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–Yann LeCun

“This (GANS), and the variations that are now 
being proposed is the most interesting idea in 

the last 10 years in ML, in my opinion”
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DeepFake head-swapped Video

• https://www.youtube.com/watch?v=34AmKPJNfCg
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Motivation
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Generative networks are used to generate samples from an 

unlabeled dsitribution P(X) given samples X1, ...Xn. For 

example:

• Learn to generate realistic images given exemplary images

• Learn to generate realistic music given exemplary recordings

• Learn to generate realistic text given exemplary corpus

Let's see some amazing work of GANs



Original paper (GAN, 2014)

7



GANs progression

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

• Better quality
• High Resolution
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StarGAN(2018)
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Progressive growing of GANs (2018)
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High fidelity natural images (2019)
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Discriminative vs Generative Models

Discriminative models 

learn conditional 

distribution P(Y | X)

Generative models learn 

the joint distribution P(Y, X)

Given a distribution of inputs X and labels Y.
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Discriminative vs Generative Models

• Discriminative models learn 

conditional distribution P(Y | X)

• Learns decision boundary between 

classes.

• Limited scope. Can only be used for 

classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the 

Generative models learn the joint 

distribution P(Y, X)

• Learns actual probability distribution of 

data.

• Can do both generative and 

discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture 

Model etc.

• Harder problem, requires a deeper 

understanding of the distribution than 

discriminative models.
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Discriminative models Generative models

Given a distribution of inputs X and labels Y.



• Calculates P(x ~ X) for all x • Generate x ~ X

Explicit distribution models Implicit distribution models
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Explicit vs Implicit Models
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Variational autoencoders (VAE)

Encoderx ~ (training set) P(z) Decoder

• Encoder models P(Z|X)

• Decoder models P(X|Z)

• Loss encourages P(Z|X) ~ Q(Z) 
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VAEs vs GANs

• Minimizing the KL-divergence

• Minimize a bound on the 
divergence between generated 
distribution and target distribution

• Simpler optimization. Trains 
faster and more reliably 

• Results are blurry

• Minimizing the Jenson-Shannon 
Divergence

• Minimize divergence between 
generated distribution and target 
distribution

• Noisy and difficult optimization

• Sharper results

VAEs GANs
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What are GANs?

Generative Adversarial Networks
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What are GANs?

Generative Adversarial Networks

Generative Models

We try to learn the underlying the distribution
from which our dataset comes from.
Eg: Variational AutoEncoders (VAE)
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What are GANs?

Generative Models

We try to learn the underlying the distribution

from which our dataset comes from.

E.g. Variational Autoencoders (VAE)

Encoderx ~ (training set) P(z) Decoder
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Generative Adversarial Networks



What are GANs?

Generative Adversarial Networks

Adversarial Training

GANS are made up of two competing networks (adversaries)

that are trying beat each other. 
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Generative Models

We try to learn the underlying the distribution

from which our dataset comes from.

E.g. Variational Autoencoders (VAE)

Neural Networks

Goal: Generate data from an unlabeled distribution.



What are GANs?

P(z) Generator
Generated 

Data

Discriminator Real/Fake?

Real

Data

24



How to Train a GAN?

At t = 0, 

Generator
Latent 

Vector

Generated

Image
(Fake image)

Generated 

Data

Discriminator Real/Fake?

Given

Training 

Data

(Fake data)

(Real data)
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Binary

Classifier



How to Train a GAN?

Which network should I train first?
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Discriminator!

But with what training data?

The Discriminator is a Binary classifier.

The Discriminator has two class - Real and Fake.

The data for Real class if already given: the training dataset

The data for Fake class? generate from the Generator



How to Train a GAN?

What’s next?
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Train the Generator!

But how? What’s our training objective?

Generate images from the Generator

such that they are classified incorrectly by the Discriminator!



How to Train a GAN?

Discriminator

Step 1:

Train the Discriminator 

using the current ability

of the Generator.

Step 2:

Train the Generator

to beat

the Discriminator.
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Generator

Generate images from the Generator such that 

they are classified incorrectly by the Discriminator!
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Generative Adversarial Networks

• Introduced in 2014

• Goal is to model P(X), the distribution of training data

• Model can generate samples from P(X)

• Trained using a pair of models acting as “adversaries”
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The Generator

• The generator learns P(X|Z) : Produces realistic looking 
data X from a latent vector Z

• Z

• It can be sampled from a known prior, such as a Gaussian

• It can also be the input to your desired model, such as 
processed speech segments in Unsupervised Speech 
Recognition

• Maps a simple known distribution to a complicated data 
distribution

• Goal: generated distribution, G(z), matches the true data 
distribution P(X)
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The Discriminator

• Trained to tell the difference between real and generated 

(fake) data

• Loss function / criterion: backpropagates its 

expectations to the generator

• “Thrown away” after generator is trained
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The Optimal Discriminator



The Optimal Discriminator

D(X) = discriminator output 

PD = PDF of actual data distribution

PG = PDF of generated data distribution

34



The Optimal Discriminator
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Case 1: Bad Generator

“There’s no way the input X = G(Z) looks like my data”

PD(X) = 0, PG(X) =1

D(X) = 0

D(X) = discriminator output 

PD = PDF of actual data distribution

PG = PDF of generated data distribution



The Optimal Discriminator
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Case 2: Good Generator

“I cannot tell the difference between X = G(Z) and my data”

PD(X) = 1, PG(X) =1

D(X) = 0.5

D(X) = discriminator output 

PD = PDF of actual data distribution

PG = PDF of generated data distribution



The Optimal Generator
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D(X) = discriminator output 

G(Z) = generator output

PD = PDF of actual data distribution

PG = PDF of generated data distribution

Objective:

Minimize:



Jensen-Shannon Divergence

JSD Properties KLD Properties

Symmetrical Non-symmetrical

Bounded between 0 and log(2) No upper bound. Lower bounded by 0
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The Optimal Generator
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Minimize the Jensen-Shannon divergence between 

the real and generated distributions

Make the distributions similar



• There exists a stationary point:

• If the generated data exactly matches the real data, the 
discriminator outputs 0.5 for all inputs

• If discriminator outputs 0.5, the gradients for the generator is flat, 
so generator does not learn

• Stationary points need not be stable (depends on the exact 
GANs formulation and other factors)

• Generator may overshoot some values or oscillate around the 
optimum

• A discriminator with unlimited capacity can still assign an 
arbitrarily large distance to 2 similar distributions

40

Min-Max Stationary Point



Min-Max Optimization

• Generator and the discriminator need to be trained 

simultaneously

• If discriminator is undertrained, it provides sub-optimal feedback 

to the generator

• If the discriminator is overtrained, there is no local feedback for 

marginal improvements 
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How to Train a GAN?

Discriminator

Step 1:

Train the Discriminator 

using the current ability

of the Generator.

Step 2:

Train the Generator

to beat

the Discriminator.
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Generator

Objective:



GAN Stability
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• GANs can be very sensitive to hyperparameters

• There are many variations of GANs that attempt to make the 

stationary point more stable

https://avg.is.tuebingen.mpg.de/projects/convergence-and-stability-of-gan-training



Perceptual Loss

• Although an idealized discriminator just calculates the JS 
divergence, a real discriminator calculates something much 
more complicated

• The discriminator can be a loss function that better gauge 
similarity from humans’ perspective

• E.g. discriminator loss is shift invariant to inputs if it’s a convolutional 
neural network

• It can be better than the L2 loss used in flavors of VAE
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The Good, the Bad, and the Ugly

• Good GANs can produce awesome, crisp results for many 
problems

• Bad GANs have stability issues and open theoretical questions

• Many ugly (ad-hoc) tricks and modifications to get GANs to 
work correctly
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GANs Evaluation

• Some tasks like unsupervised speech recognition have a 

clearly-defined metric

• An Generator-equivalent model can be trained in a supervised 

manner

• Other tasks like generating realistic-looking images is not 

as easily quantified as a task like correctly labeling images

• Possible evaluation methods for generated distributions

• Human Evaluation

• Approximate Test Set likelihood

• Evaluate with Discriminative Network
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Human Evaluation

• Expensive, time-consuming, non-reproducible

• Yet maybe the only justifiable way to claim that the generated 
images are realistic

• Maybe it’s not so bad with MechanicalTurk
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Evaluate with Discriminative Network

• Inception Score

• Use a discriminative network (originally based on 

Inception v3 Architecture) to classify generated images

• Inception should produce a variety of labels

• Each label should have high confidence (low entropy)
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Questions?
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