
Neural Networks

Hopfield Nets and Auto Associators
Fall 2021

1

Story so far

• Neural networks for computation
• All feedforward structures

• But what about..

2

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

3

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network

4

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

5

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

6

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

7

if

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

8

if

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

9

Example

10

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

11

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…
» And so on…

13

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

௜ ௝௜ ௝ ௜

௝ஷ௜

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

14

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

15

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
16

Loopy network

• Let ௜
ି be the output of the i-th neuron just before it responds to the

current field
• Let ௜

ା be the output of the i-th neuron just after it responds to the current
field

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ , then ௜
ା

௜
ି

– If the sign of the field matches its own sign, it does not flip

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜

௝ஷ௜ 17

Loopy network

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ , then ௜
ା

௜
ି

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜

௝ஷ௜

௜
ା

௝௜ ௝ ௜

௝ஷ௜

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

௜ ௝௜ ௝ ௜

௝ஷ௜
18

Globally
• Consider the following sum across all nodes

– Assume ௜௜

• For any unit that “flips” because of the local field

• This is strictly positive

19

Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in
20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

௜௝ ௜ ௝

௜,௝ஷ௜

௜ ௜

௜

• is bounded

௠௔௫ ௜௝

௜,௝ஷ௜

௜

௜

• The minimum increment of in a flip is

௠௜௡
௜, {௬೔, ௜ୀଵ..ே}

௝௜ ௝

௝ஷ௜

௜

• Any sequence of flips must converge in a finite number of steps 21

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of
• The 0.5 is only needed for convention

• The evolution of a Hopfield network
constantly decreases its energy

22

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1

24

Poll 1

25

Hopfield networks are loopy networks whose output activations “evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared parameter MLPs

 True
 False

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of

• The evolution of a Hopfield network
constantly decreases its energy

• Where did this “energy” concept suddenly sprout
from?

26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• ௜ is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

௜ ௝௜ ௝

௝ஷ௜

௜

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

௜ ௝௜ ௝

௝ஷ௜

௜

30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

௜ ௝௜ ௝

௝ஷ௜

௜

Response of current dipole

௜
௜ ௜ ௜

௜

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

34

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is similar to having a single extra neuron that
is pegged to 1.0

We may not explicitly represent it in the slides

35

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

36

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/39

Hopfield net examples

40

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜

41

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

42

Writing ଵ ଶ ଷ ே
ୃ

and arranging the weights as a matrix

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete

version 43

Poll 2

44

Poll 2

45

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local minimum
 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

46

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

47

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
48

Storing patterns: Training a network

• A network that stores pattern also naturally stores
– Symmetry since is a function of yiyj

௝௜ ௝ ௜

௝ழ௜௜

-1

1

1

1 -1

1

-1

-1

-1 1

49

A network can store multiple patterns

• Every stable point is a stored pattern
• So we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns,
and

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

50

Storing a pattern

• Design such that the energy is a local
minimum at the desired

1

-1

-1

-1 1

1

1

-1

1 -1

51

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

1

-1

-1

-1 1

52

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

HEBBIAN LEARNING:
1

-1

-1

-1 1

53

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

54

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

The pattern is stationary

55

Storing specific patterns

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:1

-1

-1

-1 1

56

Storing specific patterns

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:1

-1

-1

-1 1

The pattern is STABLE

57

Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Stored pattern has lowest energy
• Gradation of energy ensures stored pattern (or its ghost) is recalled

from everywhere 58

Storing multiple patterns

• To store more than one pattern

೛ ೛

• is the set of patterns to store
• Super/subscript represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1

59

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

60

How many patterns can we store?

• Hopfield: For a network of neurons can
store up to ~0.15 random patterns through
Hebbian learning
– Provided they are “far” enough

• Where did this number come from?
61

The limits of Hebbian Learning
• Consider the following: We must store -bit patterns of the form

௞ ଵ
௞

ଶ
௞

ே
௞

• Hebbian learning (scaling by ଵ

ே
for normalization, this does not affect

actual pattern storage):

௜௝ ௜
௞

௝
௞

௞

• For any pattern ௣ to be stable:

௜
௣

௜௝ ௝
௣

௝

௜
௣

௜
௞

௝
௞

௞

௝
௣

௝

62

The limits of Hebbian Learning
• For any pattern ௣ to be stable:

௜
௣

௜
௞

௝
௞

௞

௝
௣

௝

௜
௣

௜
௣

௝
௣

௝
௣

௝

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• Note that the first term equals 1 (because ௝
௣

௝
௣

௜
௣

௜
௣)

– i.e. for ௣ to be stable the requirement is that the second crosstalk term:

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• The pattern will fail to be stored if the crosstalk

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝ 63

The limits of Hebbian Learning
• For any random set of K patterns to be stored, the probability of the

following must be low

௜
௣

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• For large and K the probability distribution of approaches a
Gaussian with 0 mean, and variance
– Considering that individual bits ௜

௟ and have variance 1

• For a Gaussian,
– ଶ for

• I.e. To have less than 0.4% probability that stored patterns will not
be stable,

64

How many patterns can we store?

• A network of neurons trained by Hebbian learning can store up to
~0.14 random patterns with low probability of error
– Computed assuming

• On average no. of matched bits in any pair = no. of mismatched bits
– Patterns are “orthogonal” – maximally distant – from one another

– Expected behavior for non-orthogonal patterns?

• To get some insight into what is stored, lets see some examples
65

Hebbian learning: One 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Note: Pattern is an energy well, but there are other local minima

– Where?
– Also note “shadow” pattern

66

Topological representation on a Karnaugh map

Two orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– But patterns perfectly confusable for recall

67

Two non-orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– Actual wells for patterns

• Patterns may be perfectly recalled!

– Note K > 0.14 N 68

How many patterns can we store?

• Hopfield: For a network of neurons can store up to 0.14
random patterns

• Apparently a fuzzy statement
– What does it really mean to say “stores” 0.14N random patterns?

• Stationary? Stable? No other local minima?

– What if the patterns to store are not random?

• N=4 may not be a good case (N too small)
69

A 6-bit pattern

• Perfectly stationary and stable

• But many spurious local minima..
– Which are “fake” memories 70

“Unrolled” 3D Karnaugh map

Two orthogonal 6-bit patterns

• Perfectly stationary and stable

• Several spurious “fake-memory” local minima..
– Figure overstates the problem: actually a 3-D Kmap

71

Two non-orthogonal 6-bit patterns

72

• Perfectly stationary and stable
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal case

Three non-orthogonal 6-bit patterns

73

• Note: Cannot have 3 or more orthogonal 6-bit patterns..
• Patterns are perfectly stationary and stable (K > 0.14N)
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal 2-pattern case

Four non-orthogonal 6-bit patterns

74

• Patterns are perfectly stationary for K > 0.14N
• Fewer spurious minima than for the orthogonal 2-

pattern case
– Most fake-looking memories are in fact ghosts..

Six non-orthogonal 6-bit patterns

75

• Breakdown largely due to interference from “ghosts”

• But multiple patterns are stationary, and often stable
– For K >> 0.14N

Observations

• Many “parasitic” patterns
– Undesired patterns that also become stable or

attractors

• Apparently, a capacity to store more than
0.14N patterns

76

Parasitic Patterns

• Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:
–

• They are also from other random local energy minima from
the weights matrices themselves

77

state

Energy

Target patterns Parasites

Capacity
• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• Patterns that are non-orthogonal easier to remember
– I.e. patterns that are closer are easier to remember than

patterns that are farther!!

• Can we attempt to get greater control on the process than
Hebbian learning gives us?
– Can we do better than Hebbian learning?

• Better capacity and fewer spurious memories?
78

Story so far
• A Hopfield network is a loopy binary net with symmetric connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum
– The network acts as a content-addressable memory

• Given a damaged memory, it can evolve to recall the memory fully

• The network must be designed to store the desired memories
– Memory patterns must be stationary and stable on the energy contour

• Network memory can be trained by Hebbian learning
– Guarantees that a network of N bits trained via Hebbian learning can store 0.14N

random patterns with less than 0.4% probability that they will be unstable

• However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

79

Poll 3

80

Poll 3

81

Mark all that are true

 We can try to “assign” memories to a Hopfield network through Hebbian learning of the
weights matrix

 All patterns learned through Hebbian learning will be “remembered”
 The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

Bold Claim

• I can always store (upto) N orthogonal
patterns such that they are stationary!

– Why?

• I can avoid spurious memories by adding
some noise during recall!

82

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
83

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
84

How do we find this
network?

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
85

Can we do something
about this?

How do we find this
network?

A different tack

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Optimization

• Secondary question
– How many patterns can we store?

86

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
87

Alternate Approach to Estimating the
Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 88

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

89

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

90

Optimizing W

• Simple gradient descent:

91

Hebbian learning
(which is why minimizing energy of
target patterns is not enough)

“Anti” Hebbian learning

Set diagonal
terms to 0
to eliminate
self-edges

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions  greater emphasis

92

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

93

The training again..

• Note the energy contour of a Hopfield
network for any weight

94state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

95state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

96state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

97state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

98state

Energy

Identifying the valleys..

99state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

100

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

101

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

102

Which valleys?

103state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

104state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

105state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

106

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

107

A possible problem

108state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

109state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

110state

Energy

Raising the neighborhood

111state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்

112

Poll 4

113

Poll 4

114

Mark all that are true about the optimization-based method to store memories in a Hopfield net

 It finds weights that minimize the energy of target patterns
 It maximizes the energy of non-target patterns
 It is an exact gradient descent formulation
 It minimizes the energy of target patterns through Hebbian learning
 It maximizes the energy of non-target patterns through Hebbian learning

Story so far
• Hopfield nets with neurons can store up to

patterns through Hebbian learning
– Issue: Hebbian learning assumes all patterns to be stored are

equally important

• In theory the number of intentionally stored patterns
(stationary and stable) can be as large as
– But comes with many parasitic memories

• Networks that store memories can be trained
through optimization
– By minimizing the energy of the target patterns, while

increasing the energy of the neighboring patterns
115

116

