
Homework 1 Bonus
Adam, AdamW and Dropout

11-785: Introduction to Deep Learning (Fall 2022)

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

We encourage you to meet regularly with your study group to discuss and work on the homework. You
will not only learn more, you will also be more efficient that way. However, as noted above, the actual
code used to obtain the final submission must be entirely your own.

• Directions:

– You are required to do this assignment in the Python (version 3) programming language. Do not
use any auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted
and recommended to vectorize your computation using the Numpy library.

– We recommend that you look through all of the problems before attempting the first problem.
However we do recommend you complete the problems in order, as the difficulty increases, and
questions often rely on the completion of previous questions.

• Overview:

– MyTorch

– ADAM

– Dropout
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https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/


Homework objective

After this homework, you would ideally have learned:
• How to write code to implement different optimizers from scratch

– How to implement Adam

– How to implement AdamW

• How to write code to implement dropout from scratch

– How to implement Forward Propagation with Dropout

– How to implement Back Propagation with Dropout

2



Contents

1 MyTorch 4

2 ADAM [5 points] 6

3 AdamW [5 points] 6

4 Dropout [10 points] 7

3



1 MyTorch

The culmination of all of the Homework Part 1’s will be your own custom deep learning library, which we
are calling MyTorch. It will act similar to other deep learning libraries like PyTorch or Tensorflow. The files
in your homework are structured in such a way that you can easily import and reuse modules of code for
your subsequent homeworks. For Homework 1 bonus, MyTorch will have the following structure:

Figure 1: File Structure Tree, mytorch

• nn

– modules

∗ loss.py (Copy your file from HW1P1)

∗ activation.py (Copy your file from HW1P1)

∗ batchnorm.py (Copy your file from HW1P1)

∗ linear.py (Copy your file from HW1P1)

∗ dropout.py

• examples

– hw1

∗ models.py (Copy your file from HW1P1)

• optim

– sgd.py (Copy your file from HW1P1)

– adamW.py

– adam.py
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• For using code from Homework 1, ensure that you received all 100 autograded points

• Install Python3, NumPy and PyTorch in order to run the local autograder on your machine:

– pip3 install numpy

– pip3 install torch

• Hand-in Refer to the README given in the handout to create handin.tar

• Autograde your code by running the following command from the top level directory:

– python3 autograde/hw1p1 bonus autograder.py

• Handout:

– You can download the handout from autolab. The handout might have an extension like hand-
out.tar.112. In such a case, you will have to first rename downloaded file as handout.tar by
removing the .112 extension and then untar the file.

• DO:

– We strongly recommend that you review the ADAM and Dropout papers.

• DO NOT:

– Import any other external libraries other than numpy, as extra packages that do not exist in
autolab will cause submission failures. Also do not add, move, or remove any files or change any
file names.
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2 ADAM [5 points]

Adam is a per-parameter adaptive optimizer that considers both the first and second moment of the current
gradient. Implement the adam class in mytorch/optim/adam.py.

At any time step t, Adam keeps a running estimate of the mean derivative for each parameter mt and the
mean squared derivative for each parameter vt. t is initialized as 0 and mt, vt are initialized as 0 tensors.
They are updated via:

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

where gt are the current gradients for the parameters.

Then, as mt and vt are initialized as 0 tensors, they are biased towards 0 in earlier steps. As such, Adam
corrects this with:

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

Lastly, the parameters are updated via

θt = θt−1 − α · m̂t/(
√
v̂t + ϵ)

where α is the learning rate. Recall that we intuitively divide m̂t by
√
v̂t in the last step to normalize out

the magnitude of the running average gradient and to incorporate the second moment estimate.

For more detailed explanations, we recommend that you reference the original paper.

You need to keep a running estimate for some parameters related to W and b of the linear layer. We have
defined instance variables inside our implementation of the Linear class that you can use.

3 AdamW [5 points]

AdamW is an optimizer which uses weight decay regularization with Adam. Implement the adamW class in
mytorch/optim/adamW.py.

If you implemented Adam, then the only additional parameter in AdamW is the weight decay. In this, we
reduce the network parameter a portion of the model parameter at each time step.

Wt = Wt −Wt−1 ∗ α ∗ λ

bt = bt − bt−1 ∗ α ∗ λ

Where Wt and bt are your parameters after the standard Adam update in iteration t, λ is weight decay and
α is the learning rate. Alternatively, you can first perform the following two weight decay updates:

Wt = Wt−1 −Wt−1 ∗ α ∗ λ

bt = bt−1 − bt−1 ∗ α ∗ λ

and then, add the standard Adam update to Wt and bt obtained above using Wt−1 and bt−1.
(NOTE: Observe the subscripts indicating the iteration number in the two presented ways).
For more detailed explanations, we recommend that you reference the original paper
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https://arxiv.org/pdf/1412.6980.pdf
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4 Dropout [10 points]

Dropout is a regularization method that approximates ensemble learning of networks by randomly ”turning
off” neurons in a network during training. Implement the Dropout class in mytorch/nn/modules/dropout.py.

For every input, the neurons that are ”turned off” are randomly chosen via a parameter p. The probability
of zero-ing out a neruon output is then p.

We can implement this by generating and applying a binary mask to the output tensor of a layer. As dropout
zeros out a portion of the tensor, we need to re-scale the remaining numbers so the total ”intensity” of the
output is same as in testing, where we don’t apply dropout.

For more detailed explanations, we recommend that you reference the paper.

Implementation Notes:

• You should use np.random.binomial

• You should scale during training and not during testing.
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