider a simple network with 
shared weights

– A weight 
 is required to be 

identical to the weight 


• For any training instance , a small 
perturbation of perturbs both 

and identically
– Each of these perturbations will 

individually influence the 
divergence 

Div
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Computing the divergence of shared 
parameters

𝒮






𝒮






𝒮







• Each of the individual terms can be computed 
via backpropagation 66

Influence diagram







𝒮

Div



Computing the divergence of shared 
parameters

• More generally,  let be any set of edges that have a common value, and 𝒮 be 
the common weight of the set

– E.g. the set of all red weights in the figure 

𝒮 
∈𝒮

• The individual terms in the sum can be computed via backpropagation

ଵ ଵ ே
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Training networks with shared 
parameters

• Gradient descent algorithm:
• Initialize all weights 
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
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Training networks with shared 
parameters

• Gradient descent algorithm:
• Initialize all weights 
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤,
()

= 𝑤𝒮

• Until has converged
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• For every training instance 
• For every set :

• For every :

𝒮
,
()

• 𝒮
ௗ௦௦

ௗ௪𝒮

Computed by
Backprop



Story so far
• Position-invariant pattern classification can be performed by 

scanning
– 1-D scanning for sound
– 2-D scanning for images
– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating 
subnets
– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be 
modified to combine gradients from parameters that share the 
same value
– The principle applies in general for networks with shared parameters
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Scanning: A closer look

• The entire MLP operates on each “window” of 
the input
– Using the “bar” visual    to represent the network    
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Scanning : A closer look

• Let’s take a closer look at the scanning solution
• At each location, each neuron computes a value based on its inputs

– Which may either be the input spectrogram or the outputs of the 
previous layer 74

The “bar” figure
to the left actually
represents the 
network to the right
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• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram or the outputs of the 

previous layer
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Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input spectrogram or the outputs of the 

previous layer
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Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer
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Scanning

• The same sequence of computations is performed at each location
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• One value per neuron in each layer
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Scanning the input

• We get a complete set of values (represented as 
a column) at each location evaluated by the 
MLP during the scan 84



Scanning the input

• We get a complete set of values (represented as a column) at each 
location evaluated by the MLP during the scan
– Which we put through our final softmax to decide if the recording 

includes the word “Welcome” 85

Softmax



Let’s do it in a different order

• Let us do the computation in a different order
• The first layer neurons evaluate each image first without waiting for the rest 

of the network
– “Scan” the input 86
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Let’s do it in 
a different order

• Subsequently the rest of the layers operate on the first block
– From the values computed by the impatient first layer

• Would the output of the MLP at the first block be different?
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The output here does not change due to the reordered computation



Let’s do it in a different order
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• But now, since the first layer neurons have already produced outputs for 
every location, the second layer neurons can go ahead and produce outputs 
for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons
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Let’s do it in a different order

• At each position the output layer neurons can now operate on the 
outputs of the penultimate layer and produce the correct  
classification for the corresponding block!
– Scan the outputs of the second layer neurons 102
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Let’s do it in a different order

• The final softmax will give us the correct answer 
for the entire input

110

Softmax



Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))
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Scanning with an MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = b(l,j)  # bias

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Scanning with an MLP
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Scanning with an MLP
for l = 1:L   # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input
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end

z(l,j,t) = b(l,j)

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1) )

116



Scanning with an MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Over time

Over layers

Scanning with an MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Over time

Over layers

Scanning with an MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Scanning with an MLP: Vector notation

for l = 1:L   # layers operate at location t

for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t) + b(l)

y(l,t) = activation(z(l,t))

Y = softmax( y(L,1)..y(L,T-K+1) )
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Scanning in 2D: A closer look

• Scan for the desired object

• At each location, the entire region is sent 
through an MLP

Input 
(the pixel data)
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Scanning: A closer look

• The “input layer” is just the pixels in the image 
connecting to the hidden layer

Input layer Hidden layer
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Scanning: A closer look

• Scanning:  Analyze windows of pixels starting 
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
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Scanning: A closer look

• Scanning:  Analyze windows of pixels starting 
from top left, until the bottom right of the image
– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
126



Scanning: A closer look

• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the 

picture at that location, as part of the classification for that region

•
–
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Scanning: A closer look
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• Consider a single neuron in the first layer
– At each position of the box, the neuron is evaluating a “window” of the 

picture at that location, as part of the classification for that region
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Scanning: A closer look
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• Let us compute the output of the first neuron for all the windows in 
the picture before computing the rest of the neurons

• Eventually, we can arrange the outputs from the response at the 
scanned positions into a rectangle that’s proportional in size to the 
original picture

BR2
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Scanning: A closer look

• We can repeat the process for each of the first-layer 
neurons
– “Scan” the input with the neuron

– Arrange the neuron’s outputs from the scanned positions 
according to their positions in the original image 143



Scanning: A closer look

• To classify a specific “window” in the image, 
we send the first level activations from the 
positions corresponding to that position to the 
next layer 144



Scanning: A closer look

145

• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs 

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the 
corresponding locations from the output maps of all the first-level 
neurons
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• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs 
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Scanning: A closer look
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• We can recurse the logic
– The second level neurons too can “scan” the rectangular outputs 

of the first-level neurons before computing subsequent layers
– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the 
corresponding locations from the output maps of all the first-level 
neurons



Scanning: A closer look

• To detect a picture at any location in the 
original image, the output layer must consider 
the corresponding outputs of the last hidden 
layer
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Detecting a picture anywhere in the 
image?

• Recursing the logic, we can create a map for 
the neurons in the next layer as well
– The map is a flower detector for each location of 

the original image
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Detecting a picture anywhere in the 
image?

• To detect a picture at any location in the original 
image, only need to consider the corresponding 
location of the output map Actual problem? Is there a 
flower in the image
– Not “detect the location of a flower”
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Detecting a picture anywhere in the 
image?

• To detect a picture at any location in the original image, 
only need to consider the corresponding location of the 
output map

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”
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Detecting a picture anywhere in the 
image?

• Is there a flower in the picture?

• The entire output map can be sent into a final 
“max” to detect a flower in the full picture
– Or a softmax, or a full MLP…
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Detecting a picture in the image

• Redrawing the final layer
– “Flatten” the output of the neurons into a single 

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP
158



Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1 
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax( Y(1,1)..Y(W-K+1,H-K+1) )
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Scanning with an MLP
for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Scanning with an MLP
for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Scanning with an MLP
for l = 1:L

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Scanning with an MLP
for l = 1:L

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Scanning with an MLP
for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers operate on vector at (x,y)

if (l == 1) #first layer operates on input             

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L,1,1)..Y(L,W-K+1,H-K+1) )
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Scanning with an MLP
for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers operate on vector at (x,y)

if (l == 1) #first layer operates on input             

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L,1,1)..Y(L,W-K+1,H-K+1) )
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Scanning with an MLP
for l = 1:L      # layers

for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input             

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L,1,1)..Y(L,W-K+1,H-K+1) )

166



Reordering the computation: 
Vector notation

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:W-K+1 

for y = 1:H-K+1

if (l == 1) #first layer operates on input             

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y) + b(l)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L,1,1)..Y(L,W-K+1,H-K+1) )
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Story so far

• Position-invariant pattern classification can be performed 
by scanning the input for a target pattern
– Scanning is equivalent to composing a large network with 

shared subnets

• The operations in scanning the input with a full network 
can be equivalently reordered as
– scanning the input with individual neurons in the first layer to 

produce scanned “maps” of the input

– Jointly scanning the “map” of outputs by all neurons in the 
previous layers by neurons in subsequent layers
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Poll 2
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Poll 2

170

Scanning an input image with an MLP is mathematically equivalent to first scanning it with the individual 
neurons in the first hidden layer,  and then scanning the output maps of the first layer neurons with rest 
of the network 

 True 
 False 

 

This operation can be recursed: Scanning the output maps of the first layer with the rest of the network 
is equivalent to scanning the first layer maps with the second layer, and then scanning the second layer 
maps with the remaining network 

 True 
 False 



What representations does the 
network learn?

• The entire MLP looks for a flower-like pattern 
at each location
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The behavior of the layers

• The first layer neurons “look” at the entire “window” to extract window-
level features
– Subsequent layers only perform classification over these window-level features

• The first layer neurons is responsible for evaluating the entire window of 
pixels
– Subsequent layers only look at a single pixel in their input maps 
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and still 
achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates the windows of outputs from the first layer
– This effectively evaluates the larger window of the original image
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates windows of outputs from the first layer
– This effectively evaluates the larger window of the original image
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Distributing the scan

• The window has been distributed over two layers

• The higher layer implicitly learns the 
arrangement of sub patterns that represents the 
larger pattern (the flower in this case)
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Distributing the scan

• If second layer neurons scan the maps output by first-layer 
neurons, they effectively scan the input with the full-sized 
window
– Jointly scan all the first-layer maps
– Each output of the second-layer neuron represents the output for 

one full-sized input window 183



Distributing the scan

184

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they 
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to 
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the 
values of the second layer maps



Distributing the scan
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• If second layer neurons (jointly) scan the maps output by first-layer neurons, they 
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to 
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the 
values of the second layer maps (and send it to a subsequent softmax)
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This is still just scanning with a shared 
parameter network

• With a minor modification…
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This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.
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This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 
now itself a shared parameter network..

188

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block



This logic can be recursed

• Building the pattern over 3 layers
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This logic can be recursed

• Building the pattern over 3 layers
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This logic can be recursed

• Building the pattern over 3 layers
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Does the picture have a flower

• Building the pattern over 3 layers

• The final classification for the entire image views the 
outputs from all locations, as seen in the final map
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The 3-layer shared parameter net

• Building the pattern over 3 layers

196

Showing a simpler 2x2x1 
network to fit on the slide



The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique
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The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters
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The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters
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This logic can be recursed

We are effectively evaluating the
yellow block with the shared parameter
net to the right

Every block is evaluated using the same
net in the overall computation
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Using hierarchical build-up of features

• The individual blocks are now themselves shared-parameter 
networks

• We scan the figure using the shared parameter network
• The entire operation can be viewed as a single giant network

– Where individual subnets are themselves shared-parameter nets
201



Scanning with an MLP (2D)
(without distribution)

• KxK = size of “window” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1 
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax( Y(1,1)..Y(W-K+1,H-K+1) )
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for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers

for (l==1)

Segment = Y(0,1:C,x:x+K-1,y:y+K-1)

else

Segment = Y(l-1,1:Dl-1,x,y)

for j = 1:Dl
Compute z(l,j,x,y)from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
203

Scanning with an MLP (2D)
(without distribution)



Reordering the computation
(without distribution)

for l = 1:L  # layers

for x = 1:W-K+1

for y = 1:H-K+1 

for (l==1)

Segment = Y(0,1:C,x:x+K-1,y:y+K-1)

else

Segment = Y(l-1,1:Dl-1,x,y)

for j = 1:Dl
Compute z(l,j,x,y) [from Segment]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Reordered scanning with distribution

for l = 1:L  # layers

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Each layer now scans the output maps from
the previous layer in windows of KlxKl



This operation is a “convolution”

Convolution

for l = 1:L  # layers

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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This is a “convolutional neural net”

Convolutional neural network

for l = 1:L  # layers

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

Segment = Y(l-1,1:Dl-1,x:x+Kl-1,y:y+Kl-1)

for j = 1:Dl
Compute z(l,j,x,y) from Segment

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = b(l,j)

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Reordered scanning with distribution

This operation is a “convolution”



“Convolutional Neural Network”
(aka scanning with an MLP)

Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Convolutional neural net: 
Vector notation

The weight W(l)is now a 4D DlxDl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,x,y) = W(l).segment + b(l) 
#tensor inner prod.

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L) )
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Poll 3
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Poll 3
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Mark all that are true 

 Non-distributed scanning requires the output maps of the neurons to be arranged in the same 
shape as the input 

 Non-distributed scanning does not require the output maps of neurons to be arranged in the 
same shape as the input 

 Distributed scanning requires the output maps of the neurons to be arranged in the same 
shape as the input 

 Distributed scanning does not require the output maps of neurons to be arranged in the same 
shape as the input 



Why distribute?

• Distribution forces hierarchical representations 
with  localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters
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Why distribute?

• Distribution forces hierarchical representations 
with  localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters
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Hierarchies of local patterns are 
better

• The neurons in an MLP build up complex 
patterns from simple pattern hierarchically
– Each layer learns to “detect” simple combinations of 

the patterns detected by earlier layers

• Ideally must encourage such hierarchical learning
– More data/parameter efficient
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Why distribute?

• Distribution forces hierarchical representations 
with  localized patterns in lower layers
– More generalizable

• Fewer computations
– Reusable computations from lower layers

• Far fewer number of parameters
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Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a 
stride of two time steps

time

softmaxA simpler 1D visualization
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Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a stride of two time steps
• Each column (scanning net) operates independently of every other column

– No computation is shared across columns

time

softmaxA simpler 1D visualization
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Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a 
stride of two time steps

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons
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Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

 is the number of neurons in a block in the kth layer
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Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons

Identical sets of neurons
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Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxEach bar represents an entire
layer of neurons



ଵ

ଶ

ଷ

ଵ identical blocks
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Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxHighlighting all unique weights



ଵ

ଶ

ଷ

ଵ identical blocks
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Distributed vs non-distributed  scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ
– Fewer parameters than a non-distributed net with identical number of neurons

Highlighting all unique
weights for distributed scan



ଵ

ଶ

ଷ

Equivalent non-distributed net has 
ଵ ଵ ଶ ଶ ଷ

parameters (not including bias terms)

ଵ

ଶ

ଷ
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time steps distributed over 
two layers

– At each position higher level neurons reuse some of the computations performed at the 
previous step(s)!

time

softmaxEach bar represents an entire
layer of neurons
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Distributed scanning

• Much of the computation is reusable
– No need to recompute the circled yellow blocks for the second position
– Large additional benefit from the fact that scans at neighboring positions 

share the computation of lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Reuses the outputs of three
of the layer-1 blocks in the 
first location
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Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ Identical blocks



ଵ

ଶ
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Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ Identical blocks

Unique parameters highlighted



ଵ

ଶ
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Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Equivalent non-distributed net has 
ଵ ଵ ଶ ଶ ଷ

neurons

Identical blocks

ଵ

ଶ

ଷ



ଵ

ଶ
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Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan with network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons



ଵ

ଶ

ଷ
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Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Far fewer parameters than non-distributed scan by network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ All the circled blocks directly
reuse some of the computation 
performed for scanning the
first location
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Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ
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Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ



244



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ
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Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ

– More generally: 𝐾𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ
– Will have fewer parameters than a non-distributed structure with identical numbers of neurons
– Also benefits much more from shared computation in the scans of adjacent locations

time

softmaxEach bar represents an entire
layer of neurons



ଵ

ଶ

ଷ

Which adjacent-location scans
reuse computations from scanning
the first location?
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The computational benefits of 
distributed representation

• We reuse computation
– E.g. for the two adjacent windows shown in black and yellow, 

the 12 central values are reused
– The response is computed only once for each smaller block, and 

reused in many adjacent windows
• This occurs at each layer of the network
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Images: Undistributed network

• Only need to consider what happens in one block
– All other blocks are scanned by the same net

• ଶ
ଵ weights in first layer

• ଵ ଶweights in second layer
– ିଵ weights in subsequent ith layer

• Total parameters:    ଶ
ଵ ଵ ଶ ଶ ଷ  

– Ignoring the bias term

N1 units

N2 units
window

248

2-D version



When distributed over 2 layers
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• First layer:  ଵ lower-level units, each looks at 
ଶ pixels

– ଵ 
ଶ weights

• Second layer needs  ଵ ଶ weights
– ଵ

ଶ
ଵ ଶ weights

• Subsequent layers need ିଵ  weights when distributed over only 2 layers
– Total parameters:    

ଶ
ଵ ଵ

ଶ
ଵ ଶ ଶ ଷ  

• (ignoring bias)

ଵ
ଶ

ଵ



When distributed over 3 layers

• First layer:  𝑁ଵ lower-level (groups of) units, each looks at 𝐾ଶ pixels
– 𝑁ଵ(𝐾

ଶ + 1) weights

• Second layer:  𝑁ଶ (groups of) units looking at groups of 𝐾ଵ × 𝐾ଵ connections from each of 𝑁ଵ first-level 
neurons

– (𝐾ଵ
ଶ𝑁ଵ + 1)𝑁ଶ weights

• Third layer: 
– (𝐾ଶ

ଶ𝑁ଶ + 1)𝑁ଷ weights

• Subsequent layers need 𝑁ିଵ𝑁 neurons
– Total parameters:    𝒪 𝐾

ଶ𝑁ଵ + 𝐾ଵ
ଶ𝑁ଵ𝑁ଶ + 𝐾ଶ

ଶ𝑁ଶ𝑁ଷ +⋯  
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Comparing Number of Parameters

• ଶ
ଵ ଵ ଶ ଶ ଷ  

• For this example, let 
ଵ ଶ ଷ

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

•

 

• Here, let , 
, 

• Total 64+128+2 = 194 
weights
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Why distribute?
• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…
– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

– Significant gains from shared computation

• Key intuition:  Regardless of the distribution, we can view the 
network as “scanning” the picture with an MLP
– The only difference is the manner in which parameters are shared in 

the MLP
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Story so far

• Position-invariant pattern classification can be performed by scanning 
the input for a target pattern
– Scanning is equivalent to composing a large network with shared subnets

• The operations in scanning the input with a full network can be 
equivalently reordered as
– scanning the input with individual neurons in the first layer to produce 

scanned “maps” of the input
– Jointly scanning the “map” of outputs by all neurons in the previous layers 

by neurons in subsequent layers

• The scanning block can be distributed over multiple layers of the 
network
– Results in significant reduction in the total number of parameters
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Poll 3
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Poll 3

255

What are the benefits of distributed scanning (mark all that are true) 

 It enables hierarchical composition of patterns, which results in more generalizable models 
 It results in greatly reduced number of parameters 
 It provides computational advantage through reuse of computation 
 It results in reduced memory requirement for intermediate variables during inference  



Some final touches

• Terminology
– Filters and receptive fields

• Shrinking the maps
– Scanning with strides

• Accounting for jitter
– Pooling
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Hierarchical composition: A different 
perspective

• The entire operation can be redrawn as before as maps 
of the entire image

• Each neuron scans and “redraws” the input with some 
features enhanced
– The specific features that the neuron detects
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Building up patterns

• The first layer looks at small sub regions of the 
input image
– Sufficient to detect, say, petals

• And enhances those
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The higher-level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input image
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The higher-level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input 

image
260



Still-higher level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a part of a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
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Still-higher level neurons

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
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Terminology: Filters

• Each of the scanning neurons is generally 
called a “filter”
– Each filter scans for a pattern in the map it 

operates on
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Terminology: Receptive fields

• The pattern in the input image that each neuron responds to is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer neuron is simply its arrangement of weights
• For the higher layer neurons, the actual receptive field is not immediately obvious and 

must be calculated
– What patterns in the input do the filters actually respond to?
– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”
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Terminology: “Flattening”

• The rectangular maps of the neurons in the final layer of 
the scanning network will generally be reorganized into a 
vector before passing them to the final softmax or MLP

• This restructuring of the maps is often called “flattening”
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Modification 1: Convolutional “Stride”

• The scans of the individual “filters” may advance by more than one pixel at a time
– The “stride” may be greater than 1
– Effectively increasing the granularity of the scan

• Saves computation, sometimes at the risk of losing information

• This will result in a reduction of the size of the resulting maps
– They will shrink along each axis by a factor equal to the stride
– To prevent guaranteed loss of information by the shrinking, the number of output maps (neurons) must 

be S2 the number of input maps, where S is the stride

• This can happen at any layer 266



CNN with strides
The weight W(l)is now a 4D DlxDl-1xKlxKl tensor (assuming 
square receptive fields)

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

m = 1

for x = 1:stride:Wl-1-Kl+1 

n = 1

for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1,x:x+Kl-1,y:y+Kl-1)

z(l,m,n) = W(l).segment #tensor inner prod.

Y(l,m,n) = activation(z(l,m,n))

n++

m++

Y = softmax( Y(L) )
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Modification 2: Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?

• Solution: “Pooling” neurons
– Replace   with ଵ 

– The pool activation computes a jitter (or permutation) invariant 
function of its inputs
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Pooling Activations

• Max pooling:
𝑓 𝑥ଵ,⋯ , 𝑥 = max 𝑥ଵ,⋯ , 𝑥

• Mean pooling:
𝑓 𝑥ଵ,⋯ , 𝑥 = mean 𝑥ଵ,⋯ , 𝑥

• Other options exist

• Must always follow a layer of “regular” neurons
– The “regular” filters detect patterns; the pooling activations introduce jitter invariance on their outputs

• Typically used with a stride > 1
– Result in a shrinking, or “downsampling” of the maps

Max

1 1

5 6

Max 6
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The overall structure

• This entire structure is called a Convolutional 
Neural Network
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Convolutional Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling
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1-D convolution

• The 1-D scan version of the convolutional neural 
network is the time-delay neural network
– Used primarily for speech recognition 272



1-D scan version

• The 1-D scan version of the convolutional 
neural network

273

The spectrographic time-frequency components are
the input layer



1-D scan version

• The 1-D scan version of the convolutional 
neural network
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1-D scan version

• The 1-D scan version of the convolutional 
neural network
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional
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1-D scan version

• The 1-D scan version of the convolutional neural network
• A final perceptron (or MLP) to aggregate evidence

– “Does this recording have the target word”
281



Time-Delay Neural Network

• This structure is called the Time-Delay Neural 
Network
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Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best 
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to 
scanning with individual neurons

– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final 

decision

• The scanned “block” can be distributed over multiple layers for efficiency 
• At each layer,  a scan by a neuron may optionally be followed by a “max” (or any 

other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network 283


