Neural Networks

Hopfield Nets and Auto Associators
Fall 2021

Story so far

* Neural networks for computation
* All feedforward structures

* But what about..

v

B

Consider this loopy network

+1ifz>0 y; = 0 ZWjiyj+bi
_1leS \ j#i

O(z) = {

The output of a neuron
affects the input to the
neuron

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

3

Consider this loopy network

{11223 gp - o(Zmes

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

Hopfield Net

o= (1120 g 1= o(Zme)

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

Loopy network

y; = 0 (Z Wj;yj + bi)

JED!

+1ifz>0
—-1ifz<0

O(z) = {

. » owe: ’)
At each time each neuron receives a “field quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

Loopy network

ol AN Vi = @(ijin'l'bi)
Yi 7 —Yi JEi
if i (X2 Wiy + b;) <0

+1ifz>0
o o = {112,
At each time each neuron receives a “field” quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

Loopy network
ol AN yi= 0 (Z wj;yj + bi)

YVi 7 Vi jZi

if yi (X Wiy + b)) <0 |
0(z) = +1ifz>0

“ﬁ _\"\H |-1ifz<0
A neuron "flips" if weighted sum of other e)
neurons’ outputs is of the opposite sign fo ES d field Zj:ti W;i Vi + bi

its own current (output) value

' S own sign, it does not
But this may cause other neurons to flip!

T \.—Jrl\ll T'\A

* |f the sign of the field opposes its own sign, it “flips” to
match the sign of the field

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

Loopy network

D B

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

» And so on...
13

20 evolutions of a loopy net

o(z) = +1ifz>0 | A neuron “flips” if
27 1-1ifz<0 weighted sum of other
) neuron's outputs is of
- the opposite sign
JFL _ = But this may cause

)
L7 A
N
\]
4

2 ¢
h ; p.“ =
A 1) v,

other neurons to flip!

5:-‘.
e
=
va! W
q.

A\ v
]
J

T

* All neurons which do not “align” with the local
field “flip”

14

120 evolutions of a loopy net

-';'
ﬁ

£ -o,,
-, '
W \‘r "' lh

K

Ay
PN .gr SO "a-

v 4"41
e

m .

‘A’v“ ‘!v %h\ %
- ‘f&ﬁ 2P _-?.\. m "

é l“-, 5 r';"‘!l-ld"-. 3
N TR TRRRL
X 'f'«)

XY

f%;"
ﬂ‘gi
“VP 41

.,
e

t.:-r.r

Tt
=
"’R‘.{‘

&
-
X

.'%'-

> o .-'

5

[RS

\ ..'a' v
"

‘-
SRR ".':;?ﬁ'- t::ﬂ'.t o

* All neurons which do not “align
field “flip”

with the local

15

Loopy network

D D

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

* Will this behavior continue for ever??

16

Loopy network

yi= 0 ZWtij + b;

J#FI

+1ifz>0
G(Z):{—lifzﬁo

Let y; be the output of the i-th neuron just before it responds to the
current field

Let yl-+ be the output of the i-th neuron just after it responds to the current
field

if yi = sign(X ;. wjiy; + b;), theny; =y

— If the sign of the field matches its own sign, it does not flip

vi (2 WjiYj + bi) — Vi (Z wjiyj + bi) =0

J#FI J#Fi

Loopy network
Z wj;yj + b;

JED!

+1ifz>0
6(2) = { lifz<0

e Ify; # sign(Zjiiniyj + bi), then yl-+ ==Y

v (Z w;jiyj + bi) Vi (Z w;iy; + b;) = 2y; (Z w;j;iyj + bi)

J#i JFi J#i
— This term is always positive!

* Every flip of a neuron is guaranteed to locally increase

Vi (2 wj;yj + bi)

J#L
18

Globally

Consider the following sum across all nodes

D(yl:yZJ . !yN) — Zyl (Z W]lyJ + b;

J#1

Z wiiyiyj + Z b;y;

NEI
— Assume w;; =0

For any unit k that “flips” because of the local field

AD() = Dy, e, Vi s V) = Dy oy Vi

This is strictly positive

AD(yy) = 2yy (Z Wjry; + bk>

Jj*k

)

,YN)

19

Upon flipping a single unit

AD(yi) = D(y4, ---:ylj» vy YN) = D(YV1, s Vg s YN
* Expanding

AD(y) = vk — Yk) (2 Wikyj + bk)
J*k
— All other terms that do not include y;, cancel out

* This is always positive!

* Every flip of a unit results in an increase in D

20

Hopfield Net

s

Flipping a unit will result in an increase (non-decrease) of

D = zwuylyj zblyl

I,j#i

Dimax = z |Wl]| +Z|b |

[,j#i

D is bounded

The minimum increment of D in a flip is

2 Z W]ly] + bi

J#I

AD. . = min
Ty, i=1.N)

Any sequence of flips must converge in a finite number of steps

21

The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

NE}
— Just 0.5 times the negative of D
* The 0.5 is only needed for convention
* The evolution of a Hopfield network
constantly decreases its energy

Story so far

A Hopfield network is a loopy binary network with symmetric connections

Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

— The local “field”

Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

— Causing the field at other neurons to change, potentially making them flip

Each evolution of the network is guaranteed to decrease the “energy” of
the network

— The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps

Poll 1

Poll 1

Hopfield networks are loopy networks whose output activations “evolve” over time

e True
e False

Hopfield networks will evolve continuously, forever

e True
e False

Hopfield networks can also be viewed as infinitely deep shared parameter MLPs

e True
e False

The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

i,j#Ii

— Just 0.5 times the negative of D

* The evolution of a Hopfield network
constantly decreases its energy

* Where did this “energy” concept suddenly sprout
from?

26

Magnetic diploes in a disordered magnetic material
Each dipole tries to align itself to the local field
— In doing so it may flip
This will change fields at other dipoles
— Which may flip
Which changes the field at the current dipole...

27

Analogy: Spin Glasses

T =
t *: —.9“‘- — —
—" = | : :
— - T Total field at current dipole:
I R~ -
—- - — ! . —_— s . .
T - i S f(pl)_ E]]Lx]+bl
: et — - ""_ s L J#1
— — e
e g — ™ N /
.+ - - - intrinsic external
W - -

* p; is vector position of i-th dipole

The field at any dipole is the sum of the field contributions of all other dipoles

The contribution of a dipole to the field at any point depends on interaction
— Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

28

Analogy: Spin Glasses

= = = = Total field at current dipole:
= -yl T, f (i) =Z]jixj+bi
o o == ==L d Response of current dipole
= —— —.-;, — _—
o | - - 3 o
e - v =)Xl sign(x; f(p)) =1
— - - [— .
) il [o A ~ —Xx; otherwise

* A Dipole flips if it is misaligned with the field
in its location

29

Analogy: Spin Glasses

= == = Total field at current dipole:
= -yl T, f(pi)=Z]jixj+bi
o o == ==L d Response of current dipole
= —— —.-;, — _—
e - v =)Xl sign(x; f(p)) =1
— - - [— .
) il [o A ~ —Xx; otherwise
— et . — D

Dipoles will keep flipping
— Aflipped dipole changes the field at other dipoles
* Some of which will flip
— Which will change the field at the current dipole
* Which may flip
— Etc..

30

Analogy: Spin Glasses

 When will it stop???

Total field at current dipole:

f(p)) = Z]jixj + b;

JES!

Response of current dipole

x; = {xi if sign(x; f(p)) =1

—Xx; otherwise

31

Analogy: Spin Glasses

= == = Total field at current dipole:
N |
= = T = f (i) =Z]jixj+bi
-l e JF
— -'—. P—. — - :
o o == ==L d Response of current dipole
= —— —.’—,. — _—
| - - " - e
e - v =)Xl sign(x; f(p)) =1
- - — - .
v - e R ' —Xx; otherwise
—t ot .',_ —

The “Hamiltonian” (total energy) of the system

E = —% . xif (p;) = _zzjjixixj _Zbixi

i i j>i i
The system evolves to minimize the energy

— Dipoles stop flipping if any flips result in increase of energy

32

Spin Glasses

state

* The system stops at one of its stable configurations

— Where energy is a local minimum

 Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it .,

Hopfield Network

yi= 0 (Z wjiyj + bi)

J#FI

+1ifz>0
G(Z):{—lifzﬁo

= ——(Z WijYiVj — Z blyl)

NES!

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

34

Hopfield Network

The bias is similar to having a single extra neuron that
is pegged to 1.0

We may not explicitly represent it in the slides

L4

— The system will evolve until the energy hits a local minimum

35

Hopfield Network

(g

J#FI

+1ifz>0
G(Z):{—lifzﬁo

1
E = _Ez WijVilj
i,j

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

36

Evolution

1
E = _EZ WijYilj
L,J

&Aw

— >
state

* The network will evolve until it arrives at a

local minimum in the energy contour

37

Content-addressable memory

X

A

(AN
Q.

state
 Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory .

Examples: Content addressable
memory

FEeconstruction

Hopfield network reconstmicting degraded images
frotn nowsy (top) o partial (bottorn) cues.

e http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/

Hopfield net examples

40

Computational algorithm

1. Initialize network with initial pattern

yi(O):xi' 0<i<N-1

2. lterate until convergence

JES!

 Verysimple
* Updates can be done sequentially, or all at once

* Convergence
E=- Z Z WjiVjYi

i j>i
does not change significantly any more

Computational algorithm

1. Initialize network with initial pattern

y =X, 0<i<N-1

2. lterate until convergence
y = 0(Wy)

Writingy = [y1,y2,¥3, -, ynl"
and arranging the weights as a matrix W

* Very simple
 Updates can be done sequentially, or all at once
* Convergence
E = —-0.5y "Wy
does not change significantly any more

Story so far

A Hopfield network is a loopy binary network with symmetric
connections

— Neurons try to align themselves to the local field caused by other neurons

* Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum

— The evolution will be monotonic in total energy
— The dynamics of a Hopfield network mimic those of a spin glass
— The network is symmetric: if a pattern Y is a local minimum, sois -Y

 The network acts as a content-addressable memory

— If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

— Effectively “recalling” the correct pattern, from a damaged/incomplete
version

Poll 2

Poll 2

Mark all that are correct about Hopfield nets

e The network activations evolve until the energy of the net arrives at a local minimum
e Hopfield networks are a form of content addressable memory
e |tis possible to analytically determine the stored memories by inspecting the weights matrix

45

Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..

Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..

How do we remember a specific
pattern?

How do we teach a network
to “remember” this image

For an image with N pixels we need a network
with N neurons

Every neuron connects to every other neuron

Weights are symmetric (not mandatory)
N(N-1)

weights in all

Storing patterns: Training a network

* A network that stores pattern P also naturally stores - P
— Symmetry E(P) = E(—P)since E is a function of y,,

E=- Z Z WjiVjYi

I Jj<i 49

A network can store multiple patterns

PE

state

* Every stable point is a stored pattern

* So we could design the net to store multiple patterns

— Remember that every stored pattern P is actually two stored patterns,
P and —P

50

Storing a pattern

* Design {w;;} such that the energy is a local
minimum at the desired P = {y,}

Storing specific patterns

e Storing 1 pattern: We want

sign (z le-yj) =y; VI

J#Fi
e This is a stationary pattern

52

Storing specific patterns

HEBBIAN LEARNING:
Wji = YjDi

e Storing 1 pattern: We want

sign (z le-yj) =y; VI

J#Fi
e This is a stationary pattern

53

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

’ Sign(zjiiwfiyf) — Sign(zjiiyfyiyf)

= SiQTL(

J#i

Z yjzyi> = sign(y;) = y;

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

The pattern is stationary
’ Sign(zjiiwjiyj) — Sign(zjiiyfyiyf)

= sign (Z yjzyi> = sign(y;) = y;

J#i

Storing specific patterns

HEBBIAN LEARNING:

Wji = VjVi
E = _zzwjiyjyi = —22%'2)’]2
i j<i i j<i
— —22 1= —05N(N — 1)

i j<i

* This is the lowest possible energy value for the network

56

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

The patternis STABLE

E = _ZzwtijYi = —ZZ%‘Z)’JZ

i j<i i j<i

— —221 — _0.5N(N — 1)

i j<i
* This is the lowest possible energy value for the network

Hebbian learning: Storing a 4-bit pattern

-1,-1 -1,1 1.1 1,-1 -1,-1 -1,1 1.1 1,-1

e Left: Pattern stored. Right: Energy map
e Stored pattern has lowest energy

e Gradation of energy ensures stored pattern (or its ghost) is recalled
from everywhere 58

Storing multiple patterns

* {¥p} is the set of patterns to store

* Super/subscript p represents the specific pattern

59

Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..

How many patterns can we store?

& B W

* Hopfield: For a network of N neurons can
store up to ~0.15N random patterns through

Hebbian learning
— Provided they are “far” enough

e Where did this number come from?

61

The limits of Hebbian Learning

Consider the following: We must store K N-bit patterns of the form
Vi = [VE vE, ¥kl k=1..K

, : : 1 L :
Hebbian learning (scaling by " for normalization, this does not affect
actual pattern storage):

For any pattern y,, to be stable:

yiPZWijy]p >0 Vi

]
pl k. k.D .
Y NZZ%Y] Yj >0 Vi
T Kk

62

The limits of Hebbian Learning

* For any pattern y, to be stable:

1 .
yipﬁzzyf‘y}" v} >0 Vi
7k

1 1 |
i ﬁz vl vl vl +yf Nz Z yEyfyl >0 vi
J j k#p

* Note that the first term equals 1 (because y]py]p = yipyip =1)

— i.e. fory, to be stable the requirement is that the second crosstalk term:

1 .
yfﬁzzyf‘y}‘ y; >—1 Vi

J k#p

 The pattern will fail to be stored if the crosstalk

1 .
v Nz z Viyf y; <=1 foranyi
J k#p

63

The limits of Hebbian Learning

For any random set of K patterns to be stored, the probability of the
following must be low

1
(cg’ = Nz 2 yPykyk y]P> < -1

J k#p

For large N and K the probability distribution of Cipapproaches a
Gaussian with 0 mean, and variance K/N

— Considering that individual bits yl-l € {—1,+1} and have variance 1
For a Gaussian, C~N(0,K/N)
— P(C < —1|u = 0,0% = K/N) < 0.004 for K/N < 0.14

l.e. To have less than 0.4% probability that stored patterns will not
be stable, K < 0.14N

64

How many patterns can we store?

* A network of N neurons trained by Hebbian learning can store up to
~0.14N random patterns with low probability of error
— Computed assuming prob(bit = 1) = 0.5

* On average no. of matched bits in any pair = no. of mismatched bits

— Patterns are “orthogonal” — maximally distant — from one another

— Expected behavior for non-orthogonal patterns?

 To get some insight into what is stored, lets see some examples

65

Hebbian learning: One 4-bit pattern

Topological representation on a Karnaugh map 1 pattern of 4 bits

.51 =2

-1.1 -1,1

1;1 1,1

1,-1 1,1

-1,-1 -1,1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

e Left: Pattern stored. Right: Energy map

* Note: Pattern is an energy well, but there are other local minima
— Where?

— Also note “shadow” pattern
66

Two orthogonal 4-bit patterns

2 orthogonal patterns

Patterns are local minima (stationary and stable)
— No other local minima exist
— But patterns perfectly confusable for recall

67

Two non-orthogonal 4-bit patterns

2 nonorthogonal patterns

-1,-1 -1,1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

e Patterns are local minima (stationary and stable)
— No other local minima exist

— Actual wells for patterns
* Patterns may be perfectly recalled!

— NoteK>0.14 N

68

How many patterns can we store?

Hopfield: For a network of N neurons can store up to 0.14N
random patterns

Apparently a fuzzy statement
— What does it really mean to say “stores” 0.14N random patterns?

» Stationary? Stable? No other local minima?

— What if the patterns to store are not random?

N=4 may not be a good case (N too small)

69

A 6-bit pattern

"Unrolled” 3D Karnaugh map

1 pattern of 6 bits

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

o0 001 o011 010 110 111 101 100 o0 o001 011 010 110 111 101 100

Perfectly stationary and stable

But many spurious local minima..

— Which are “fake” memories 70

Two orthogonal 6-bit patterns

000

001

011

010

110

111

101

100

oo o001 o011 010 110 111 101 100

000

001

011

010

110

111

101

100

2 orthogonal patterns

oo o001 O11 010 110 111 101 100

e Perfectly stationary and stable

e Several spurious “fake-memory” local minima..

— Figure overstates the problem: actually a 3-D Kmap

Two non-orthogonal 6-bit patterns

2 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

e Perfectly stationary and stable

 Some spurious “fake-memory” local minima..
— But every stored pattern has “bowl”
— Fewer spurious minima than for the orthogonal case -

Three non-orthogonal 6-bit patterns

3 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

* Note: Cannot have 3 or more orthogonal 6-bit patterns..
e Patterns are perfectly stationary and stable (K> 0.14N)
 Some spurious “fake-memory” local minima..

— But every stored pattern has “bowl”

— Fewer spurious minima than for the orthogonal 2-pattern case .

Four non-orthogonal 6-bit patterns

4 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

e Patterns are perfectly stationary for K> 0.14N

* Fewer spurious minima than for the orthogonal 2-
pattern case

— Most fake-looking memories are in fact ghosts..

74

Six non-orthogonal 6-bit patterns

6 nonorthogonal patterns

000 000

01 Q01

a11 a11
o110 o110

110 110

111 111

101 101

100 100

Ooo0001011010110111 101 100 o000 001011010110111 101 100

* Breakdown largely due to interference from “ghosts”

 But multiple patterns are stationary, and often stable
— For K>>0.14N

75

Observations

* Many “parasitic” patterns

— Undesired patterns that also become stable or
attractors

* Apparently, a capacity to store more than
0.14N patterns

Parasitic Patterns

Target patterns Parasites

Energy %

* Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:

v

state

— Yparasite = sign(y, +yp +¥c)
* They are also from other random local energy minima from
the weights matrices themselves

77

Capacity

Seems possible to store K> 0.14N patterns

— i.e. obtain a weight matrix W such that K> 0.14N patterns are
stationary

— Possible to make more than 0.14N patterns at-least 1-bit stable

Patterns that are non-orthogonal easier to remember

— l.e. patterns that are closer are easier to remember than
patterns that are farther!!

Can we attempt to get greater control on the process than
Hebbian learning gives us?

— Can we do better than Hebbian learning?

e Better capacity and fewer spurious memories?

Story so far

A Hopfield network is a loopy binary net with symmetric connections
— Neurons try to align themselves to the local field caused by other neurons

Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum

— The network acts as a content-addressable memory

* Given a damaged memory, it can evolve to recall the memory fully

The network must be designed to store the desired memories
— Memory patterns must be stationary and stable on the energy contour

Network memory can be trained by Hebbian learning

— Guarantees that a network of N bits trained via Hebbian learning can store 0.14N
random patterns with less than 0.4% probability that they will be unstable

However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

Poll 3

Poll 3

Mark all that are true

e We can try to “assign” memories to a Hopfield network through Hebbian learning of the
weights matrix

o All patterns learned through Hebbian learning will be “remembered”

e The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

81

Bold Claim

* | can always store (upto) N orthogonal
patterns such that they are stationary!

— Why?

* | can avoid spurious memories by adding
some noise during recall!

The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

83

The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

84

The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are sta ided K < N

— Mostafa and St. Jacques 85’ Can we do something

_ about this?
* Forlarge N, the upper bound on K is actuany
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

85

A different tack

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning

— Optimization

* Secondary question

— How many patterns can we store?

Consider the energy function

E =

1
E = _Ez Wi YiVj — 2 b;y;
T i

1
—5y Wy—bly

* This must be maximally low for target patterns

* Must
—So t

oe maximally hig

nat they are unstab

the target patterns

n for all other patterns

e and evolve into one of

87

Alternate Approach to Estimating the
Network

1
E(y) = —EyTWy —b'y

Estimate W (and b) such that

— E is minimized foryq, y5, ..., ¥p

— £ is maximized for all othery

e Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable .

Optimizing W (and b)

1 _
E(y)=—=y'Wy W = argmin E E(y)
w

2
YEYp
The bias can be captured by
another fixed-value component

 Minimize total energy of target patterns

— Problem with this?

89

Optimizing W

1

E(y) = —EyTWy

W = argmin 2 E(y) — 2 E(y)
W YEYp y&Yp
 Minimize total energy of target patterns

 Maximize the total energy of all non-target
patterns

90

Optimizing W

1 .
E(y) = —EyTWy W= argvflnin 2 E(y) — 2 E(y)

yEYp Y€Yp

* Simple gradient descent:

Set diagonal
. T T termsto 0
W=W+ n z Yy — z yy to eliminate
yEYp yEYp self-edges
Hebbian learning

(which is why minimizing energy of "Anti" Hebbian learning

target patterns is not enough)
91

Optimizing W

W=W+n(2 yy' — Zny>

YEYp YEYp

* Can “emphasize” the importance of a pattern
by repeating

— More repetitions = greater emphasis

92

Optimizing W

W=W+n(z yy' — Zny>

YEYp YE€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis

* How many of these?

— Do we need to include all of them?
— Are all equally important?

The training again..

W=W+n(z yy' — Zny)

YEYp YEYp

* Note the energy contour of a Hopfield
network for any weight W

Bowls will all actually be
quadratic

Energy

state

94

The training again

W=W+n Eny—Zny

YEYp YEYp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

A Target patterns

Energy

v

state

The negative class

W=W+n(z yy' — zny)

YEYp yE€Yp

* The second term tries to “raise” all non-target
patterns

— Do we need to raise everything?

Energy o

state

96

Option 1: Focus on the valleys

W=W+n Zny— Z yy'

VEYp y&éYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy

v

state 77

Identifying the valleys..

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy MA ‘ ‘

state

98

Identifying the valleys..

* |nitialize the network randomly and let it evolve

— |t will settle in a valley

Energy

state

99

Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

100

Training the Hopfield network: SGD

version
W=W+y Zny— Z yy'
VEYp yv&€Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,¥5 —Vu¥7)

101

Training the Hopfield network

W=W+r7 Zny— Z yy'

yEYp y&Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
~_* Sampling frequency of pattern must reflect importance of pattern

-< Randomly |n|t|aI|ze>the network and let it evolve
+ And settle at a vaIIey 2

— Update weights

c W=W+ U(Ypr Yva)

102

Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy

state

Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

 Major requirement: memories must be stable

— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy Y

state

Identifying the valleys..

e |nitialize the network at valid memories and let it evolve
— It will settle in a valley. If this is not the target pattern, raise it

Energy

v

105
state

Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

106

Training the Hopfield network: SGD

version
W=W+y Zny— Z yy'
VEYp yv&€Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:
— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y) —Vu¥7)

107

A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state

A related issue

* Really no need to raise the entire surface, or
even every valley

Energy o

state 109

A related issue

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state

Raising the neighborhood

* Starting from a target pattern, let the network
evolve only a few steps

— Try to raise the resultant location
* Will raise the neighborhood of targets

* Will avoid problem of down-valley targets

Energy

state

Training the Hopfield network: SGD

version
W=W+y Zny— Z yy'
VEYp yv&€Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target pattern y,

* Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve a few steps (2-4)
* And arrive at a down-valley position y,

— Update weights
* W=W+n(y,y; —Ya¥a)

112

Poll 4

Poll 4

Mark all that are true about the optimization-based method to store memories in a Hopfield net

e It finds weights that minimize the energy of target patterns

e It maximizes the energy of non-target patterns

e |tis an exact gradient descent formulation

¢ It minimizes the energy of target patterns through Hebbian learning

¢ It maximizes the energy of non-target patterns through Hebbian learning

114

Story so far

 Hopfield nets with N neurons can store up to 0.14N
patterns through Hebbian learning

— Issue: Hebbian learning assumes all patterns to be stored are
equally important

* |n theory the number of intentionally stored patterns
(stationary and stable) can be as large as N

— But comes with many parasitic memories

* Networks that store O(N) memories can be trained
through optimization

— By minimizing the energy of the target patterns, while
increasing the energy of the neighboring patterns

