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Question : Can we represent  
images as graphs?
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• Node Classification 


• Binary Classification - NLP, CV



STEP - 1 : INITIALIZATION



• Graph representing a citation network with labels
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• Each node has a feature vector initialized by some 
heuristic

0

0.2

-0.4

0.2

0.2

0.2

0.3

0.1

0.2

0.6

0.2

0.2
0.6

0

-0.4

STEP - 1 : INITIALIZATION
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QUESTION : WHAT DO WE DO NEXT?
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HINT : Take inspiration from 
traditional CV or NLP models.
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QUESTION : WHAT DO WE DO NEXT?
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Currently the node feature vectors 
describe local information about each 
paper.


Place each node in context of the rest of 
the graph.

NLP



STEP - 2.1 : AGGREGATION



Aggregate neighboring features to place every node in context of the 
graph. 


• Model the relations of each node


• Create node embeddings incorporating the context of the graph 
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Aggregate neighboring features to place every node in context of the 
graph. 


• Model the relations of each node


• Create node embeddings incorporating the context of the graph 

QUESTION : HOW DO WE DO AGGREGATION?

STEP - 2.1 : AGGREGATION
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t1A = f (h0E, h0B, h0C ) 

STEP - 2.1 : AGGREGATION
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Aggregation Function : Order Invariant!

STEP - 2.1 : AGGREGATION

t1A = f (h0E, h0B, h0C ) 
NLP
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STEP - 2.1 : AGGREGATION

Aggregation Function : Summation, Average, Max

Aggregation Function : Order Invariant!

t1A = f (h0E, h0B, h0C ) + g(h0A) 
NLP



STEP - 2.2 : LINEAR LAYER
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STEP - 2.2 : LINEAR LAYER
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Aggregation:

STEP - 2.2 : LINEAR LAYER
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FC Layer and Activation:

h1v = σ ( g (t1u1, t1u2, t1u3, ….) ), ∀ ui  ∈ N(v)

STEP - 2.2 : LINEAR LAYER
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t1v = f (h0u1, h0u2, h0u3, ….) , ∀ ui  ∈ N(v)
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FC Layer and Activation:

h1v = σ ( g (t1u1, t1u2, t1u3, ….) ), ∀ ui  ∈ N(v)
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GRAPH CONVOLUTIONAL NETWORK (GCN)!

STEP - 2.2 : LINEAR LAYER
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STEP - 3: CLASSIFICATION LAYER
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STEP - 3: CLASSIFICATION LAYER

C

E

D

A

B

NLP
NLP

CVCV

hLA = 

hLB = 

hLC = 

hLD = 

hLE = 

0.9

0.1

-0.5

0.8

0.4

0.8

-0.5

0.8

0.5

0.1

0.7

0.2

0.3

0.9

0.5

0.2

0.2

0.1

-0.3

0.8

NLP/CV? BINARY CROSS ENTROPY LOSS!

TRAIN!
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GRAPH CONVOLUTIONAL 

NETWORKS (GCN)
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GRAPH CONVOLUTIONAL NETWORKS (GCN)

One layer of GCN is applied in two steps:


• Aggregation


• Linear layer application followed by non-linearity
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GRAPH CONVOLUTIONAL NETWORKS (GCN)

One layer of GCN is applied in two steps:


• Aggregation


• Linear layer application followed by non-linearity

Do this for every node!



CNN VS GCN



CNN VS GCN
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CNN VS GCN

STEP -1 : MATRIX MULTIPLICATION

CNN



CNN VS GCN

STEP -1 : MATRIX MULTIPLICATION

STEP-2 : CONTINUE FOR EACH PIXEL 

WITH SHARED WEIGHTS
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CNN VS GCN

STEP -1 : MATRIX MULTIPLICATION

CNN
STEP -1 : AGGREGATION 
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CNN VS GCN

STEP -1 : MATRIX MULTIPLICATION

CNN
STEP -1 : AGGREGATION 

GCN

STEP-2: MATRIX MULTIPLICATION

STEP-3: CONTINUE FOR EACH PIXEL 

WITH SHARED WEIGHTS

STEP-2 : CONTINUE FOR EACH PIXEL 

WITH SHARED WEIGHTS


