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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or 

“does this recording include HELLO”  are best performed by scanning for 
the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or subnetwork makes the final decision

• Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a 
convolutional network

• For 1-D scan along time, it is called a Time-delay neural network
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A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research: 
– largely based on behavioral studies 

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images
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Hubel and Wiesel 1959

• First study on neural correlates of vision. 
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”:  Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied
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Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina 
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and 
measured neural responses in striate cortex
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Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical 
units were called receptive fields. 

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina, 

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– A spot of light gave greater response for some directions of movement than others.
• Can be used to determine the receptive field

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel
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Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands

8



Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating 

striate cortex neurons

• The orientation selectivity resulted from the previous level of input 
because lower-level neurons responding to a slit also responded to 
patterns of spots if they were aligned with the same orientation as 
the slit. 

• In a later paper (Hubel & Wiesel, 1962), they showed that within 
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells. 
– Both types responded to oriented slits of light, but complex cells were 

not “confused” by spots of light while simple cells could be confused
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Hubel and Wiesel model

• ll

Transform from circular retinal 
receptive fields to elongated fields for 
simple cells.  The simple cells are 
susceptible to fuzziness and noise

Composition of complex receptive 
fields from simple cells. The C-cell 
responds to the largest output from a 
bank of S-cells to achieve oriented 
response that is robust to distortion 
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Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns 
by composing early neural responses
– Successive transformation through Simple-Complex 

combination layers

• Demonstrated more and more complex responses in 
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall
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Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of 
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing 
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall
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Adding insult to injury..

• “However, this model cannot accommodate 
the color, spatial frequency and many other 
features to which neurons are tuned.  The 
exact organization of all these cortical columns 
within V1 remains a hot topic of current 
research.”
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Poll 1
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Poll 1
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According to Hubel and Wiesel which type of cells found patterns in the input and which cells “cleaned” 
up these patterns? 

 S cells find patterns and C cells clean them up 
 C cells find patterns and S cells clean them up  



Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of 
input
– Your grandmother cell fires even if your grandmother 

moves to a different location in your field of vision

Kunihiko Fukushima
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NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising  a 
layer of “S-cells” followed by a layer of “C-cells”
– ௌ௟ is the lth layer of S cells, ஼௟ is the lth layer of C cells

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their 
response

Figures from Fukushima, ‘80
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NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.  
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the 
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input than the adjacent cells in 
the plane.

… “through” the previous layer planes
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NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-specific 
patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding planes of the 
S layers 19



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–
20



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–

Could simply replace these 
strange functions with a
RELU and a max
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NeoCognitron

• The deeper the layer, the larger the receptive field of 
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer 22



Learning in the neocognitron

• Unsupervised learning 
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤௜௝ = 𝑥௜𝑦௝

• Within any layer,  at any position, only the maximum S from all the layers is 
selected for update

– Also viewed as max-valued cell from each S column
• Ensures only one of the planes picks up any feature
• If multiple max selections are on the same plane, only the largest is chosen

– But across all positions, multiple planes will be selected

• Updates are distributed across all cells within the plane

max
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Learning in the neocognitron

• Ensures different planes learn different features
– E.g.  Given many examples of the character “A” the different cell 

planes in the S-C layers may learn the patterns shown
• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering
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Neocognitron – finale

• Fukushima showed it successfully learns to 
cluster semantic visual concepts
– E.g. number or characters, even in noise
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Poll 2
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Poll 2
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Fukushima’s model is an unsupervised CNN, true or false 

 True 
 False 

 

Supervision can be added to Fukushima’s model, true or false 

 True 
 False 



Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation:  Homma, Atlas, Marks, ‘88
– TDNN:  Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun
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Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of 
every layer
– C-cells are not updated

Output
class 
label(s)
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Scanning vs. multiple filters

• Note: The original Neocognitron actually uses many 
identical copies of a neuron in each S and C plane
– Mathematically identical to “scanning” with a single copy
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Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is ௟ ௟

– Receptive field of C cells in lth layer is ௟ ௟

• C cells “stride” by more than one pixel, resulting in a shrinking, or “downsampling” of 
the maps

Output
class 
label(s)
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Supervising the neocognitron

• This is, identical to “scanning” (convolving) with a 
single neuron/filter (what LeNet actually did)

Output
class 
label(s)

𝑺,𝒍,𝒏 𝑺,𝒍,𝒏 𝑪,𝒍ି𝟏,𝒑

𝑲𝒍

௟ୀଵ

𝑲𝒍

௞ୀଵ𝒑

𝑪,𝒍,𝒏
௞∈ ௜,௜ା௅೗ ,௝∈(௟,௟ା௅೗)

𝑺,𝒍,𝒏
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Convolutional Neural Networks
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Story so far
• The mammalian visual cortex contains of S cells, which capture oriented 

visual patterns and C cells which perform a “majority” vote over groups of 
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C 
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution) 

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises “convolutional” and “downsampling” layers
– Convolutional layers comprise neurons that scan their input for patterns 

• Correspond to S planes

– Downsampling layers perform max operations on groups of outputs from the convolutional layers 
• Correspond to C planes

– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of “convolutional” and 
“downsampling” layers
– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target 

classification task

• Down-sampling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output
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A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer
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A convolutional layer

• Each activation map has two components
– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer

39



A convolutional layer: affine map

• All the maps in the previous layer contribute 
to each convolution 

Previous
layer

Previous
layer
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A convolutional layer: affine map

• All the maps in the previous layer contribute to 
each convolution 
– Consider the contribution of a single map

Previous
layer

Previous
layer
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What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights 

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias

42



What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

filter
Input layer

Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

51



What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

57



• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

filter1 filter2
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various 
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)
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The “cube” view of input maps

• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

One map

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

All maps

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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CNN: Vector notation to compute a 
single output map

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
70



Engineering consideration: The size of 
the result of the convolution

• The size of the output of the convolution operation depends on 
implementation factors
– The size of the input, the size of the filter, and the stride

• And may not be identical to the size of the input
– Let’s take a brief look at this for completeness sake

bias
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The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• “Stride”: 1
• Output size = ?
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The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Stride: 1
• Output size = ? 73



The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 1
• Output size = (N-M)+1 on each side

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size (each side) = 

– Assuming you’re not allowed to go beyond the edge of the input

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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Convolution Size
• Simple convolution size pattern:

– Image size: 
– Filter: 
– Stride: 
– Output size (each side) = 

• Assuming you’re not allowed to go beyond the edge of the input

• Results in a reduction in the output size
– Even if 
– Sometimes not considered acceptable

• If there’s no active downsampling, through max pooling and/or 
, then the output map should ideally be the same size as the 

input 
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Solution

• Zero-pad the input
– Pad the input image/map all around

• Add PL rows of zeros on the left and PR rows of zeros on the right
• Add PL rows of zeros on the top and PL rows of zeros at the bottom

– PL and PR chosen such that:
• PL = PR   OR  | PL – PR| = 1
• PL+ PR = M-1

– For stride 1, the result of the convolution is the same size as the original 
image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0
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Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– For stride 1, the result of the convolution is the 

same size as the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0
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Zero padding
• For an width filter:

– Odd : Pad on both left and right with columns of zeros
– Even :  Pad one side with columns of zeros, and the other with 

௅

ଶ
columns of zeros

– The resulting image is width  
– The result of the convolution is width 

• The top/bottom zero padding follows the same rules to maintain 
map height after convolution

• For hop size , zero padding is adjusted to ensure that the size 
of the convolved output is 
– Achieved by first zero padding the image with 

columns/rows of zeros and then applying above rules
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A convolutional layer

• The convolution operation results in an affine map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,x,y) = W(l).segment #tensor inner prod.

Y(l,:,x,y) = activation(z(l,;,x,y))

Y = softmax( {Y(L,:,:,:)} )
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The other component 
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by 
“downsampling with pooling” layers
– Typically (but not always) “max” pooling
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output
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Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6
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Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer 
jitter-robustness, but do not constitute 
downsampling

• Downsampling requires a stride greater than 1
91



Downsampling requires Stride>1

• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

98



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Downsampling requires Stride>1

Max
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Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
101

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Downsampling: Size of output

• An picture compressed by a pooling filter with 
stride results in an output map of side 
• Typically do not zero pad



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2 
filters and stride 2 3.25 5.25

2 2

Alternative to Max pooling: 
Mean Pooling

• Compute the mean of the pool, instead of the max



Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

104

a) Performed separately for every map (j)



Alternative to Max pooling: 
-norm

• Compute a p-norm of the pool

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters 
and stride 2,  = 5 4.86 8

2.38 3.16

ଶ ௜௝
௣

௜,௝

೛



Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each 
2x2 block and strides by 
2 in this example

6 8

3 4

Network in network



Or even only with conovlutions

• Downsampling may even be done by a simple convolution 
layer with stride larger than 1
– Replacing the maxpooling layer with a conv layer

Just a plain old convolution
layer with stride>1
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Fully convolutional network
(no pooling)

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x,m = 1:stride(l):Wl-1-Kl+1 # double indices

for y,n = 1:stride(l):Hl-1-Kl+1

for j = 1:Dl
segment = y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

Y = softmax( {Y(L,:,:,:)} )
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Poll 3
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Poll 3

110

The fully convolutional neural net is identical to a scanning MLP with distributed representation: true or 
false 

 True 
 False 

 

The fully convolutional neural network is a shift-invariant pattern detector, true or false 

 True 
 False 



Story so far
• The convolutional neural network is a supervised version of 

a computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the 
outputs of the previous layer

– “Downsampling by pooling” layers that vote over groups of 
outputs from the convolutional layer

• Convolution can change the size of the output. This may be 
controlled via zero padding.

• Pooling layers may perform max, p-norms, or be learned
• Regular convolutional layers with stride > 1 also perform 

downsampling
111



Setting everything together

• Typical image classification task
– Assuming maxpooling..

112



Convolutional Neural Networks

• Input: 1 or 3 images
– Grey scale or color
– Will assume color to be generic

113



• Input: 3 pictures

Convolutional Neural Networks
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• Input: 3 pictures

Convolutional Neural Networks
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Preprocessing

• Large images are a problem
– Too much detail
– Will need big networks

• Typically scaled to small sizes, e.g. 128x128 or 
even 32x32
– Based on how much will fit on your GPU
– Typically cropped to square images
– Filters are also typically square
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• Input: 3 pictures

Convolutional Neural Networks

117



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  
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• A 1x1 filter is simply a perceptron that operates over the depth of the 
stack of maps, but has no spatial extent
– Takes one pixel from each of the maps (at a given location) as input
– A non-distributed layer of the scanning MLP

The 1x1 filter
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or 

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride:  1 or 2

Convolutional Neural Networks

Total number of parameters: 

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 

K1 total filters
Filter size:  
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• The input may be zero-padded according to 
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:  

124



• First convolutional layer:  Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

Convolutional Neural Networks

௠
ଵ

௠
ଵ

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

K1 filters of size:  
𝐿 × 𝐿 × 3

𝑧௠
ଵ

(𝑖, 𝑗) = ෍ ෍ ෍ 𝑤௠
ଵ

𝑐, 𝑘, 𝑙 𝐼௖ 𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏௠
(ଵ)

௅

௟ୀଵ

௅

௞ୀଵ௖∈{ோ,ீ,஻}

The layer includes a convolution operation
followed by an activation (typically RELU)
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Learnable parameters in the first 
convolutional layer

• The first convolutional layer comprises filters, 
each of size 
– Spatial span: 
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of ௠

ଵ into a single value
It employs a stride D between
adjacent blocks

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block 
Pooling stride 

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

௄భ

ଵ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄భ

ଶ
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄మ

ଶ

𝐾ଶ = 𝐾ଵ. Just using the
new index 𝐾ଶ for notational
uniformity.
Pooling layers do not change
the number of maps because
pooling is performed individually
on each of the maps in the
previous layer.

130



• First pooling layer: Drawing it differently for 
convenience

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ
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• First pooling layer: Drawing it differently for 
convenience

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

2

௄మ

ଶ
௄భ

ଵ

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters ( 1, 2, etc) is the number of channels

132



• Second convolutional layer: ଷ 3-D filters resulting in ଷ 2-D maps
– Alternately,  a kernel with ଷ output channels

Convolutional Neural Networks
௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ
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• Second convolutional layer: ଶ 3-D filters resulting in ଷ 2-D maps

௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ

Total number of parameters: 
All these parameters must be learned

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 
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Convolutional Neural Networks

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠ 2 3 3

3

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4
௠

௡ାଵ
௠

௡
௠

௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ
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௠ 2 3 3

3

௄య

ଷ

3

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠
௡ାଵ

௠
௡

௠
௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜ (௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

Parameters to choose:
Size of pooling block 4

Pooling stride 4
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Convolutional Neural Networks

• This continues for several layers until the final convolved output is fed to 
a softmax
– Or a full MLP

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼

4

௄భ

ଵ

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
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The Size of the Layers
• Each convolution layer with stride 1 typically maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer will generally increase the number of maps from the 
previous layer
– Increasing layers reduces the amount of information lost by subsequent 

downsampling

• Each pooling layer with stride decreases the size of the maps by a factor of 

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers
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Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters ௜

– Spatial extent of filter ௜ ௜

• The “depth” of the filter is fixed by the number of filters in the previous layer 𝐾௜ିଵ

– The stride ௜

• For each downsampling/pooling layer:
– Spatial extent of filter ௜ ௜

– The stride ௜

• For the final MLP:
– Number of layers, and number of neurons in each layer
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Poll 4
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Poll 4

141

What is the relationship between the number of channels in the output of a convolutional layer and the 
number of neurons in the corresponding layer of a scanning MLP 

 They are the same 

The two are not related 



Digit classification
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Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the 

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation

௄భ

ଵ

1
௄మ

ଶ

2

3
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Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

𝐾1 × 𝐼 × 𝐼

3

learnable learnable

learnable

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
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Learning the CNN

• In the final “flat” multi-layer perceptron, all the weights and biases 
of each of the perceptrons must be learned

• In the convolutional layers the filters must be learned
• Let each layer have ௃ maps

– ଴ is the number of maps (colours) in the input

• Let the filters in the th layer be size ௃ ௃

• For the th layer we will require ௃ ௃ିଵ ௃
ଶ filter parameters

• Total parameters required for the convolutional layers:  
௃ ௃ିଵ ௃

ଶ
௃∈௖௢௡௩௢௟௨௧௜௢௡௔௟ ௟௔௬௘௥௦
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Defining the loss

• The loss for a single instance

௠

1

ଵ
ଵ

ଶ
ଵ

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

௄య

ଷ

3

௄భ

ଵ

1

𝐾1 × 𝐼 × 𝐼

4

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
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Problem Setup
• Given a training set of input-output pairs 

• The loss on the ith instance is 
• The total loss

• Minimize w.r.t 
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Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
148

Total training loss:

Assuming the bias is also
represented as a weight
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The derivative

• Computing the derivative

150

Total derivative:

Total training loss:



The derivative

• Computing the derivative
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Total derivative:

Total training loss:



Backpropagation: Final flat layers

• Backpropagation continues in the usual manner 
until the computation of the derivative of the 
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the 

“flattening” of the maps from the final convolutional 
layer

௒(௅)

௄భ

ଵ

1
௄మ

ଶ

2

3

Conventional backprop until here
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Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolutional layers

– The pooling layers (particularly maxout)

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)
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Backprop through a CNN

• In the next class…
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Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2
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Story so far

• The convolutional neural network is a supervised 
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan 

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs 
from the convolutional layer to reduce network size

• The parameters of the network can be learned through 
regular back propagation
– Continued in next lecture..
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