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WHAT ARE GANS? ~ tarie

Generative Adversarial Networks:
Generative -> Generative Models ->
Learn the underlying distribution, from which our
dataset comes from, e.g. VAE

Adversarial -> Adversarial Training ->
Not only made up with generator, but also add an
adversarial network, which two trying to beat each
other.

Networks -> Neural Networks

GOAL:
Generate data from an unlabelled distribution
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HOW TO TRAIN A GAN?
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Latent Generator Generated (Fake image)
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Binary
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HOW TO TRAIN A GAN? s
>

Discriminator Generator
Step 1: B Step 2:
Train the Discriminator Train the Generator

using the current to beat
ability of the the Discriminator.

Generator.
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HOW TO TRAIN A GAN? s

Step 1: Train the Discriminator
Discriminator -> Binary classifier classifying data into real/false.
Real data -> Real data
False data -> Outputs from Generator
Goal:

Chances real data are classified as real data are maximized
Chances fake data are classified as fake data are maximized
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HOW TO TRAIN A GAN? s

Step 2: Train the Generator

Goal:
Chances that generated data are classified incorrectly
by Discriminator are maximized
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HOW TO TRAIN A GAN? s

Discriminator -> D(X; 0);
Generator -> G(Z; 0)

Po -> actual data distribution
Pc -> generated data distribution

D(X) : Output of the discriminator
Probability that X came from actual data
distribution PD

G(Z) ~ Pa: Output of the generator
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Discriminator -> D(X; 0):
Goal:

Chances of real data are Chances of fake data are
classified as real is maximized classified as fake is maximized

For X ~ Pp, D(X) is maximized For X ~ P;, D(X) is minimized
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Discriminator -> D(X; 0):
Goal:

Chances of real data are classified Chances of fake data are classified
as real is maximized as fake is maximized

For X ~ Pp, D(X) is maximized For X ~ P;, D(X) is minimized

For X ~ Pp,log(D(X)) is maximized For X ~ P;,log(1 — D(X)) is maximized
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Discriminator -> D(X; 0):
Goal:

Chances of real data are classified Chances of fake data are classified
as real is maximized as fake is maximized

For X ~ Pp, D(X) is maximized For X ~ P;, D(X) is minimized

For X ~ Pp,log(D(X)) is maximized For X ~ P;,log(1 — D(X)) is maximized

Ex-p, [log(D (X))] is maximized Ex-p, [log(l —D(X ))] is maximized
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Discriminator -> D(X; 0):
Goal:

Chances of real data are classified Chances of fake data are classified
as real is maximized as fake is maximized

For X ~ Pp, D(X) is maximized For X ~ P;, D(X) is minimized

For X ~ Pp,log(D(X)) is maximized For X ~ P;,log(1 — D(X)) is maximized

Ex-p, [log(D(X))] is maximized Ez.p, [log(1 — D(G(Z2)))] is maximized
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HOW TO TRAIN A GAN? s

Discriminator -> D(X; 0):
Goal:

Chances of real data are classified Chances of fake data are classified
as real is maximized as fake is maximized

For X ~ Pp, D(X) is maximized For X ~ P;, D(X) is minimized

For X ~ Pp,log(D(X)) is maximized For X ~ P;,log(1 — D(X)) is maximized

Ex-p, [log(D(X))] is maximized Ez.p, [log(1 — D(G(Z2)))] is maximized

max Ex-pp[log(D(X))] + Ez-p,[log(1 — D(G(Z)))]
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized
For Z ~ P;,,D(G(Z)) is maximized
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized

For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, 1og(D(G(2))) is maximized



Carnegie

Mellon

HOW TO TRAIN A GAN? s

Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized

For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, log(1 — D(G(2))) is minimized
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized
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For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, log(1 — D(G(2))) is minimized

Ez-p,|log(1 — D(G(2)))] is minimized
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator
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are maximized
For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, log(1 — D(G(2))) is minimized
Ez-p,|log(1 — D(G(2)))] is minimized

Some Mysterious Constant + Ez._p, [log(1 — D(G(2)))] is minimized
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized
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For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, log(1 — D(G(2))) is minimized
Ez-p,|log(1 — D(G(2)))] is minimized

Ex-pp[log(D(X))] + Ez-p,|log(1 — D(G(2)))] is minimized
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Generator -> G(X; 0):
Goal:

Chances that generated data are classified incorrectly by Discriminator

are maximized
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For Z ~ P;,,D(G(Z)) is maximized

For Z ~ Pz, log(1 — D(G(2))) is minimized
Ez-p,|log(1 — D(G(2)))] is minimized

min Eyx—p, [log(D(X))] + Ez-p,[log(1 — D(G(2)))]
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HOW TO TRAIN A GAN? s

Discriminator -> D(X; 6):
max Ex..p, llog(D(X))] + Ez-p,[log(1 — D(G(2)))]

Generator -> G(X; 8):
rreli;n Ex p, [log(D(X))] +Ez.p, [108(1 — D(G(Z)))]
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Put it together:
GANSs’ objective is formulated as:

r%l};n r%%XEXNPD [log(D(X))] + EZNPZ[IOg(l — D(G(Z)))]
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GANSs’ objective :
ng}}n I%gXEX~PD [log(D(X))] + EZNPZ[IOg(l — D(G(Z)))]

f :=Ex~p, log D(X) + Ex~p¢ log(1 — D(X))

- A [Po(X) log D(X) + Pg(X)log(1 — D(X))] d

of _ Po(X) Ps(X) _,
aD(X) ~ D(X) ~ 1-D(X)
Pp(X)  Pg(X)
D(X) — 1- D(X)
(1 = D(X))Pp(X) = D(X)Ps(X)
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HOW TO TRAIN A GAN? s

GANSs’ objective :

r%};n néngquD [log(D(X))] + EZNPZ[IOg(l — D(G(Z)))]
f=Ex.p,log D(X)+ Ex.p.(1—1log D(X))
PD(X) PG("Y)
— ]E il l ] [E — ] r
R R T W o M T G W g
— 9. JSD(PDHP[T) o 1(]3-:',—1-

min f = min2 * JSD(Pp||P;) — log4
6 6¢
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GANSs’ objective :
r%inZ * J[SD(Pp||P;) —log4
G

Minimize JSD between Pp and PG
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GANSs’ objective :
r%inZ * [SD(Pp||P;) —log4
G

Minimize JSD between PD and PG

Min — Max Stationary points exists and need not be stable
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ADVERSARIAL BALANCE IN TWO
PLAYER GAMES: ROCK-PAPER-SCISSORS

Rock

CASE - 1: Player A plays rock-paper-scissors with a probability of
(0.36, 0.32, 0.32)
What is your best strategy ?

What is your probability of wining? Paper

Scissor




ADVERSARIAL BALANCE IN TWO
PLAYER GAMES: ROCK-PAPER-SCISSORS

Rock

CASE - 1: Player A plays rock-paper-scissors with a probability of
(0.36, 0.32, 0.32)

What is your best strategy ?

What is your probability of wining?

Ans : Player B will choose the strategy as paper.

Ans: 36% winning probability

Paper

Scissor




ADVERSARIAL BALANCE IN TWO
PLAYER GAMES: ROCK-PAPER-SCISSORS

Rock

CASE - 2: Player A plays rock-paper-scissors with a probability of
(0.33, 0.33, 0.33)
What is your best strategy ?

What is your probability of wining? Paper

Scissor




ADVERSARIAL BALANCE IN TWO
PLAYER GAMES: ROCK-PAPER-SCISSORS

Rock

CASE - 2: Player A plays rock-paper-scissors with a probability of
(0.33, 0.33, 0.33)
What is your best strategy ?
What is your probability of wining?
Ans: Any strategy will work.
Ans: 33%-win chance
Global optimum: Both players play uniformly with (0.33, 0.33, 0.33)

Paper

Scissor

TN
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ADVERSARIAL BALANCE IN TWO
PLAYER GAMES: ROCK-PAPER-SCISSORS

Rock

CASE - 1: Player A plays rock-paper-scissors with a probability of
(0.36, 0.32, 0.32)
Now if player B optimizes all the way its optimal strategy
is to choose paper first (0,1,0)
Seeing this player, A will now choose scissor (0,0,1)
Seeing this player B will now choose rock (1,0,0)
................... This will keep on going and no stabilization
can be achieved.

Paper

Scissor




TRAINING ISSUES IN GAN

The two training issues is GAN are as follows:
Oscillations

Mode Collapse : Generates a small subspace
but does not cover the entire distribution.
You tube video: nttps://www.youtube.com/watch?v=kixhiKh\WoEE




IMPROVED TECHNIQUES FOR
TRAINING GAN

A collection of interesting techniques and experiments:
Feature Matching
Minibatch Discrimination
Historical Averaging
One-sided Label Smoothing

Virtual Batch Normalization



FEATURE MATCHING

Statistics of generated images should match statistics of real
Images

m Discriminator produces multidimensional output, a “statistic”
of the data

m Generator trained to minimize L, between real and generated
data

m Discriminator trained to maximize L, between real and
generated data

IExD(X) — EzD(G(2))|)5



MINIBATCH DISCRIMINATION

Discriminator can look at multiple inputs at once and decide if
those inputs come from the real or generated distribution

m GANSs frequently collapse to a single point
m Discriminator needs to differentiate between two distributions

m Easier task if looking at multiple samples



HISTORICAL AVERAGING

Dampen oscillations by encouraging updates to converge to a
mean

m GANs frequently create a cycle or experience oscillations

m Add a term to reduce oscillations that encourages the current
parameters to be near a moving average of the parameters

1< |
9—229,2



ONE-SIDED LABEL SMOOTHING

Don't over-penalize generated images
m Label smoothing is a common and easy technique that
improves performance across many domains

m Sigmoid tries hard to saturate to 0 or 1 but can never quite
reach that goal

m Provide targets that are € or 1 — € so the sigmoid doesn't
saturate and overtrain

m Experimentally, smooth the real targets but do not smooth
the generated targets when training the discriminator



VIRTUAL BATCH NORMALIZATION

Use batch normalization to accelerate convergence
m Batch normalization accelerates convergence
m However, hard to apply in an adversarial setting

m Collect statistics on a fixed batch of real data and use to
normalize other data
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Recap
JS Divergence
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KL-DIVERGENCE Ui
KL(plq) = / p(x) log g 8
P(X) Q(X)

Let 6 be the distance between the two peaks of the distribution
f0 =0, KL(P||Q) =1 log(1/0) =
f0 =0, KL(P||Q =1 log(1/1) =

Not differentiable w.r.t 6
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m(X) = Pp ;— Pg
P(X) JS(Pp||Pc) = EKL(PDHm) + 5KL(PG|m) Q(X)

Let © be the distance between the two peaks of the distribution
If0 =0, JSD(P||Q) =0.5*(1 log(1/0.5)+ 1 log(1/0.5)) =log4
6 =0, JSDP||Q =0.5*(1 log(1/1)+ 1 log(1/1)) =0

Not differentiable w.r.t 6
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Problem here

Both KLD and JSD do not tell how far we currently are w.r.t.
the true distribution.

And by the way, they are not differentiable w.r.t. the distance 6

And we desire something could tell us how far we currently are
w.r.t. the true distribution.

And maybe differentiable w.r.t. the distance 0
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WASSERSTEIN DISTANCE Ui

¢ The distance between probability distributions

e |ntuitively: Minimum cost of turning one pile of dirt into another pile of dirt, when both
distributions are treated as pile of dirt.

¢ The total Z mass x mean distance required to transform one distribution to another

. .'o/.—-"”" Red points, Blue points represent two different

'3:- ——— distributions.
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WP, Py) = ryeni(lllpf,?g) E(w,y)fw[ |z —yll ]
N 2
° . g ’0/0”"':_’—. Red points, Blue points represent two different

- i distributions.
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WASSERSTEIN DISTANCE Ui

P(X) A

W(P,.Q =16 |

Differentiable w.r.t 6 |l



WASSERSTEIN (EM) VS JSD

Figure 1: These plots show p(Pg,Po) as a function of 0 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

¢ Distance value is not constant for non-overlapping
distributions
e Differentiable w.r.t ©
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Story So Far

KL Divergence Wasserstein
Distance
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minpax B [D@)] - E [D@)]

Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function:
A function is K-Lipschitz if its gradients are at most K everywhere.

Done by weight clipping:
Restrict weights between [-c, C]
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L=_E [D@)]- E [D@)+AE [(IVeD@)]:~1)?).

Original critic loss Our gradient penalty

Gradient penalty introduces a softer constraint on gradients
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What's the input of Generator?
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What's the input of Generator?
/ ~ Pz
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Supposed we have got trained a vanilla GAN/ WGAN;
Luckily it works and generate great results;

| want to use the generator to generate my selfie, what to
do?
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"éi-“ max V (D, G} = E:n'\-_u.um[:n)[lug D{T|y}] + Ez«-p:l:}“ﬂ@-’,“ = D{G{Z|y””

D
( Discriminator Dixly) ) Intuitively, the Discriminator want to will only
give the real data that fit the condition
[. 000 .] information high value;
\
The Generator wants to generate fake data that
\_ [O 000 OJ [O 000 OJY/ fool the discriminator.
énerator \
’ S I I IY)
[. o000 .] What should be the condition information y?

/©0006/©00000
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Quite flexible:
y -> one-hot, real images;
y’s representation;
Output of discriminator; -> one score / two scores

Applications:
Text-to-image
Image-to-image
Speech Enhancement
Video Generation
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GANS PROGRESSION

e Better quality
e High Resolution

https://twitter.com/goodfellow_ian/status/1084973596236144640%lang=en
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