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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
oce EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4.10%0
ConvS2S [9] 25.16  40.46 9.6 -10® 1.5-10%°
MoE [32] 26.03  40.56 2.0-10 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%0 1.1-102t
ConvS2S Ensemble [9] 26.36  41.29 7.7-10°  1.2-102%t
Transformer (base model) 27.3 38.1 3.3.10'%

Transformer (big) 28.4 41.8 2.3.101°
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Table 5: Analysis of various model ablations on different tasks. Avg. score 1s a unweighted average
of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method Avg. Score  CoLA  SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 454 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
Transformer w/o aux LM 75.0 47.9 92.0 84.9 83.2 69.8 81.1 86.9 54.4

LSTM w/ aux LM 69.1 30.3 90.5 83.2 71.8 68.1 73.7 81.1 54.6




INTRODUCTION TO TRANSFORMERS

First GPT paper by OpenAl: First BERT paper by Google:
Original Transformers Paper : Improving Language Understanding Pre-Training Deep Bidirectional Transformers
Attention Is All You Need by Generative Pre-Training for Language Understanding

June 12, 2017 June 11, 2018 Oct 11, 2018



INTRODUCTION TO TRANSFORMERS

First GPT paper by OpenAl: First BERT paper by Google:
Original Transformers Paper : Improving Language Understanding Pre-Training Deep Bidirectional Transformers
Attention Is All You Need by Generative Pre-Training for Language Understanding
June 12, 2017 June 11, 2018 Oct 11, 2018
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.
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e Encoder Decoder Models

Formalizes tasks into two steps -
maps the input into an encoded representation used by the decoder to generate output
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STEP -1 : CALCULATE A SIMILARITY MEASURE

* Calculating Attention BETWEEN QUERY AND EACH KEY
ei(t) = a(q(t), ki)
VALUES
. STEP -2 : TAKE SOFTMAX OVER RAW WEIGHTS

Vv, V, V, q Wi(t) —exp( ei(q(t), ki) )
I I I QUERY Zj exp( ejq(t), kj) )
h1k h2k h3k STEP -3 : TAKE A LINEAR COMBINATION
1 2 3
O(k,q(1),v) = 2;Wi(t) Vi

KEYS
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NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.



THE ATTENTION MECHANISM

e Self-Attention



THE ATTENTION MECHANISM

o Self-Attention



THE ATTENTION MECHANISM

o Self-Attention

DECODER
| g ATTENTION g
ENCODER

f f f




THE ATTENTION MECHANISM

o Self-Attention




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence




THE ATTENTION MECHANISM

Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

QUERY
VALUES
Vv, v,
h1l hzl
k k




THE ATTENTION MECHANISM

Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

VALUES




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

01I 02I
T T

VALUES




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

o1l 02I 0,
T T

T

VALUES




THE ATTENTION MECHANISM

o Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

|

~\

0, I 0, I 0,
| |
)

SELF-ATTENTION BLOCK

\- J

T

ENCODER

f f f




THE ATTENTION MECHANISM

Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

of -1 -
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ENCODER

Note: Our attention mechanism has no learnable
parameter if we use dot product attention
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e Multi-Head Attention

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

VALUES
W h, W h, =
vV, = th1 Vv, = th
QUERIES
W, =: To convert input sequence to keys
K, = th1 K, = thz K; = ths Wv =: To convert input sequence to values

KEYS Wq=: To convert input sequence to values
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ere we represent data as graphs.
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G = (V, E)

« OBJECTS / DATA POINTS : Nodes, Vertices (V)
 INTERACTIONS / RELATIONS : Links, Edges (E)
e SYSTEM : Network, Graphs (G)

* NODE ATTRIBUTES : Feature vectors (X)
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TASKS ON A GRAPH

o %o

Question : Can we represent
images as graphs?

« NODE CLASSIFICATION : Topic Classification
 LINK PREDICTION : Recommendation Systems

« GRAPH CLASSIFICATION : Image Classification
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SOLVING A PROBLEM
USING GNN : Node Classification
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e Node Classification

* Binary Classification - NLP, CV
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 Graph representing a citation network with labels
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* Each node has a feature vector initialized by some 02 »
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0 NLP ° 2 NLP
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e Model the relations of each node

 Create node embeddings incorporating the context of the graph

QUESTION : HOW DO WE DO AGGREGATION?
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CcV

hOp= 02
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Aggregation Function : Order Invariant!
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Aggregation:
t1v — f (hou1,hou2, hou3, ....) y VYV Ui € N(V)

FC Layer and Activation:

hiv= 0 (g (thy, thy, ty, ....) ), v Ui € N(V)
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CvV

FC Layer and Activation:
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FC Layer and Activation:
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GRAPH CONVOLUTIONAL NETWORK (GCN)!
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GRAPH CONVOLUTIONAL NETWORKS (GCN})

One layer of GCN is applied in two steps:
* Aggregation

* Linear layer application followed by non-linearity

Do this for every node!
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STEP -1 : MATRIX MULTIPLICATION STEP -1: AGGREGATION

STEP-2: MATRIX MULTIPLICATION

STEP-3: CONTINUE FOR EACH PIXEL
WITH SHARED WEIGHTS
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