
Homework 2 Part 1
An Introduction to Convolutional Neural Networks

11-785: Introduction to Deep Learning (FALL 2022)

OUT: September 30, 2022
EARLY SUBMISSION BONUS: October 10th, 2022

DUE: October 27, 2022, 11:59 PM EST

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

We encourage you to meet regularly with your study group to discuss and work on the homework. You
will not only learn more, you will also be more efficient that way. However, as noted above, the actual
code used to obtain the final submission must be entirely your own.

• Overview:

– Multiple Choice: These are a series of multiple choice questions (autograded) which will speedup
your ability to complete this homework.

– NumPy Based Convolutional Neural Networks: Implement the forward and backward
passes of a 1d & 2d convolutional layers, transpose convolution layers, flattening layer and pooling
layers. All of the problems in this will be graded on Autolab. You can download the starter code
from Autolab as well.

– CNNs as Scanning MLPs: Two questions on converting a linear scanning MLP to a CNN.

– Implementing a CNN Model: Combine all the pieces to build a CNN model.

– Appendix: This contains information on some theory that will be helpful in understanding the
homework.

• Directions:

– You are required to do this assignment in the Python (version 3) programming language. Do not
use any auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted
and recommended to vectorize your computation using the Numpy library.

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/

– We recommend that you look through all of the problems before attempting the first problem.
However we do recommend you complete the problems in order, as the difficulty increases, and
questions often rely on the completion of previous questions.

– If you haven’t done so, use pdb to debug your code effectively (One much simple way, just use
print()! Print the shape or anything else that can help you find the bug!)and please PLEASE
Google your error messages before posting on Piazza.

• Early submission bonus deadline:

– If you complete this assignment successfully and achieve full marks on Autolab before October
14th, 2022, 11:59 PM, Eastern Time, you will receive 5 point bonus for this assignment.

2

Homework objectives

If you complete this homework successfully, you would ideally have learned:

• How to write code to implement a CNN from scratch

– How to write code to implement all components of a CNN from scratch

– How to implement convolutional layers

– How to implement pooling layers

– How to implement downsampling and upsampling layers

– How to chain these up, along with components you have already implemented in HW1P1 to
compose a CNN of any size

• Your code will be able to perform forward inference through the CNNs

• How to write code to implement training of your CNN

– How to write code to implement training of your CNN

– How to perform a forward pass through your network

– How to implement backpropagation through the convolutional layers

– How to implement backpropagation through the pooling layers

– How to implement backpropagation through resampling layers

– How to combine these to perform backpropagation through an entire CNN to compute gradients
(to train all parameters of the network)

3

Contents

1 Introduction 5
1.1 The Story: . 5
1.2 Convolutional Layer . 5
1.3 Activation . 6
1.4 Resampling (Upsampling and Downsampling) . 6
1.5 Pooling . 7
1.6 Flatten . 7
1.7 Linear Layer . 7
1.8 Softmax Layer . 7
1.9 Putting it all together . 7

2 MyTorch Structure 8

3 Multiple Choice [5 Points] 9

4 Resampling [10 Points] 13
4.1 Upsampling1d . 13
4.2 Downsampling1d . 14
4.3 Upsampling2d . 16
4.4 Downsampling2d . 17

5 Convolutional Neural Networks 19
5.1 Convolutional layer : Conv1d [15 points] . 19

5.1.1 Conv1d stride1 . 23
5.1.2 Conv1d . 25

5.2 Convolutional layer : Conv2d [15 points] . 27
5.2.1 Conv2d stride1 . 32
5.2.2 Conv2d . 33

5.3 Transposed Convolution [10 points] . 36
5.3.1 ConvTranspose1d . 36
5.3.2 ConvTranspose2d . 38

5.4 Flatten layer . 40
5.5 Pooling [30 Points] . 42

6 Converting Scanning MLPs to CNNs [10 Points] 45
6.1 CNN as a Simple Scanning MLP . 45
6.2 CNN as a Distributed Scanning MLP . 46

7 Build a CNN model [5 Points] 49

8 Appendix 50
8.1 Scanning MLP : Illustration . 50

4

1 Introduction

In this assignment, you will continue to develop your own version of PyTorch, which is of course called
MyTorch (still a brilliant name; a master stroke. Well done!). In addition, you’ll convert two scanning MLPs
to CNNs and build a CNN model.

Figure 1: Standard 2d CNN

1.1 The Story:

What is a Convolutional Neural Network (CNN)? What is it comprised of? And why does it matter? How
I can build one of my own?

If you have any of these questions, you will likely be pleasantly surprised by this homework. :-)

A Convolutional Neural Network is a position-invariant pattern detector. CNNs have wide-ranging use-
cases in image classification, object detection, semantic segmentation, image captioning, natural language
processing, forecasting, and more.

Before we dive into an overview of a CNN and why each part of this homework matters, a quick PSA: several
parts of this homework have been implemented for you, or will be reused from the previous homework.

A Convolutional Neural Network consists of the following parts:

1.2 Convolutional Layer

• This first layer is the Convolutional Neural Network’s namesake. A convolutional layer consists of many
filters, where each filter is responsible for capturing a different pattern. The filters in this layer are used
to extract features from the input. For example, in images of cars, a convolutional layer might extract
the “wheel” patterns. Another convolutional layer’s filters might extract the patterns formed by the
frame of the car images. Yet another convolutional layer’s filters might extract the patterns formed
by the bumper/license plate in the front of the car images. Check out https://poloclub.github.io/cnn-
explainer/ for a more visual explanation about CNNs!

• It’s important to note that a Convolutional Layer will consist of a “forward” and “backward” operation,
as we saw with MLPs in HW 1. As a quick recap: the “forward” operation is used to figure out what
our layer can produce. We can think of this as the inference or prediction part of the layer, since we
will be using what was learned with the “backward” operation to make a prediction. The “backward”

5

operation is used to train our layer. Please see later parts of this writeup, as well as the lectures on
CNNs for more details about how to write these forward and backward operations.

1.3 Activation

• As we’ve seen extensively in HW 1, we will now apply an activation to the output of our convolutional
layer.

1.4 Resampling (Upsampling and Downsampling)

Figure 2: Resampling 2d input

• Now, let’s take a quick pause to talk about resampling, which consists of upsampling and downsampling.
To put it simply, upsampling is a way to “bloat” or fill up our input and make it bigger. Conversely,
downsampling is a way to reduce the size of our input and make it smaller, while preserving the
information that we need.

• Why are these necessary? Let’s say you have a stride != 1. (Stride is the number of pixel the filter
passes in each step). In that case, you can either modify your convolutional layer implementation to
work for stride != 1, OR you can leave your convolutional layer implementation untouched, and tack
on resampling to the OUTPUT of the convolutional layer to “simulate” the stride, so to speak. To
understand resampling, let’s concretely break up the convolutional layer into 3 main cases:

– Stride = 1

∗ In this case, after our convolutional layer, we will simply proceed on to Pooling. Nice! :)

– Stride > 1

∗ In this case, we will DOWNSAMPLE the output of our convolutional layer so that we can
simulate a stride > 1.

– Stride < 1

∗ In this case, we will UPSAMPLE the output of our convolutional layer so that we can simulate
a stride < 1.

• When you STRIDE this path (pun intended), you will need to implement the 1d and 2d versions of
Upsampling and Downsampling. Note that Upsampling and Downsampling are direct inverse oper-
ations. So the forward of Upsampling is THE SAME as the backward of Downsampling. And the
backward of Upsampling is THE SAME as the forward of Downsampling.

• Please refer to the lecture slides for more info. You may also find this link helpful: https://stats.stackexchange.com/questions/387482/pooling-
vs-stride-for-downsampling/387522

6

1.5 Pooling

• Next, we have a pooling layer. Pooling is used for jitter invariance. Conventionally, pooling is done
with strides > 1 so that there is also a reduction in size of the output map. But why do we need to
decrease the size? This reduces computational costs, and can help increase speed of the network. A
decrease in size means less work for the machine, right? :)

• There are several different types of pooling operations, but in this homework, we’ll look at the 2 most
popular: max pooling and mean pooling. Again, just like Convolutional Layers, we have forward
(inference) and backward (training) operations for these Pooling Layers. Please refer to the rest of this
writeup, as well as the lecture slides on CNNs for more details about these operations.

1.6 Flatten

• We will first need to flatten our pooled feature map(s) before passing into the classification layers. This
part is quite simple; just flatten our output so far into a single 1-dimensional array.

1.7 Linear Layer

• Now, we’ll insert this long vector of input data (consisting of flattened, pooled feature maps) into the
linear layer. Now the fun stuff starts — this fully connected linear layer will allow our network to move
towards performing a classification. It will help to map the representation between the input and the
output.

1.8 Softmax Layer

• Victory at last. We have reached the softmax layer, which will allow for us to output a probability
distribution over our output classes. We will use this to allow our CNN to perform a classification.

1.9 Putting it all together

• Finally, we’ll put everything that we learned together, in hw2.py.

7

2 MyTorch Structure

The culmination of all of the Homework Part 1’s will be your own custom deep learning library, which we
are calling MyTorch ©. It will act similar to other deep learning libraries like PyTorch or Tensorflow. The
files in your homework are structured in such a way that you can easily import and reuse modules of code
for your subsequent homeworks. For Homework 2, MyTorch will have the following structure:

• mytorch

– loss.py (Copy your file from HW1P1)

– activation.py (Copy your file from HW1P1)

– linear.py (Copy your file from HW1P1)

– conv.py

– batchnorm.py

– HINT: You can use np.tanh() in Tanh() class if there is related error raising.

• hw2

– hw2.py

– mlp scan.py

– mc.py

• autograder

– hw2 autograder

∗ runner.py

• create tarball.sh

• exclude.txt

• For using code from Homework 1, ensure that you received all autograded points for it.

• Install Python3, NumPy and PyTorch in order to run the local autograder on your machine:

pip3 install -r requirements.txt

• Hand-in your code by running the following command from the top level directory, then SUBMIT
the created handin.tar file to autolab:

sh create_tarball.sh

• Autograde your code by running the following command from the top level directory:

python3 autograder/hw2_autograder/runner.py

• DO:

– We strongly recommend that you understand the Numpy functions reshape, transpose, and
tensordot as they will be essential in this homework.

• DO NOT:

– Import any other external libraries other than numpy, as extra packages that do not exist in
autolab will cause submission failures. Also do not add, move, or remove any files or change any
file names.

8

3 Multiple Choice [5 Points]

These questions are intended to give you major hints throughout the homework. Answer the questions by
returning the correct letter as a string in the corresponding question function in hw2/mc.py. Each question
has only a single correct answer. Verify your solutions by running the local autograder. To get credit (5
points), you must answer all questions correctly.

(1) Question 1: Given the following architecture of a scanning MLP, what are the parameters
of the equivalent Time Delay Neural Network which uses convolutional layers?
As you have seen in the lectures, a convolutional layer can be viewed as an MLP which
scans the input. This question illustrates an example of how the parameters are shared
between a scanning MLP and an equivalent convolutional nework for 1 dimensional input.
(Help1)(More help2)[1 point]

Figure 3: The architecture of a scanning MLP

(A) The first hidden layer has 4 filters of kernel-width 2 and stride 2; the second layer has 3 filters of
kernel-width 8 and stride 2; the third layer has 2 filters of kernel-width 6 and stride 2

(B) The first hidden layer has 4 filters of kernel-width 2 and stride 2; the second layer has 3 filters of
kernel-width 2 and stride 2; the third layer has 2 filters of kernel-width 2 and stride 2

(C) The first hidden layer has 2 filters of kernel-width 4 and stride 2; the second layer has 3 filters of
kernel-width 2 and stride 2; the third layer has 2 filters of kernel-width 2 and stride 2

(2) Question 2: Considering padding and dilation, which equations below are equivalent for
calculating the out dimension (width) for a 1d convolution (Lout at https://pytorch.org/

docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d) (// is integer division)? [1
point]

eq 1: out_width = [in_width + 2 * padding - dilation * (kernel - 1) - 1] // stride + 1

eq 2: out_width = [(in_width_padded - kernel_dilated) // stride] + 1, where in_wdith_padded

= in_width + 2 * padding, kernel_dilated = (kernel - 1) * (dilation - 1) + kernel

eq 3: great_baked_potato = (2*potato + 1*onion + celery//3 + love)**(sour cream)

1Allow the input layer to be of an arbitrary length. The shared parameters should scan the entire length of the input with a
certain repetition. In the first hidden layer, the horizontal gray boxes act as the black lines from the input layer. Why? Think...

2Understanding this question will help you with 3.3 and 3.4.

9

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html##torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html##torch.nn.Conv1d

(A) eq 1 is the one and only true equation

(B) eq 2 is the one and only true equation

(C) eq 1, 2, and 3 are all true equations

(D) eq 1 and 2 are both true equations

(3) Question 3: In accordance with the image below, choose the correct values for the cor-
responding channels, width, and batch size given stride = 2 and padding = 0? [1 point]

Figure 4: Example dimensions resulting form a 1d Convolutional layer

(A)
Example Input: Batch size = 2, In channel = 3, In width = 100

Example W: Out channel = 4, In channel = 3, Kernel width = 5

Example Out: Batch size = 2, Out channel = 4, Out width = 20

(B)
Example Input: Batch size = 2, In channel = 3, In width = 100

Example W: Out channel = 4, In channel = 3, Kernel width = 5

Example Out: Batch size = 2, Out channel = 4, Out width = 48

(4) Question 4: Explore the usage of the command numpy.tensordot. Run the following example
and verify how this command combines broadcasting and inner products efficiently. What is the shape
of C and the value of C[0,0]? [1 point]

A = np.arange(30.).reshape(2,3,5)

B = np.arange(24.).reshape(3,4,2)

C = np.tensordot(A,B, axes = ([0,1],[2,0]))

(A) [5,4] and 820

(B) [4,5] and 1618

10

https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html

(5) Question 5: Given the toy example below, what are the correct values for the gradients?
If you are still confused about backpropagation in CNNs watch the lectures or Google
backpropagation with CNNs? [1 Point]

(A) I have read through the toy example and now I understand backpropagation with Convolutional
Neural Networks.

(B) This whole baked potato trend is really weird.

(C) Seriously, who is coming up with this stuff?

(D) Am I supposed to answer A for this question, I really don’t understand what is going on anymore?

(6) Question 6: This question will help you understand why CNN is helpful and powerful.
Please choose the listing properties of CNN.[0 Point]
(For more details, you can refer to https://www.deeplearningbook.org/contents/convnets.html)(Typo3)

(1) Sparse Interactions: It means every output interacts with every input units. This is accomplished
by making the kernel smaller than the input. So that we only needs fewer parameters and fewer
operations. Like processing images, we only needs to detect small features, like the edges.

(2) Parameter Sharing: It refers to using the same parameters for more than one function in a model.
One can say that the network has tied weights because the value of the weight applied to one
input is tied to the value of a weight applied elsewhere

(3) Equivalent Representation: In the case of convolution, the parameter sharing causes the layer to
have a property called equivalent representation to translation. Equivalent means if the inputs
changes, the output changes in the same way.

(A) (1) is correct

(B) (1) and (2) are correct

(C) (2) and (3) are correct

(D) all of them are correct

3There is a typo in the last sentence on Page 334 of deep learning book. It should be ”applied convolution to I” instead of

” I
′
”

11

https://www.deeplearningbook.org/contents/convnets.html

(7) Question 7: This question will help you visualize the CNN as a scanning MLP. Given
a weight matrix for a scanning MLP, you want to determine the corresponding weights
of the filter in its equivalent CNN. W MLP(input size, output size) is the weight matrix
for a layer in a MLP and W conv(out channel, in channel, kernel size) is the equivalent
convolutional filter. As discussed in class, you want to use the convolutional layer instead
of scanning the input with an entire MLP, then how will you modify W MLP to find W conv

[0 Point]
(To help you visualize this better, you can refer to Figure 3 and the lecture slides)

(A) W conv = W MLP.reshape(input channel, kernel size, output channel).transpose()

where input channel*kernel size = input size and output size = output channel

(B) W conv = W MLP.reshape(kernel size, input channel, output channel).transpose()

where input channel*kernel size = input size and output size = output channel

(C) W conv = W MLP.reshape(output channel, input channel, kernel size)

where input channel*kernel size = input size and output size = output channel

(D) Am I supposed to answer A for this question, I really don’t understand what is going on anymore?

12

4 Resampling [10 Points]

Before moving to convolution, we will take a look at resampling operations which will make convolutions
with strides ! = 1 more intuitive.

4.1 Upsampling1d

Upsamping as the name suggests is used to increase the size of input by a simple operation of adding
intermediate 0s. The figure 5 shows how Upsampling is done. The output will be of size

input size upsampled = input size * k - (k - 1)

Figure 5: Upsampling1d Forward Example

where k is the upsampling factor. For the given example, k = 2, so that only one zero is inserted between
the elemenets. The example here is also for a single channel input. The backward of Upsampling is the
equivalent to dropping the intermediate elements (which is same as Downsampling1d).

Figure 6: Upsampling1d Backward Example

In this section, your task is to implement the forward and backward attribute functions of Upsample1d class.
The Please consider the following class structure.

class Upsample1d:

def __init__(self, upsampling_factor):

self.upsampling_factor = upsampling_factor

def forward(self,):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

13

As you can see, the Upsample1d class has initialization, forward, and backward attribute functions. Imme-
diately once the class is instantiated, the code in init is run. The initialization phase using init

includes just the upsampling factor as an argument.
In forward, we calculate Z. The attribute function forward include:

• As an argument, forward expects A as input.

• As an attribute, forward stores no variables.

• As an output, forward returns variable Z

In backward, we calculate gradient changes and store values needed for optimization. The attribute function
backward includes:

• As arguments, backward expects inputs dLdZ.

• As attributes, backward stores no variables.

• As an output, backward returns dLdA.

Table 1: Upsample1d Class Components

Code Name Math Type Shape Meaning
upsampling factor upsampling factor scalar - upsampling factor
A A matrix N × C ×W0 pre-upsampling values
Z Z matrix N × C ×W1 post-upsampling features
dLdZ ∂L/∂Z matrix N × C ×W1 gradient of Loss wrt Z
dLdA ∂L/∂A matrix N × C ×W0 gradient of Loss wrt A

where N is the batch size, C is the number of channels and W is the respective widths.

4.2 Downsampling1d

Downsampling1d is just “dropping” off elements with a factor k.

Figure 7: Downsampling1d Forward Example

For the given example, k = 2.

Figure 8: Downsampling1d Backward Example

As you may have figured it out, Upsampling and Downsampling are inverse operations of one another. Up-
sampling forward is downsampling backward and vice-versa.

14

Figure 9: Downsampling1d Even Example (k=2)

In downsample, one thing to note is that the sizes may not match during backward. We need the gradient
of input to be the same size as the input in backward. Think about what happens when the input
size is even/odd and what you might want to add.

In this section,your task is to implement the forward and backward attribute functions of Downsample1d

class. The Please consider the following class structure.

class Downsample1d:

def __init__(self, stride):

self.downsampling_factor = downsampling_factor

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

As you can see, the Downsample1d class has initialization, forward, and backward attribute functions. Im-
mediately once the class is instantiated, the code in init is run. The initialization phase using init

includes just the downsampling factor as an argument.
In forward, we calculate Z. The attribute function forward include:

• As an argument, forward expects A as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable Z

In backward, we calculate gradient changes and store values needed for optimization. The attribute function
backward includes:

• As arguments, backward expects inputs dLdZ.

• As attributes, backward stores no variables.

• As an output, backward returns dLdA.

where W0 is the size before downsampling while W1 is the shape after downsampling.

15

Table 2: Downsample1d Class Components

Code Name Math Type Shape Meaning
downsampling factor downsampling factor scalar - downsampling factor
A A matrix N × C ×W0 pre-downsampling features
Z Z matrix N × C ×W1 post-downsampling features
dLdZ ∂L/∂Z matrix N × C ×W1 gradient of Loss wrt Z
dLdA ∂L/∂A matrix N × C ×W0 gradient of Loss wrt A

4.3 Upsampling2d

2d upsampling is used for inputs like images where upsampling is performed in both the x and y direction.
Upsampling an image is a simple operation where, zeros are added inbetween pixels of the input map. The
number of zeros equals to the sampling rate k - 1. (Some may know this as dilation). The following diagram
gives an intuitive explanation.

Figure 10: Upsampling 2d

In the forward pass of Upsampling2d, the size of input will be:

input size dilated = input size * k - (k - 1)

Adjust factor k and set correct output size, or you may need to crop output map to ensure it is the right
size. In the above example, k = 2.

16

The exact opposite takes place in backward where intermediate k-1 elements are dropped. In this section, you
will implement forward and backward of the Upsample2d class. Please consider the following class structure.

class Upsample2d:

def __init__(self, upsampling_factor):

self.upsampling_factor = upsampling_factor

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

As you can see, the Upsample2d class has initialization, forward, and backward attribute functions. Imme-
diately once the class is instantiated, the code in init is run. The initialization phase using init

includes just the upsampling factor as an argument.
In forward, we calculate Z. The attribute function forward include:

• As an argument, forward expects A as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable Z

In backward, we calculate gradient changes and store values needed for optimization. The attribute function
backward includes:

• As arguments, backward expects inputs dLdZ.

• As attributes, backward stores no variables.

• As an output, backward returns dLdA.

Table 3: Upsample2d Class Components

Code Name Math Type Shape Meaning
upsampling factor upsampling factor scalar - upsampling factor
A A matrix N × C ×H0 ×W0 pre-upsampling features
Z Z matrix N × C ×H1 ×W1 post-upsampling features
dLdZ ∂L/∂Z matrix N × C ×H1 ×W1 gradient of Loss wrt Z
dLdA ∂L/∂A matrix N × C ×H0 ×W0 gradient of Loss wrt A

where H0,W0 are the sizes before upsampling while H1,W1 are the sizes after upsampling.

4.4 Downsampling2d

In downsampling, the input features are reduced. Downsampling forward is exactly similar to upsampling
backward and vise versa. The following diagram gives an intuitive explanation.

17

Figure 11: Downsampling 2d

In the forward pass of Downsampling2d, the size of input will be:

input size downsampled = (input size - 1) // k + 1

Adjust factor k and set correct output size, or you may need to pad the output map to ensure it is the right
size. In the above example, k = 2.
In this section, you will implement forward and backward of the Downsample2d class. Please consider the
following class structure.

class Downsample2d:

def __init__(self, downsampling_factor):

self.downsampling_factor = downsampling_factor

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

18

return dLdA

As you can see, the Downsample2d class has initialization, forward, and backward attribute functions. Im-
mediately once the class is instantiated, the code in init is run. The initialization phase using init

includes just the downsampling factor as an argument.
In forward, we calculate Z. The attribute function forward include:

• As an argument, forward expects A as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable Z

In backward, we calculate gradient changes and store values needed for optimization. The attribute function
backward includes:

• As arguments, backward expects inputs dLdZ.

• As attributes, backward stores no variables.

• As an output, backward returns dLdA.

Table 4: Downsample2d Class Components

Code Name Math Type Shape Meaning
downsampling factor downsampling factor scalar - downsampling factor
A A matrix N × C ×H0 ×W0 pre-downsampling features
Z Z matrix N × C ×H1 ×W1 post-downsampling features
dLdZ ∂L/∂Z matrix N × C ×H1 ×W1 gradient of Loss wrt Z
dLdA ∂L/∂A matrix N × C ×H0 ×W0 gradient of Loss wrt A

where H0,W0 are the sizes before downsampling while H1,W1 is the shape after downsampling.

5 Convolutional Neural Networks

Congrats on completing the Resampling layers. Now come the interesting portions of this homework. Con-
volutional Neural Networks are one of the most widespread model architectures which are currently in use.
From its inception, this model has undergone various transformations in a non-exhausive range of applica-
tions such as Image Classification, Image Segmentation, Object Detection, Speech Classification and so on.
We will look into 1d and 2d convolutions and how to implement them from scratch.
Apart from previous editions of the homework, we will be using a different approach for CNNs. For strides
greater than 1, we will be using the Resampling and Convolutional layers sequentially. You will get a clear
idea about this after completion.
In this section, your task is to implement CNNs using only the NumPy library. Python 3, NumPy>=1.16
and PyTorch>=1.0.0 are suggested environment. Your implementations will be compared with PyTorch,
but you can only use NumPy in your code.

5.1 Convolutional layer : Conv1d [15 points]

Convolution 1d involves convolving the input with a kernel in just 1 direction. An example illustrating the
same is presented in figure 12. A single channel input with 7 features is convolved with a single channel
filter with kernel size = 3. Convolution is basically an element wise multiplication and summation. As
shown, when the filter scans through the input, at each step, there is an element wise multiplication between
the patch of input elements (where the filter is on top of) and the filter elements. The output for a single
convolutional step is a single scalar (orange). The filter can also take bigger steps for consecutive convolution
steps. In the current example, the step/stride = 1 which is the number of pixels the filter passes after each
convolution. There is also a bias which is added to the output (broadcast addition). It is a single scalar

19

per output channel that is added to all the elements of that channel. The size of the output is given by the
formula:

output size = [(input size - kernel size)//stride] + 1

Figure 15 explains multi-channel convolutions. The input has 3 channels with 5 features and the kernel has
3 channels (same as input) with kernel size = 3. Similar to single channel, the filter convolves the input
and performs an element-wise multiplication and addition. It should be noted that in the multi-channel
case, output of element wise multiplication and addition from all the 3 channels are added to
produce a single scalar for a convolution step. It can be observed that convolution of a single filter
produces a single channel output. If we use N filters, we get N different outputs, producing an N channel
output. Therefore, for a convolution with N filters, there would be N real numbers as bias for N output
channels. We recommend you to understand the process and try the convolutions by hand before proceeding
to code.
Convolution backward is almost exactly the same operation done in the reverse order. Consider the figure
shown in 13 for single channel backward and 16 for multichannel backward. For the backward operation, we
use the gradient of loss wrt to the output of convolution dLdZ. With this, we need to find the the gradient
of the loss wrt to the kernels dLdW and gradient of loss wrt to the bias dLdb.

Figure 12: Conv1d with single channel input

20

Figure 13: Conv1d backward with single channel input

Figure 14: Conv1d with multichannel input

21

Figure 15: Conv1d with multichannel input and stride 2

Finding dLdb: As you know from the forward, bias is a single scalar for each output channel. Hence, we
get dLdb by just summing the elements of dLdZ, channel wise to produce a vector of shape equal to the
number of output channels.
Finding dLdW: Simply convolve the dLdZ with the input map A to get dLdW. Since one output map is
produced from one filter, we can obtain derivatives w.r.t. all filters by doing the same process with different
output maps. In addition, we can get derivatives for multiple channels of the same filter by convoluving
dLdZ with the corresponding channel in input.

Finding dLdA:

• Broadcast dLdZ M times as shown (M being the number of channels of the input/kernel) This is done
because, no matter how many channels the input has, a single filter produces only one output channel
in forward. For single channel case 13, it is not required as M = 1.

• Pad this with kernel size - 1 zeros on both sides (This is done as we would require the output to be
larger than that of the input as convolution reduces the size in forward)

• Flip each channel of the filter left to right

• Convolve each flipped channel of the filter with the broadcasted and padded dLdZ to get dLdA

22

Figure 16: Conv1d stride1 Backward Example

5.1.1 Conv1d stride1

As you may have observed, the above example is for a stride of 1. Stride is the number of pixels by which the
kernel moves at each step. In this section, you will implement forward and backward of the Conv1d stride1

class. Please consider the following class structure.

class Conv1d_stride1:

def __init__(self, in_channels, out_channels, kernel_size, weight_init_fn, bias_init_fn):

self.in_channels = in_channels

self.out_channels = out_channels

self.kernel_size = kernel_size

self.W = weight_init_fn(out_channels, in_channels, kernel_size)

self.b = bias_init_fn(out_channels)

23

self.dLdW = np.zeros(self.W.shape)

self.dLdb = np.zeros(self.b.shape)

def forward(self, A):

self.A = A

Z = # TODO

return Z

def backward(self, dLdZ):

self.dLdW = #TODO

self.dLdb = #TODO

dLdA = # TODO

return dLdA

As you can see, the Conv1d stride1 class has initialization, forward, and backward attribute functions.
Immediately once the class is instantiated, the code in init is run. The initialization phase using
init includes:

• As arguments, Conv1d stride1 will be specified using in channel, out channel, kernel size, and
padding. They are all positive integers.

• As attributes, Conv1d stride1 will be initialized with W, dLdW, b, and dLdb.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores variable A

• As an output, forward returns variable Z.

In backward, we calculate multiple gradient changes and store values needed for optimization. The attribute
function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, backward stores variables dLdW and dLdb.

• As an output, backward returns variable dLdA.

Table 5: Conv1d stride1 Class Components

Code Name Math Type Shape Meaning
A A matrix N × C0 ×W0 data input for convolution
Z Z matrix N × C1 ×W1 features after conv1d with stride 1
W W matrix C1 × C0 ×K weight parameters
b b matrix C1 × 1 bias parameters
dLdZ ∂L/∂Z matrix N × C1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×W0 how changes in inputs affect loss
dLdW ∂L/∂W matrix C1 × C0 ×K how changes in weights affect loss
dLdb ∂L/∂b matrix C1 × 1 how changes in bias affect loss

where W0 is the size before convolution while W1 are the size after convolution.

24

5.1.2 Conv1d

In this section, we would be implementing Conv1d which works for any stride > 1. We will reuse the code
from conv1d stride1 5.1.1 implementation to make it work for any stride > 1.
Specifically, a conv1d stride1 layer followed by a downsample1d layer with factor k=2 is equivalent to a
conv1d stride2. More generally, a conv1d stride1 layer followed by a downsample1d layer with factor k is
equivalent to a conv1d with stride k.

conv1d (stride=1)
downsample1d−−−−−−−−−→

k
conv1d (stride=k)

Figure 17: Convolution with stride 2 as convolution with stride 1 + downsampling

That’s it! Now we can implement a conv1d operation for any value of stride with using just a combination
of conv1d stride1 and downsample layer with factor k (= stride).

25

Figure 18: Conv1d Backward Example with stride 2

Your task is to implement forward and backward of the Conv1d class. Please consider the following class
structure.

class Conv1d:

def __init__(self, in_channels, out_channels, kernel_size, stride,

weight_init_fn, bias_init_fn):

self.stride = stride

self.conv1d_stride1 = # TODO

self.downsample1d = # TODO

def forward(self, A):

Z = # TODO (<= 2 lines of code)

Line 1: Conv1d forward

Line 2: Downsample1d forward

26

return Z

def backward(self, dLdZ):

dLdA = # TODO (<= 2 lines of code)

Line 1: Downsample1d backward

Line 2: Conv1d backward

return dLdA

As you can see, the Conv1d class has initialization, forward, and backward attribute functions. Immediately
once the class is instantiated, the code in init is run. The initialization phase using init includes:

• As arguments, Conv1d will be specified using in channels, out channels, kernel size, stride,
weight init fn and bias init fn. They are all positive integers.

• As attributes, Conv1d will be initialized with stride, Conv1d stride1, and Downsample1d.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores no variables.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, Conv1d backward stores no variables.

• As an output, backward returns variable dLdA.

Table 6: Conv1d Class Components

Code Name Math Type Shape Meaning
stride stride scalar - downsampling factor
A A matrix N × C0 ×W0 data input for convolution
Z Z matrix N × C1 ×W1 features after conv1d with stride
dLdZ ∂L/∂Z matrix N × C1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×W0 how changes in inputs affect loss

where W0 is the size before convolution while W1 are the size after convolution.

5.2 Convolutional layer : Conv2d [15 points]

1Two dimensional convolution layers play a major role in today’s image based intelligence tasks. From the
inception of CNNs in the 80s by Yann LeCun, this model has undergone various transformations in a wide
range of applications such as Image Classification, Image Segmentation, Object Detection and so on.
Let us understand 2d convolutions with an example. Figure 19 shows the convolution of a 3x3 kernel on a
5x5 input image. This example is for a single channel input.
Each step of convolution is depicted in the figure. Similar to the case of 1d, in a 2d convolution, an element
wise multiplication of the filter with the image patch is done and then a sum is taken to produce a single
output element (Image patch here means the portion of the image below the kernel). In step one, the
filter starts from the top left corner of the image. After performing an element wise multiplication and a
summation, we get the result to be 3 as shown in the output (blue colored). In step 2, the kernel moves
towards the right by a distance of 1 pixel. Therefore, the stride of this convolution is 1. As the filter scans

27

through the image, the output map gets formed. It is intuitively observed that the position of the output
element is influenced by where the kernel is placed on the image. The final step is to add a bias per channel
for the output. We recommend to perform the convolution operation by hand to get a good grasp on the
concept.

Figure 19: 2d Convolution Example stride 1

28

Figure 20: 2d Convolution Example stride 2

Figure 20 shows the steps relating to convolution with stride = 2. As you can see, the filter moves by 2
pixels left to right and top to bottom. With greater strides, the number of computations performed reduces
and the size of input compared to stride = 1 is reduced.
Similar to 1d convolutions, the general formula for the size of output is given as:

output size = [(input size - kernel size)//stride] + 1

We can extend the same idea stated above for a single channel image to a multi-channel image. Since a
single channel filter convolves with a single channel image as explained previously, we would require a multi
channel kernel to convolve a multi channel image. Therefore, the number of channels of the convolving kernel
should be equal to the number of channels of the input image.

29

Figure 21: Multi channel convolution example

As shown in figure 21, A has 2 channels and so do all the kernels in W. Consider convolution with Kernel
1. Applying the same idea from the previous paragraphs, 2 input patches with 2 kernel channels would
produce 2 output scalars. Then the outputs are summed to get a final single output scalar. The filter then
takes 2 pixel steps (in this example stride = 2) and computes the same. After the 4th step, we get a single
channel output. The take away is that, convoluving a filter with one input, produces a single channel output

30

irrespective of the number of input/kernel channels. When we use a different filter, we get a different output
channel. That’s what happens in convolution with Kernel 2 and Kernel 3. From 3 filters convolving with
the input image, we get 3 output channels as shown. These channels are concatenated to produce a single 3
channel output image. The bias for this 3 channel output will be a 3x1 vector with each element as a bias
for each channel.
The summary is that:

• no. input channels = no. kernels channels

• no. output channels = no. kernels

Now we will see how backward in convolution is performed. Backpropagation in 2d Convolution is not as
hard at it sounds. Turns out, it employs that same process of convolution. Given an output map Z, in
backprop, we get the gradient of the output map Z wrt the loss L dLdZ (∇ZL) from the previous layers.
This gradient map will be of the same shape as Z. With (∇ZL), we need to find the gradient of the Loss wrt
to weights (∇WL), bias (∇bL) and input (∇AL).
The steps which are done to calculate (∇AL) are as follows.

• Pad the dLdZ map with kernel size− 1 zeros as shown in Figure 22. We do this because, in forward,
convolution reduces the size

• Flip the filter top to bottom and left to right.

• Convolve the flipped kernel over the padded (∇ZL) to get (∇AL) as the convolution output.

The above process gives us self.dLdA (∇AL) for one input channel. To get the same for other input
channels, we flip the filter channel corresponding to the input channel and convolve with the padded (∇ZL).

To calculate self.dLdW: Simply convolve the (∇ZL) with the input map A to get (∇WL). Since one
output map is produced from one filter, we can obtain gradients w.r.t. all filters by doing the same process
with different output maps. In addition, we can get gradients for multiple channels of the same filter by
convoluving (∇AL) with the corresponding channel in input.

To calculate self.dLdb: As you know from the forward, bias is a single scalar for each output channel.
Hence, we get dLdb by just summing the elements of dLdZ channelwise to produce a vector of shape equal
to the number of output channels.
self.dLdW and self.dLdb represent the unaveraged gradients of the loss w.r.t self.W and self.b. Their
shapes are the same as the weight self.W and the bias self.b.

31

Figure 22: Conv2d stride1 Backward: Convolution

5.2.1 Conv2d stride1

As you may have observed, the above example is for a stride of 1. In this section, you will implement forward
and backward of the Conv2d stride1 class. Make sure that you have understood it from the previous section
before starting to code.
Please consider the following class structure.

class Conv2d_stride1:

def __init__(self, in_channels, out_channels, kernel_size, weight_init_fn, bias_init_fn):

self.in_channels = in_channels

self.out_channels = out_channels

self.kernel_size = kernel_size

self.W = weight_init_fn(out_channels, in_channels, kernel_size)

self.b = bias_init_fn(out_channels)

self.dLdW = np.zeros(self.W.shape)

self.dLdb = np.zeros(self.b.shape)

def forward(self, A):

self.A = A

32

Z = # TODO

return Z

def backward(self, dLdZ):

self.dLdW = #TODO

self.dLdb = #TODO

dLdA = # TODO

return dLdA

As you can see, the Conv2d stride1 class has initialization, forward, and backward attribute functions.
Immediately once the class is instantiated, the code in init is run. The initialization phase using
init includes:

• As arguments, Conv2d stride1 will be specified using in channel, out channel, kernel size, and
initialization functions.

• As attributes, Conv2d stride1 will be initialized with W, dLdW, b, and dLdb.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores variables A

• As an output, forward returns variable Z.

In backward, we calculate multiple gradient changes and store values needed for optimization. The attribute
function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, backward stores variables dLdW and dLdb.

• As an output, backward returns variable dLdA.

Table 7: Conv2d stride1 Class Components

Code Name Math Type Shape Meaning
A A matrix N × C0 ×H0 ×W0 data input for convolution
Z Z matrix N × C1 ×H1 ×W1 features after conv2d with stride 1
W W matrix C1 × C0 ×K ×K weight parameters
b b matrix C1 × 1 bias parameters
dLdZ ∂L/∂Z matrix N × C1 ×H1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×H0 ×W0 how changes in inputs affect loss
dLdW ∂L/∂W matrix C1 × C0 ×K ×K how changes in weights affect loss
dLdb ∂L/∂b matrix C1 × 1 how changes in bias affect loss

Table 7 shows the class components. H0,W0 are the shape before convolution while H1,W1 are the shape
after convolution.

5.2.2 Conv2d

In this section, we would be implementing Conv2d which works for any stride > 1. We will reuse the code
from conv1d stride1 5.2.1 implementation to make it work for any stride > 1.
Specifically, a conv2d stride1 layer followed by a downsample2d layer with factor k=2 is equivalent to a
conv2d stride2. More generally, a conv2d stride1 layer followed by a downsample1d layer with factor k is

33

equivalent to a conv1d stride with stride k. Figure 23 shows this.

Figure 23: Stride 2 convolution as stride 1 convolution and downsampling with factor = 2

That’s it! Now we can implement a conv2d operation for any value of stride with using just a combination
of conv2d stride1 and downsample layer with factor k (= stride).

For backward, the steps in forward are reversed in the same order. For stride > 1, downsampling backward
is called as shown in Figure 24 and then convolution stride 1 backward is called as shown in Figure 25.

Figure 24: Downsample2d Backward: Conv2d Example

34

Figure 25: Conv2d Backward Example (stride¿1)

Make sure that you have understood that strided convolutions are just a combination of convolution with
stride 1 and downsampling. In this section, your task is to implement the forward and backward attributes
of the Conv2d class. Please consider the following class structure.

class Conv2d():

def __init__(self, in_channels, out_channels, kernel_size, stride, weight_init_fn, bias_init_fn):

self.stride = stride

self.conv2d_stride1 = None # TODO

self.downsample2d = None # TODO

def forward(self, A):

Call Conv2d_stride1 forward

TODO

Call downsample2d forward

Z = # TODO

return Z

def backward(self, dLdZ):

35

Call downsample2d backward

TODO

Call Conv2d_stride1 backward

dLdA = # TODO

return dLdA

As you can see, the Conv2d class has initialization, forward, and backward attribute functions. Immediately
once the class is instantiated, the code in init is run. The initialization phase using init includes:

• As arguments, Conv2d will be specified using in channels, out channels, kernel size and stride.
They are all positive integers.

• As attributes, Conv2d will be initialized with Conv2d stride1, Downsample2d, W, dLdW, b, and dLdb.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores no variables.

• As an output, forward returns variable Z.

In backward, we calculate multiple gradient changes and store values needed for optimization. The attribute
function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, backward stores no variables.

• As an output, backward returns variable dLdA.

Table 8: Conv2d Class Components

Code Name Math Type Shape Meaning
stride stride scalar - downsampling factor
A A matrix N × C0 ×H0 ×W0 data input for convolution
Z Z matrix N × C1 ×H1 ×W1 features after conv2d with stride
dLdZ ∂L/∂Z matrix N × C1 ×H1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×H0 ×W0 how changes in inputs affect loss

where H0,W0 are the shape before convolution while H1,W1 are the shape after convolution.

5.3 Transposed Convolution [10 points]

5.3.1 ConvTranspose1d

In regular convolutions, the affine value Z for a layer “pulls” input values A from the previous layer which
causes in reduction of the output size. However, in an Transposed Convolution layer, the input values A
are “pushed” to the next layer Z such that the output map’s size is increased. The primary operation of
ConvTransposed1d is to upsample the input and then convolve (with stride 1) to get the output. In your
implementation, you will pass upsampling factor to the ConvTransposed1d class, which is the same in
definition of convolution with a fractional stride (1

upsampling factor). Please consider the Figure 26 for better
intuition.

36

Figure 26: 1d Transpose Convolution

In this section, your task is to implement the forward and backward attributes of the ConvTransposed1d
class. Please consider the following class structure.

class ConvTranspose1d():

def __init__(self, in_channels, out_channels, kernel_size, upsampling_factor,

weight_init_fn, bias_init_fn):

self.upsampling_factor = upsampling_factor

self.upsample1d = # TODO

self.conv1d_stride1 = # TODO

def forward(self, A):

Z = # TODO (<= 2 lines of code)

Line 1: Upsampling1d forward

Line 2: Conv1d_stride1 forward

return Z

def backward(self, dLdZ):

dLdA = # TODO (<= 2 lines of code)

Line 1: Conv1d_stride1 backward

Line 2: Upsampling1d backward

return dLdA

37

As you can see, the ConvTransposed1d class has initialization, forward, and backward attribute functions.
Immediately once the class is instantiated, the code in init is run. The initialization phase using init

includes:

• As arguments, ConvTransposed1d will be specified using in channel, out channel, kernel size,
upsampling factor, weight init fn and bias init fn. They are all positive integers.

• As attributes, ConvTransposed1d will be initialized with upsampling factor, conv1d stride1, and
Upsample1d.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores no variables.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, ConvTransposed1d backward stores no variables.

• As an output, backward returns variable dLdA.

Table 9: ConvTransposed1d Class Components

Code Name Math Type Shape Meaning
upsampling factor upsampling factor scalar - upsampling factor
A A matrix N × C0 ×W0 data input for ConvTransposed1d
Z Z matrix N × C1 ×W1 features after ConvTransposed1d
dLdZ ∂L/∂Z matrix N × C1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×W0 how changes in inputs affect loss

where W0 is the shape before convolution while W1 is the shape after convolution.

5.3.2 ConvTranspose2d

Similar to ConvTranspose1d, ConvTranspose2d is a combination of Upsample2d and convolution with stride
1. Please consider the Figure 27 for better intuition. The example uses as convolution with stride = 1/3.
The downsampling factor k = 3 in the forward example. In the backward example, we have used an example
from stride = 1/2 convolution where the downsampling factor = 2.

38

Figure 27: 2d Transpose Convolution

In your implementation, you are going to pass a upsampling factor to the ConvTranspose2d class, which
is the inverse of the stride(in this case, stride is fractional). Your task is to implement the forward and
backward attributes of the ConvTranspose2d class. Please consider the following class structure.

In this section, your task is to implement the forward and backward attributes of the ConvTranspose2d
class. Please consider the following class structure.

class ConvTranspose2d():

def __init__(self, in_channels, out_channels, kernel_size, upsampling_factor,

weight_init_fn, bias_init_fn):

self.upsampling_factor = upsampling_factor

self.upsample2d = # TODO

self.conv2d_stride1 = # TODO

39

def forward(self, A):

Z = # TODO (<= 2 lines of code)

Line 1: Upsampling2d forward

Line 2: Conv2d_stride1 forward

return Z

def backward(self, dLdZ):

dLdA = # TODO (<= 2 lines of code)

Line 1: Conv2d_stride1 backward

Line 2: Upsampling2d backward

return dLdA

As you can see, the ConvTranspose2d class has initialization, forward, and backward attribute functions.
Immediately once the class is instantiated, the code in init is run. The initialization phase using init

includes:

• As arguments, ConvTranspose2d will be specified using in channel, out channel, kernel size,
upsampling factor, weight init fn and bias init fn. They are all positive integers.

• As attributes, ConvTranspose2d will be initialized with upsampling factor, conv2d stride1, and
Upsample2d.

In forward, we calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores no variables.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, ConvTranspose2d backward stores no variables.

• As an output, backward returns variable dLdA.

Table 10: ConvTranspose2d Class Components

Code Name Math Type Shape Meaning
upsampling factor upsampling factor scalar - upsampling factor
A A matrix N × C0 ×H0 ×W0 data input for ConvTranspose2d
Z Z matrix N × C1 ×H1 ×W1 features after ConvTranspose2d
dLdZ ∂L/∂Z matrix N × C1 ×H1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×H0 ×W0 how changes in inputs affect loss

where H0,W0 are the sizes before transposed convolution while H1,W1 are the sizes after transposed convo-
lution.

5.4 Flatten layer

In nn/conv.py, complete Flatten().

40

This layer is often used between Conv and Linear layers, in order to squish the high-dim convolutional
outputs into a lower-dim shape for the linear layer. In forward, a multi-dimensional input is reshaped into
a single dimensional output. In backward, a single dimensional input is reshaped into a multi-dimensional
output.

Figure 28: Flatten Forward Example

Figure 29: Flatten Backward Example

class Flatten():

def forward(self, A):

#TODO save shape of A

Z = # TODO # reshape

def backward(self, dLdZ):

dLdA = # TODO # reshape

As you can see, the Flatten class has forward, and backward attribute functions. In forward, we calculate
Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores the shape of input.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, Flatten backward stores no variables.

• As an output, backward returns variable dLdA.

Table 11: Flatten Class Components

Code Name Math Type Shape Meaning
A A matrix N × C0 ×W0 data input for Flatten
Z Z matrix N × (C0 ∗W0) features after Flatten
dLdZ ∂L/∂Z matrix N × (C0 ∗W0) how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×W0 how changes in inputs affect loss

Hint: This can be done in one line of code, with no new operations or (horrible, evil) broadcasting needed.

41

Bigger Hint: Flattening is a subcase of reshaping. numpy.prod may be useful.

5.5 Pooling [30 Points]

Different from convolution, the operation in pooling is fixed and no parameters to learn.

Figure 30: Pooling2d Example

Max pooling selects the largest from a pool of elements and is performed by “scanning” the input. Your
task is to implement both forward propagation and backward propagation for 1d and 2d max pooling. In
case you find two max values in a kernel patch, you can use the first occurrence (consider row major ordering)
of max value as the output for that kernel patch. This also can be seen from Figure 30.

Mean pooling takes the arithmetic mean of elements and is performed by “scanning” the input. Your task
is to implement both forward propagation and backward propagation for 1d and 2d mean pooling.

Similar to the previous layers, you will implement a stride 1 pooling and then a combination of pooling and
downsampling for higher strides. The pooling operation itself is just a jitter invariant operation. Pooling
typically uses a stride > 1, which is the same as convolution followed by downsampling. You can take
maxpooling as a normal convolution with standard filter and max activation. As to the meanpooling, it can
be viewed as a convolution with a special filter, where each element in the filter is 1

filter size . Consider the
class structure given below.

class MaxPool2d_stride1():

def __init__(self, kernel):

self.kernel = kernel

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

42

https://numpy.org/doc/stable/reference/generated/numpy.prod.html

return dLdA

class MeanPool2d_stride1():

def __init__(self, kernel):

self.kernel = kernel

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

As you can see, each Pool2d stride1 class has forward, and backward attribute functions. In forward, we
calculate Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward of the MaxPool2d stride1 stores the index of the max values and the Mean-
Pool2d stride1 stores the shape of input.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, Pool2d stride1 backward stores no variables.

• As an output, backward returns variable dLdA.

You are expected to complete pooling operation in MaxPool2d stride1 and MeanPool2d stride1. Use
MaxPool2d and MeanPool2d as a wrapper class to implement downsampling after the max or mean
operations.

class MaxPool2d():

def __init__(self, kernel, stride):

self.kernel = kernel

self.stride = stride

#Create an instance of MaxPool2d_stride1

self.maxpool2d_stride1 = MaxPool2d_stride1(kernel)

self.downsample2d = Downsample2d(stride)

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

class MeanPool2d():

def __init__(self, kernel, stride):

43

self.kernel = kernel

self.stride = stride

def forward(self, A):

Z = # TODO

return Z

def backward(self, dLdZ):

dLdA = # TODO

return dLdA

As you can see, each Pool2d class has forward, and backward attribute functions. In forward, we calculate
Z and store values needed for backward. The attribute function forward includes:

• As an argument, forward expects input A.

• As an attribute, forward stores the nothing.

• As an output, forward returns variable Z.

The attribute function backward includes:

• As an argument, backward expects input dLdZ.

• As attributes, Pooling backward stores no variables.

• As an output, backward returns variable dLdA.

Table 12: Pooling Class Components

Code Name Math Type Shape Meaning
stride stride scalar - downsampling factor
kernel kernel size scalar - kernel size
A A matrix N × C0 ×H0 ×W0 data input for pooling
Z Z matrix N × C0 ×H1 ×W1 features after pooling
dLdZ ∂L/∂Z matrix N × C0 ×H1 ×W1 how changes in outputs affect loss
dLdA ∂L/∂A matrix N × C0 ×H0 ×W0 how changes in inputs affect loss

44

6 Converting Scanning MLPs to CNNs [10 Points]

6.1 CNN as a Simple Scanning MLP

In hw2/mlp scan.py for CNN SimpleScanningMLP compose a CNN that will perform the same computation
as scanning a given input with a given multi-layer perceptron.

• You are given a 128 × 24 input (128 time steps, with a 24-dimensional vector at each time). You are
required to compute the result of scanning it with the given MLP.

• The MLP evaluates 8 contiguous input vectors at a time (so it is effectively scanning for 8-time-
instant wide patterns).

• The MLP “strides” forward 4 time instants after each evaluation, during its scan. It only scans
until the end of the input (so it does not pad the end of the input with zeros).

• The MLP itself has three layers, with 8 neurons in the first layer (closest to the input), 16 in the second
and 4 in the third. Each neuron uses a ReLU activation, except after the final output neurons. All bias
values are 0. Architecture is as follows:

[Flatten(), Linear(8 * 24, 8), ReLU(), Linear(8, 16), ReLU(), Linear(16, 4)]

• The Multi-layer Perceptron is composed of three layers and the architecture of the model is
given in hw2/mlp.py included in the handout. You do not need to modify the code in this file, it is
only for your reference.

• Since the network has 4 neurons in the final layer and scans with a stride of 4, it produces
one 4-component output every 4 time instants. Since there are 128 time instants in the inputs
and no zero-padding is done, the network produces 31 outputs in all, one every 4 time instants. When
flattened, this output will have 124 (4× 31) values.

For this problem you are required to implement the above scan, but you must do so using a Convolutional
Neural Network. You must use the implementation of your Convolutional layers in the above sections to
compose a Convolution Neural Network which will behave identically to scanning the input with the given
MLP as explained above.

Your task is merely to understand how the architecture (and operation) of the given MLP translates to a
CNN. You will have to determine how many layers your CNN must have, how many filters in each layer,
the kernel size of the filters, and their strides and their activations. The final output (after flattening) must
have 124 components.

Your tasks include:

• Designing the CNN architecture to correspond to a Scanning MLP

– Create Conv1d objects defined as self.conv1, self.conv2, self.conv3, in the init method of
CNN SimpleScanningMLP.

– For the Conv1d instances, you must specify the: in channels, out channels, kernel size, and
stride.

– Add those layers along with the activation functions/ flatten layer to a class attribute you create
called self.layers.

– Initialize the weights for each convolutional layer, using the init weights method. You must
discover the orientation of the initial weight matrix(of the MLP) and convert it for the weights of
the Conv1d stride1 layers.

– This will involve (1) reshaping a transposed weight matrix into out channels, kernel size,

in channels and (2) transposing the weights back into the correct shape for the weights of a
Conv1d stride1 instance, out channels, in channels, kernel size.

45

– Use pdb to help you debug, by printing out what the initial input to this method is. Each index
into the given weight’s list corresponds to the Conv1d stride1 layer. I.e. weights[0] are the weights
for the first Conv1d stride1 instance.

class CNN_SimpleScanningMLP():

def __init__(self):

self.conv1 = # TODO

self.conv2 = # TODO

self.conv3 = # TODO

self.layers = []

def init_weights(self, weights):

w1,w2,w3 = weights

self.conv1.conv1d_stride1.W = # TODO

self.conv2.conv1d_stride1.W = # TODO

self.conv3.conv1d_stride1.W = # TODO

def forward(self, A):

Z = A

for layer in self.layers:

Z = layer(Z)

return Z

def backward(self, dLdZ):

dLdA = dLdZ

for layer in self.layers[::-1]:

dLdA = layer.backward(dLdA)

return dLdA

The paths have been appended such that you can create layers with the calls to the class themselves, i.e. to
make a ReLU layer, just use ReLU() . You have a weights file which will be used to autograde your network
locally. We will not give you tables of variables in this section. Please figure out the shape and complete
this section.

For more of a theoretical understanding of Simple Scanning MLPs, please refer to the Ap-
pendix section.

6.2 CNN as a Distributed Scanning MLP

Complete 5.2 in hw2/mlp scan.py in the class CNN DistributedScanningMLP. This section of the homework
is very similar to 5.1, except that the MLP provided to you is a shared-parameter network that captures a
distributed representation of the input.

You must compose a CNN that will perform the same computation as scanning a given input with a MLP.

Architecture details:

• The network has 8 first-layer neurons, 16 second-layer neurons and 4 third-layer neurons.
However, many of the neurons have identical parameters.

• As before, the MLP scans the input with a stride of 4 time instants.

• The parameter-sharing pattern of the MLP is illustrated in Figure 4. As mentioned, the MLP is a 3
layer network with 28 neurons.

• Neurons with the same color in a layer share the same weights. You may find it useful to visualize the
weights matrices to see how this symmetry translates to weights.

46

You are required to identify the symmetry in this MLP and use that to come up with the architecture of the
CNN (number of layers, number of filters in each layer, their kernel width, stride and the activation in each
layer).

The aim of this task is to understand how scanning with this distributed-representation MLP (with
shared parameters) can be represented as a Convolutional Neural Network.

Figure 31: The Distributed Scanning MLP network architecture

class CNN_DistributedScanningMLP():

def __init__(self):

self.conv1 = # TODO

self.conv2 = # TODO

self.conv3 = # TODO

self.layers = []

def init_weights(self, weights):

w1, w2, w3 = weights

self.conv1.conv1d_stride1.W = # TODO

self.conv2.conv1d_stride1.W = # TODO

self.conv3.conv1d_stride1.W = # TODO

def forward(self, A):

Z = A

for layer in self.layers:

Z = layer(Z)

return Z

def backward(self, dLdZ):

dLdA = dLdZ

for layer in self.layers[::-1]:

dLdA = layer.backward(dLdA)

return dLdA

Your tasks include:

• Designing the CNN architecture to correspond to a Distributed Scanning MLP

– Create Conv1d objects defined as self.conv1, self.conv2, self.conv3, in the init method of
CNN DistributedScanningMLP by defining the: in channels, out channels, kernel size, and
stride for each of the instances.

47

– Then add those layers along with the activation functions/ flatten layer to a class attribute you
create called self.layers.

– Initialize the weights for each convolutional layer, using the init weights method. Your job is
to discover the orientation of the initial weight matrix and convert it for the weights of the
Conv1d stride1 layers. This will involve:

(1) Reshaping the transposed weight matrix into out channels, kernel size, in channels

(2) Transposing the weights again into the correct shape for the weights of a Conv1d stride1

instance. You must slice the initial weight matrix to account for the shared weights.

The autograder will run your CNN with a different set of weights, on a different input (of the same size as
the sample input provided to you). The MLP employed by the autograder will have the same parameter
sharing structure as your sample MLP. The weights, however, will be different.

For more of a theoretical understanding of Distributed Scanning MLPs, please refer to the
Appendix section.

48

7 Build a CNN model [5 Points]

Finally, in hw2/hw2.py, implement a CNN model.

Figure 32: CNN Architecture to implement.

• First, initialize your convolutional layers in the init function using Conv1d instances.

– Then initialize your flatten and linear layers.

– You have to calculate the out width of the final CNN layer and use it to correctly give the linear
layer the correct input shape. You can use some of the formulas referenced in the previous sections
to calculate the output size of a layer.

• Now, implement the forward method, which is extremely similar to the MLP code from HW1.

• There are no batch norm layers.

• Remember to add the Flatten and Linear layer after the convolutional layers and activation functions.

• Next, implement the backward method which is extremely similar to what you did in HW1.

• The step function and zero gradient function are already implemented for you.

• Remember that we provided you the Tanh and Sigmoid code; if you haven’t already, see earlier in-
structions for copying and pasting them in.

• Please refer to the lecture slides for pseudocodes.

We ask you to implement this because you may want to modify it and use it for HW2P2.

Great work as usual!! All the best for HW2P2!!

49

8 Appendix

8.1 Scanning MLP : Illustration

Consider a 1-D CNN model (This explanation generalizes to any number of dimensions).
Specifically consider a CNN with the following architecure:

• Layer 1: 2 filters of kernel width 2, with stride 2

• Layer 2: 3 filters of kernel width 3, with stride 3

• Layer 3: 2 filters of kernel width 3, with stride 3

• Finally a single softmax unit which combines all the outputs of the final layer.

This is a regular, if simple, 1-D CNN. The computation performed can be visualized by the figure below.

Figure 33: Scanning MLP Figure 1

Input: The little black bars at the bottom represent the sequence of input vectors. There are two layer-1
filters of width 2.

Layer 1: The red and green circles just above the input represent these filters (each filter has one arrow
going to each of the input vectors it analyzes, in the illustration; a more complete illustration would have as
many arrows as the number of components in the vector).

Each filter (of width 2, stride 2) analyzes 2 inputs (that’s the kernel width), then strides forward by 2 to the
next step. The output is a sequence of output vectors, each with 2 components (one from each level-1 filter).

In the figure the little vertical rectangular bars shows the sequence of outputs computed by the two layer-1
filters.

The layer-1 outputs now form the sequence of output vectors that the second-layer filters operate on.

Layer-2: Layer 2 has 3 filters (shown by the dark and light blue circles and the yellow circle). Each of them
gets inputs from three (kernel width) of the layer-1 bars. The figure shows the complete set of connections.
The three filters compute 3 outputs, which can be viewed as one three-component output illustrated by the

50

vertical second-level rectangles in the figure.

The layer-2 filters then skip 3 layer-1 vectors (stride 3) and then repeat the computation. Thus we get one
3-component layer-2 output for every three layer-1 outputs.

Layer 3 works on the outputs of layer 2.

Layer-3: Layer 3 consists of two filters (the black and grey circles) that get inputs from three layer-2 vectors
(kernel width 3). Each of the layer 3 filters computes an output, so we get one 2-component output (shown
by the orange boxes). The layer-3 units then stride 3 steps over the layer-2 outputs and the compute the
next output.

Softmax: The outputs of the layer-3 units are all jointly then sent on to the softmax unit for the final
classification.

Now note that this computation is identical to ”scanning” the input sequence of vectors with the MLP
below, where the MLP strides by 18 steps of input after each analaysis. The outputs from all the individual
evaluations by the scanning MLP are sent to a final softmax.

Figure 34: Scanning MLP Figure 2

The ”scanning” MLP here has three layers. The first layer has 18 neurons, the second has 9 and the third
has 2. So the CNN is actually equivalent to scanning with an MLP with 29 neurons.

Notably, since this is a distributed representation, and although the MLP has 29 neurons, it only has 7
unique neuron types. The 29 neurons share 7 shared sets of parameters.

It’s sometimes more intuitive to use a horizontal representation of the arrangement of neurons, e.g.

Note that this figure is identical to the second figure shown. But it also leads to more intuitive questions
such as ”do the individual groups of neurons (shown in each rectangular bar) have to have scalar activations,

51

Figure 35: Scanning MLP Figure 3

or could they be grouped for vector activations. Such intuitions lead to other architectures.

52

	Introduction
	The Story:
	Convolutional Layer
	Activation
	Resampling (Upsampling and Downsampling)
	Pooling
	Flatten
	Linear Layer
	Softmax Layer
	Putting it all together

	MyTorch Structure
	Multiple Choice [5 Points]
	Resampling [10 Points]
	Upsampling1d
	Downsampling1d
	Upsampling2d
	Downsampling2d

	Convolutional Neural Networks
	Convolutional layer : Conv1d [15 points]
	Conv1d_stride1
	Conv1d

	Convolutional layer : Conv2d [15 points]
	Conv2d_stride1
	Conv2d

	Transposed Convolution [10 points]
	ConvTranspose1d
	ConvTranspose2d

	Flatten layer
	Pooling [30 Points]

	Converting Scanning MLPs to CNNs [10 Points]
	CNN as a Simple Scanning MLP
	CNN as a Distributed Scanning MLP

	Build a CNN model [5 Points]
	Appendix
	Scanning MLP : Illustration

