HW2P2 Bootcamp



Logistics

* Early Submission is due in 4 days October 10th, 11:59 PM EST
* Make sure to do the early Kaggle submission & the Canvas MCQ.
* You need at least a 10% in classification, and 7.5% accuracy in verification

* The on-time submission deadline is October 26" 11:59 PM EST.

* HW2P2 is significantly harder than HW1P2. Models will be harder to
develop, train, and converge. Please start early!

* Models must be written yourself and trained from scratch.



Problem Statement

* Face Classification
* Given an image, figure out which person it is.

* Face Verification
* Given a set of images, figure out if they are the same person or not.
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Face Verification
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Face Verification

Unknown image
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A similarity
score from
-1to 1

Cosine Similarity for

each known image

Feature Extraction
Model

oo
=
©
©

()
Ko

£
L

(]

S

>
=)

©

()}
(T8

CLASS toxch.nn.CosineSimilarity(din=1, eps=1e-08) [SOURCE]

Returns cosine similarity between Ty and 9, computed along dim.
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Workflow

* First train a strong classification model for the classification task.

* Then, for the verification task, use the model trained on classification.
 take the penultimate features as feature embeddings of each image.

* You should additionally train verification-specific losses such as
ArcFace, Triplet Loss to improve performance.



Building Blocks

Choice of Model Training the model

Input Image +
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Building Blocks

Training the model

Input Image +
Transformations

1



Color Jitter

Original image




Random Perspective

Original image




Random Vertical Flip

Original image
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Transformation Guide

URL;:

https://pytorch.org/vision/stable/auto examples/plot transforms.html#sphx-glr-auto-exa
mples-plot-transforms-py

Common Issue:
TypeError: Input tensor should be a torch tensor. Got <class

'"PIL.Image.Image'>.

—> Please check the sequencing of your transforms. Read the documentation and verify

the kind of input required.


https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py

Building Blocks

Choice of Model Training the model
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Architectures

* At this point, you should have basic familiarity with convolutions as
taught in lecture.

* Now, how do we take convolutions and assemble them into a strong
architecture?
 Layers? Channel size? Stride? Kernel Size? Etc.

* We'll cover three architectures:
* MobileNetV2 — A fast, parameter-efficient model.
* ResNet — The “go-to” for CNNs.
e ConvNeXt — The state-of-the-art model.



General Architecture Flow

* CNN architectures are divided into stages, which are divided into
blocks.

e Each “stage” consists of (almost) equivalent “blocks”
* Each “block” consists of a few CNN layers, BN, and RelUs.

* To understand an architecture, we mostly need to understand its
blocks.

* All that changes for blocks in different stages is the base # of channels



General Architecture Flow

* However, you do need to piece these blocks together into a final
model.

* The general flow is like this:
* Stem
* Stage 1
* Stage 2
* Stage n
* Classification Layer



General Architecture Flow

* The stem usually downsamples the input by 4x.

* Some stages do downsample. If they do, generally, the first
convolution in the stage downsample by 2x.

* When you downsample by 2x, you usually increase channel
dimension by 2x.

* So, later stages have smaller spatial resolution, higher # of channels



MobileNetV?2

* The goal of MobileNetV?2 is to be parameter efficient.

* They do so by making extensive use of depth-wise convolutions and
point-wise convolutions



A Normal Convolution

3

Image 4: A normal convolution with 8x8x1 output

* Considering just a single output channel



A Normal Convolution (Another Diagram)

* Considering a single output channel



A Normal Convolution

8

Image 5: A normal convolution with 8x8x256 output

* Considering all output channels



Depth-wise Convolutions

* Shorthand for “Depth-wise separable convolutions”

* “Depth”-wise separable, because considering channels as “depth”,
perform convolutions on them independently




Depth-wise Convolutions (Another Diagram)

x 128




Point-wise Convolutions

* “Point”-wise convolutions because each pixel is considered
independently

* Considering just a single output channel:

Image 7- Pointwise convolution, transforms an image of 3 channels to an image of 1 channel



Point-wise Convolutions

* “Point”-wise convolutions because each pixel is considered
independently

* Considering all output channels:

8

Image 8: Pointwise convolution with 256 kernels, outputting an image with 256 channels



Summary

* A normal convolution mixes information from both different channels
and different spatial locations (pixels)

* A depth-wise convolution only mixes information over spatial
locations
* Different channels do not interact.

* A point-wise convolution only mixes information over different
channels
* Different spatial locations do not interact



MobileNetV?2

* Again, to understand an architecture, we mostly need to understand
its blocks.

* All that changes for blocks in different stages is the base # of channels



MobileNetV2

* The core block of MobileNetV2 has three steps:
* Feature Mixing
* Spatial Mixing
* Bottlenecking Channels

lué, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)



MobileNetV2: Feature Mixing

, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* A point-wise convolution that increases the channel dimension by an
“expansion ratio”



MobileNetV2: Spatial Mixing

lu6, Dwise -

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* A depth-wise convolution that communicates information over
different spatial locations.



MobileNetV2: Bottlenecking Channels

se

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* Point-wise convolution to reduce channel dimension by the same
expansion ratio.



ResNet

* Again, remember that to understand a paper, we just really need to
understand its blocks.

* ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

* The key point is residual connection
* Actually, ResNet is older than MobileNetV2, so MobileNetV2 has this already

X |

weight layer

F(x) relu

%
identity

weight layer

Flx)+x

Figure 2. Residual learning: a building block.



ResNet: BasicBlock

64-d

*It’s just a regular 3x3 convolution (then BN, ReLU), another 3x3
convolution (then BN).

* Then, a skip connection adding input and output, then RelU.



ResNet: BottleneckBlock

256-d

1x1, 64
vrelu

3x3, 64
"rem

1x1, 256

e A bit more involved.

* A 256-channel input goes through a point-wise convolution, reducing
channels to 64.

* Then, a 3x3 regular convolution maintains channels at 64.

* Then, a point-wise convolution expands channels back to 256.
* Finally, the residual connection.



34-layer residual

image

ResNet: Overall Architecture e

layer name | output size 18-layer l 34-layer | 50-layer j 101-layer | 152-layer
convl | 112x112 7x7, 64, stride 2
Stem [ 3 %3 max pool, stnde 2
: 1x1, 64 1x1,64 ] 1 x1, 64
conv2 S6x5 3x3 3Ix3 ? > <
Stage 1 DR s [ 11;: ] x2 [ : zgj ] <3 3%3,64 [x3 3x3,64 |x3 3x3,64 |3
11,256 1x1,256 | 1x1,256 |
. ; - : 1x1,128 1x1,128 ] 1x1,128 ]
3x3, 128 3x3, 128
Stage 2 convdx | 28x28 || D07 S0 X2 || 303 e [X4| | 3%3.128 | x4 3x3,128 | x4 3x3,128 |8
g %2 148 e 11,512 1x1,512 | 11,512 |
- ; . 3 1x1,256 11,256 ] 1x1,256
3x3, 256 3x3, 256
Stage 3 comvdx | 14x14 || 7020 [y %6 || 3x3.256 [x6 || 3x3.256 [x23 || 3x3.256 [x36
3x3,256 3%3, 256 /
- 1x1,1024 11,1024 | 11,1024 |
T— T 1x1,512 11,512 11,512
onvs % kgt Sk ] BV, ) mhySte | X 2 | x . 2 | x " 2 | x
Stage 4 conwSx | Tx7 3x3.s12 | %2 || 3x3 512 [%3 || 3%3.512 [x3 Ix3,512 [x3 3x3,512 | x3
1x1,2048 11,2048 1x1,2048
Classification Layer | 1 , _ averagepool, 1000-dfe sofumax .
FLOPs 18x10° [ 3.6x10° 38x10" | 76x10" 11.3% 10

Figure 2. Sizes of outputs and convolutional kerneis for ResNet 34




ConvNeXt

*This is a very new paper, a state-of-the-art architecture.
* However, its intuitions are very similar to MobileNetV2.

* Again, remember that to understand a paper, we just really need to
understand its blocks.

e Just a single block type for ConvNeXt

* Read the paper for details on stages/channel sizes, etc.
* We recommend ConvNeXt-T size which has less than 35M parameters.



ConvNeXt: Block

ResNet Block

256-d

Yy

[ 1x1,
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BN, RelLU
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* A 7x7 depth-wise convolution.

Y
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ConvNeXt Block

* A point-wise convolution increasing # of channels
e A point-wise convolution decreasing # of channels

e Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt

* A 7x7 depth-wise
convolution.

* A point-wise convolution
increasing # of channels

* A point-wise convolution
decreasing # of channels

e Residual Connection

MobileNetV2

* A point-wise convolution
increasing # of channels

* A 3x3 depth-wise convolution.

* A point-wise convolution
decreasing # of channels

e Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2

* A 7x7 depth-wise Soar; * A point-wise convolution
convolution. a"”"xing increasing # of channels

* A point-wise convolution * A 3x3 depth-wise convolution.

increasing # of channels * A point-wise convolution

* A point-wise convolution decreasing # of channels

decreasing # of channels e Residual Connection

e Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
* A 7x7 depth-wise . * A point-wise convolution

. LA\ . .
convolution. e@\*‘ increasing # of channels
. . . o . .
* A point-wise convolution <& * A 3x3 depth-wise convolution.
increasing # of channels « A point-wise convolution
* A point-wise convolution decreasing # of channels

decreasing # of channels e Residual Connection

e Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
* A 7x7 depth-wise * A point-wise convolution

convolution. increasing # of channels
* A point-wise convolution * A 3x3 depth-wise convolution.
increasing # of channels « A point-wise convolution

* A point-wise convolution / decreasing # of channels

decreasing # of channels e Residual Connection

e Residual Connection

Extremely Similar!



ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).



ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

* The order of spatial mixing & feature mixing are flipped.
* In ConvNeXt, depth-wise convolution operates on lower # of channels.
* In MobileNetV2, operates on higher # of channels.

* Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.



ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

* The order of spatial mixing & feature mixing are flipped.
* In ConvNeXt, depth-wise convolution operates on lower # of channels.
* In MobileNetV2, operates on higher # of channels.

* Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

* ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
* Note: We recommend using BatchNorm for this homework regardless.

* ConvNeXt recommends training via AdamW, MobileNetV2
recommends SGD

* Note: We recommend using SGD for this homework.



ConvNeXt vs MobileNetV2: Differences

ResNet Block ConvNeXt Block

256-d 96-d
Y
[ 1x1, 64 ] [ d7x7, 96 )
BBBBBBB +8 Use BatchNorm
Y Y
[ 3x3, 64 ] [ 1x1, 384 ]
BBBBBBB GELU
A Y
([ ix1256 ) | txt96 )
BN
Y Y
D D
‘ReLU \

* Note that ConvNeXt has fewer BN/RelLU
* GELU is just more advanced RelLU



Building Blocks

Training the model



The easy bit first....



Monitoring Training vs Validation Acc

* The standard intuition of “overfitting” is — if the training & validation gap is
too large, you should stop training as it’s overfitting.

* However, in modern DL, this intuition is not as relevant.

* XELoss != Accuracy

* Model can keep improving after training accuracy hits 100%.

* There is recent research that finds that on some problems, training accuracy hits

100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000,
validation hits 100%.

* Of course, we can’t train for that long, but train until validation stops
Improving.

* Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs” and
just let it run. L] what | prefer to do.



How to tackle overfitting?

* There are a lot of different tricks to improving your CNN model.
* From the recent ConvNeXt paper:

ConvNeXt-T/S/B/L

(pre-)training config [mageN’cl-l K

o - 2242
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum 31, 82=0.9,0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise Ir decay [6, 10] None
randaugment [12] (9,0.5)
label smoothing [65] 0.1
mixup [85] 0.8
cutmix [84] 1.0
stochastic depth [34] 0.1/0.4/0.5/0.5
layer scale [69] le-6
gradient clip None
exp. mov. avg. (EMA) [48] 0.9999




How to tackle overfitting?

* There are a lot of different trick to improving
your CNN model.

* From the recent ConvNeXt paper

* What we recommend trying first:
* Label Smoothing (huge boost)
* Stochastic Depth
* EMA
* DropBlock (paper)
* Dropout before final classification layer

* Then you can try the others

* Check out “Bag of Tricks for Image Classification
with Convolutional Neural Networks”

* https://arxiv.org/abs/1812.01187

(pre-)training config

ConvNeXt-T/S/B/L
ImageNet-1K

2242
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum B1, 82=0.9,0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise Ir decay [6, 10] None
randaugment [ 12] (9,0.5)
label smoothing [65] 0.1
mixup [85] 0.8
cutmix [84] 1.0
stochastic depth [34] 0.1/0.4/0.5/0.5
layer scale [69] le-6
gradient clip None
exp. mov. avg. (EMA) [48] 0.9999



Let’s get real now....



Loss Functions

Face Verification + Face Recognition tasks (VGG Face?2)



Types of Loss functions

Non Contrastive loss functions Contrastive-Losses




Types of Loss functions

Non Contrastive loss functions Contrastive-Losses




How to train models with such loss functions ?



Approach 1 - Joint Loss Optimization

—_— Embeddings Cross Entropy

.




Approach 2 - Sequential (Fine-tuning)

e 4 Embeddings 2 d Cross Entropy

|

Step 1

Face Recognition

Face Verification

_’ .
. gl Embeddings d Contrastive Loss

Step 2




Types of Contrastive Losses

1. Centre Loss

2. Triplet Loss

3. Sphere Face (Angular Softmax)
4. CosFace Loss

5. ArcFace



Centre Loss Lo = %Zj i — el

s Increases the disparity between classes using softmax
. Increases inter-class distance by reducing intra-class Euclidean distance
by assigning centers to each class.

. Calculating the centre for each class, is difficult
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» Involves sampling 3 images, an anchor, a positive (same class as anchor)

and a negative (different class from anchor).
. Use a p-norm distance function to increase the difference between anchor

and negative whilst minimizing distance between anchor and positive.

. Sampling hard positives and hard negatives is key and difficult
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Triplet Loss
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positive

negative

CNN

Shared| |weights

CNN

Shared| |weights
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Sphere Face B
i . exp {||xl|| cos(m - 9,,,.,')} + Zﬁéyl exp {||xl|| cos (0.) }

o Makes use of an angular margin, imposed by
. The learned features construct a discriminative angular distance
equivalent to the geodesic distance on a hypersphere manifold

® @ :- denotes the type of decision boundary learned, which leads to
different margins for different classes
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Sphere Face

In

Angular Marg

M «

[ Negative Pairs

[ Positive Pairs

max angle (pos. pairs): 0.48

min angle (neg. pairs): 1.14

angular margin: 0.66
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COSFace 1 & exp {s - (cos (8, ;) — m)}

Line = T AT In
N ,zzl: exp {s - (cos (0y,.i) — 7”)} T Z./’#m exp {'5 ' (('OH(HJ'i)}

. Similar to Sphere Face
. Forms the decision margin in cosine space rather than angular
space.

cos(6,)A 26, cos(8,)a
5 Gl G/ G [
1.0 e Iy - g <ho
cos(B,) 5 . cos(8,) |/ - < | .M |cos(B,)
1 - CQn A G
margin<0 I margin=0 margin>=0 61 margin>0

Softmax NSL A-Softmax LMCL



ArCFace I _%Z In exp {.5' - cos(y, i + mv)}

V5ol exp {,s' - cos (0, ;i +m } = Z]#I/ exp { ((()\(91.,-)}

. Builds on the concepts of the sphere face and cos face.
. Replaced the multiplicative angular margin in CosFace, with an
additive margin ‘m’

(a) Norm-Softmax (b) ArcFace

£
|EA|
e | et

Normalized Feature

\ \ 5
arccos(costl,, ) r; cos(B,, +m)f——s

p— { -‘—_—" Feature
H,u,\-—f m f/_,,‘ m i Re-scale

Additive Angular Margin Penalty P ’ s * cosb

2

‘ Probability Ground Truth Cross-entropy
.l’ ;-4 ) n Logit One Hot Vector Loss

e e

Normalized Weights



ArcFace

. The additive factor of ‘m’ has found to lead to better convergence
as compared to its multiplicative counterpart in Sphere Face.



Other Interesting Papers

* ResNeXt (2016)

» https://arxiv.org/pdf/1611.05431.pdf

* Generally a strict improvement to ResNet, but slower. It’s like 3 lines of code changed.
» SENet (2017)

* https://arxiv.orq/pdf/1709.01507.pdf

* Channel-wise attention in CNNs. It’s like 20 lines of code.
« EfficientNet (2019)

» https://arxiv.org/pdf/1905.11946.pdf

» Optimized model scaling. Probably can hard code this with some effort.
* RegNet (2020)

» htips://arxiv.org/pdf/2003.13678.pdf

» ResNet with optimized layer sizes. It's probably... 10 lines changed?
* ResNeSt (2020)

 https://arxiv.orq/pdf/2004.08955.pdf

» ResNeXt on steroids + attention. | (we?) will be really impressed ©
s NFNet (2021 * SGJFA) Former SOTA

»  https://arxiv.org/pdf/2102.0617 1v1.pdf

*  Quite doable actually




