
Neural Networks

Hopfield Nets and Auto Associators
Fall 2021

1

Story so far

• Neural networks for computation
• All feedforward structures

• But what about..

2

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

3

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network

4

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

5

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

6

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

7

if

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

8

if

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

9

Example

10

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

11

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…
» And so on…

13

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

ஷ

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

14

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

15

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
16

Loopy network

• Let
ି be the output of the i-th neuron just before it responds to the

current field
• Let

ା be the output of the i-th neuron just after it responds to the current
field

• If
ି

 ஷ , then
ା

ି

– If the sign of the field matches its own sign, it does not flip

ା

ஷ

ି

ஷ 17

Loopy network

• If
ି

 ஷ , then
ା

ି

ା

ஷ

ି

ஷ

ା

ஷ

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

ஷ
18

Globally
• Consider the following sum across all nodes

– Assume

• For any unit that “flips” because of the local field

• This is strictly positive

19

Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in
20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

,ஷ

• is bounded

௫

,ஷ

• The minimum increment of in a flip is

, {௬, ୀଵ..ே}

ஷ

• Any sequence of flips must converge in a finite number of steps 21

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of
• The 0.5 is only needed for convention

• The evolution of a Hopfield network
constantly decreases its energy

22

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1

24

Poll 1

25

Hopfield networks are loopy networks whose output activations “evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared parameter MLPs

 True
 False

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of

• The evolution of a Hopfield network
constantly decreases its energy

• Where did this “energy” concept suddenly sprout
from?

26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

ஷ

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

ஷ

30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

ஷ

Response of current dipole

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

34

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is similar to having a single extra neuron that
is pegged to 1.0

We may not explicitly represent it in the slides

35

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

36

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/39

Hopfield net examples

40

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

ஷ

41

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

42

Writing ଵ ଶ ଷ ே
ୃ

and arranging the weights as a matrix

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete

version 43

Poll 2

44

Poll 2

45

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local minimum
 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

46

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

47

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
48

Storing patterns: Training a network

• A network that stores pattern also naturally stores
– Symmetry since is a function of yiyj

ழ

-1

1

1

1 -1

1

-1

-1

-1 1

49

A network can store multiple patterns

• Every stable point is a stored pattern
• So we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns,
and

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

50

Storing a pattern

• Design such that the energy is a local
minimum at the desired

1

-1

-1

-1 1

1

1

-1

1 -1

51

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

1

-1

-1

-1 1

52

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

HEBBIAN LEARNING:
1

-1

-1

-1 1

53

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

54

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

The pattern is stationary

55

Storing specific patterns

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:1

-1

-1

-1 1

56

Storing specific patterns

• This is the lowest possible energy value for the network

HEBBIAN LEARNING:1

-1

-1

-1 1

The pattern is STABLE

57

Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Stored pattern has lowest energy
• Gradation of energy ensures stored pattern (or its ghost) is recalled

from everywhere 58

Storing multiple patterns

• To store more than one pattern

• is the set of patterns to store
• Super/subscript represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1

59

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

60

How many patterns can we store?

• Hopfield: For a network of neurons can
store up to ~0.15 random patterns through
Hebbian learning
– Provided they are “far” enough

• Where did this number come from?
61

The limits of Hebbian Learning
• Consider the following: We must store -bit patterns of the form

 ଵ

ଶ

ே

• Hebbian learning (scaling by ଵ

ே
for normalization, this does not affect

actual pattern storage):

• For any pattern to be stable:

62

The limits of Hebbian Learning
• For any pattern to be stable:

ஷ

• Note that the first term equals 1 (because

)

– i.e. for to be stable the requirement is that the second crosstalk term:

ஷ

• The pattern will fail to be stored if the crosstalk

ஷ

 63

The limits of Hebbian Learning
• For any random set of K patterns to be stored, the probability of the

following must be low

ஷ

• For large and K the probability distribution of approaches a
Gaussian with 0 mean, and variance
– Considering that individual bits

 and have variance 1

• For a Gaussian,
– ଶ for

• I.e. To have less than 0.4% probability that stored patterns will not
be stable,

64

How many patterns can we store?

• A network of neurons trained by Hebbian learning can store up to
~0.14 random patterns with low probability of error
– Computed assuming

• On average no. of matched bits in any pair = no. of mismatched bits
– Patterns are “orthogonal” – maximally distant – from one another

– Expected behavior for non-orthogonal patterns?

• To get some insight into what is stored, lets see some examples
65

Hebbian learning: One 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Note: Pattern is an energy well, but there are other local minima

– Where?
– Also note “shadow” pattern

66

Topological representation on a Karnaugh map

Two orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– But patterns perfectly confusable for recall

67

Two non-orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– Actual wells for patterns

• Patterns may be perfectly recalled!

– Note K > 0.14 N 68

How many patterns can we store?

• Hopfield: For a network of neurons can store up to 0.14
random patterns

• Apparently a fuzzy statement
– What does it really mean to say “stores” 0.14N random patterns?

• Stationary? Stable? No other local minima?

– What if the patterns to store are not random?

• N=4 may not be a good case (N too small)
69

A 6-bit pattern

• Perfectly stationary and stable

• But many spurious local minima..
– Which are “fake” memories 70

“Unrolled” 3D Karnaugh map

Two orthogonal 6-bit patterns

• Perfectly stationary and stable

• Several spurious “fake-memory” local minima..
– Figure overstates the problem: actually a 3-D Kmap

71

Two non-orthogonal 6-bit patterns

72

• Perfectly stationary and stable
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal case

Three non-orthogonal 6-bit patterns

73

• Note: Cannot have 3 or more orthogonal 6-bit patterns..
• Patterns are perfectly stationary and stable (K > 0.14N)
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal 2-pattern case

Four non-orthogonal 6-bit patterns

74

• Patterns are perfectly stationary for K > 0.14N
• Fewer spurious minima than for the orthogonal 2-

pattern case
– Most fake-looking memories are in fact ghosts..

Six non-orthogonal 6-bit patterns

75

• Breakdown largely due to interference from “ghosts”

• But multiple patterns are stationary, and often stable
– For K >> 0.14N

Observations

• Many “parasitic” patterns
– Undesired patterns that also become stable or

attractors

• Apparently, a capacity to store more than
0.14N patterns

76

Parasitic Patterns

• Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:
–

• They are also from other random local energy minima from
the weights matrices themselves

77

state

Energy

Target patterns Parasites

Capacity
• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• Patterns that are non-orthogonal easier to remember
– I.e. patterns that are closer are easier to remember than

patterns that are farther!!

• Can we attempt to get greater control on the process than
Hebbian learning gives us?
– Can we do better than Hebbian learning?

• Better capacity and fewer spurious memories?
78

Story so far
• A Hopfield network is a loopy binary net with symmetric connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum
– The network acts as a content-addressable memory

• Given a damaged memory, it can evolve to recall the memory fully

• The network must be designed to store the desired memories
– Memory patterns must be stationary and stable on the energy contour

• Network memory can be trained by Hebbian learning
– Guarantees that a network of N bits trained via Hebbian learning can store 0.14N

random patterns with less than 0.4% probability that they will be unstable

• However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

79

Poll 3

80

Poll 3

81

Mark all that are true

 We can try to “assign” memories to a Hopfield network through Hebbian learning of the
weights matrix

 All patterns learned through Hebbian learning will be “remembered”
 The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

Bold Claim

• I can always store (upto) N orthogonal
patterns such that they are stationary!

– Why?

• I can avoid spurious memories by adding
some noise during recall!

82

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
83

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
84

How do we find this
network?

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
85

Can we do something
about this?

How do we find this
network?

A different tack

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Optimization

• Secondary question
– How many patterns can we store?

86

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
87

Alternate Approach to Estimating the
Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 88

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

89

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

90

Optimizing W

• Simple gradient descent:

91

Hebbian learning
(which is why minimizing energy of
target patterns is not enough)

“Anti” Hebbian learning

Set diagonal
terms to 0
to eliminate
self-edges

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

92

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

93

The training again..

• Note the energy contour of a Hopfield
network for any weight

94state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

95state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

96state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

97state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

98state

Energy

Identifying the valleys..

99state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

100

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

101

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

102

Which valleys?

103state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

104state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

105state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

106

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

107

A possible problem

108state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

109state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

110state

Energy

Raising the neighborhood

111state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
•

்
ௗ ௗ

்

112

Poll 4

113

Poll 4

114

Mark all that are true about the optimization-based method to store memories in a Hopfield net

 It finds weights that minimize the energy of target patterns
 It maximizes the energy of non-target patterns
 It is an exact gradient descent formulation
 It minimizes the energy of target patterns through Hebbian learning
 It maximizes the energy of non-target patterns through Hebbian learning

Story so far
• Hopfield nets with neurons can store up to

patterns through Hebbian learning
– Issue: Hebbian learning assumes all patterns to be stored are

equally important

• In theory the number of intentionally stored patterns
(stationary and stable) can be as large as
– But comes with many parasitic memories

• Networks that store memories can be trained
through optimization
– By minimizing the energy of the target patterns, while

increasing the energy of the neighboring patterns
115

116

