
Data Preprocessing
11-485 / 685 / 785

Recitation 0J

Agenda

Part A:

1. What is data preprocessing?

Part B:

1. Why do we preprocess data?
2. How do we preprocess data?

Part C:

1. Preprocessing Speech | MFCCs

Agenda

Part A:

1. What is data preprocessing?

Part B:

1. Why do we preprocess data?
2. How do we preprocess data?

Part C:

1. Preprocessing Speech | MFCCs

Raw
Data

Preprocessed
Data

When you feed raw data into your model

Defining with memes

So - What is it, in non-meme terms?

Data preprocessing is a step that takes raw data and transforms it in preparation for another processing
pipeline, in our case, machine learning.

This is where the ‘pre’ comes from, it takes place before any kind of model training or inference.

Raw Data Preprocessing Transformed Data ML Algorithm

Target

Training

Raw Data Preprocessing Transformed Data Trained Model PredictionInference

Never Forget!

Always split your data into training and testing before any preprocessing happens.

Q: What would happen if we don’t do this?

A: Leakage!

More on this later.

Data Preprocessing
11-485 / 685 / 785

Recitation 0J - Part B

Agenda

Part A:

1. What is data preprocessing?

Part B:

1. Why do we preprocess data?
2. How do we preprocess data?

Part C:

1. Preprocessing Speech | MFCCs

Data can..

1. be full of outliers, and can have uneven ranges of values;
2. have redundant, unnecessary features;
3. be in a format that can’t be processed by machines;
4. have a severely uneven distribution of classes;

(classes = labels; something that needs to be learned)
5. have incomplete rows;

And many other such problems that make it hard for the model to learn effectively.

Data Preprocessing can help us here!

Data Cleaning - Dealing with Data Quality

1. Some features might have values that are naturally very large, while others are naturally small, and
this might result in the former getting undue importance over the latter;
a. By scaling both to be restricted in a fixed range, usually [0,1], we can curb this;
b. You can also normalize your data, i.e. impose a normal distribution over the values;

2. Data collected from different sources might have mismatched data types;
Eg: financial data from different countries will have different currencies;

3. Missing data is a very common characteristic. It can be dealt with by either
a. Imputing values from other rows
b. Ignoring the row altogether (only when you have sufficient data)

4. Text and speech often needs to be cleaned up
URLs, Stopwords, “umm”, “err” etc

Problems with high dimensional data

● Not all features are equally important
a. Multicollinear features
b. Noisy attributes

● If Data is too large (in dimensionality) it’s worthwhile trying to keep only the features of most
importance
a. Curse of dimensionality → generally sparse data points → model does not generalize well

● Several Ways to do it:
a. One of the most prevalent methods is to use feature correlation (with the target variable) as a

proxy for “importance” and remove features below some threshold.

Dimensionality Reduction

Dimensionality Reduction

Dimensionality
reduction methods

Feature selection Creating new features

● Applying filters
● Forward feature selection
● Backward elimination

● Applying kernel
functions

● Autoencoders

● PCA
● LDA
● SVM

Non-linear methods

Linear methods

Dealing with Data Leakage

Data leakage is observed when some input features are correlated with output or it has part of output
while training which won’t be available during inference

Methods

● Remove features that contain information about the target that normally wouldn’t be available during
inference

● Have a separate validation dataset to check the model performance while training

● Use k-fold cross validation when data is less

● Normalized training data separately and then use those parameters for test dataset

Categorical to Numerical

Machine can only interpret numerical values so mapping categorical data to numeric values before
training is important

Methods

● Directly mapping classes to unique numbers
(NOTE: might introduce undesired bias due to ordinality)

● Create One Hot Encoded Vector
● Use Feature Hashing → for large dataset or data encryption

Uneven distribution of classes eg. 10 instances of class A
and 90 instances of class B

Method

● Oversampling or undersampling
● Try to have realistic (sometimes uniform)

distribution of classes over data
● Have weighted loss if data is highly imbalanced

Dealing with class imbalance

How to Preprocess?
Various python libraries have support for data preprocessing

PyTorch

Data Preprocessing

● Random sampling, weighted random sampling
● Filters for cleaning data (using lambda functions)
● Random splitting and shuffling of data

Data Augmentation

● Torchvision - for image data
● Torchaudio - for audio data

Implemented while creating Dataloader class (Pytorch document)

Scikit-learn, Pandas, Numpy

● Random data splits, applying filters, normalizing features, etc.

https://www.maskaravivek.com/post/pytorch-dataloader-with-corrupted-data/
https://pytorch.org/docs/stable/data.html#

Agenda

Part A:

1. What is data preprocessing?

Part B:

1. Why do we preprocess data?
2. How do we preprocess data?

Part C:

1. Preprocessing Speech | MFCCs

Let’s “talk” about speech.

MFCC
Mel Frequency Cepstral Coefficients

A little detour into signal processing

- Speech signals can be understood as a mixture of signals at various
frequencies

- Raw speech signals aren’t always the best source of data for models to
work with

- Contain noise
- Naturally continuous data that needs discretization at the minimum

- Reckless discretization can lead to noisy frequency bands
- especially the high ones

MFCC
Mel Frequency Cepstral Coefficients

MFCC
Mel Frequency Cepstral Coefficients

MFCC
Mel Frequency Cepstral Coefficients

Cepstrum ↔ Spectrum

C(x(t)) = F-1[log(F[x(t)])]

Analogue to
Digital

Pre-Emphasis
Hamming
Windows

Digital Fourier
Transforms

Mel Filter
Banks + loge

Inverse Digital
Fourier Transforms

Dynamic
Features

Feature
Transforms

E
ne

rg
y

Generating MFCCs

Analogue to
Digital

Pre-Emphasis
Hamming
Windows

Digital Fourier
Transforms

Mel Filter
Banks + loge

Inverse Digital
Fourier Transforms

Dynamic
Features

Feature
Transforms

E
ne

rg
y

Generating MFCCs

Analogue to Digital Pre-Emphasis
Hamming
Windows

Stage 1

Convert continuous
analogue signals into
discrete digital signals

Giving a boost to higher
frequency signals

Segmenting signal into
windows 25ms in width
and 10ms apart

Cosine window instead of
a rectangular one

Digital Fourier
Transform

Mel Filter banks + loge Inverse DFT

Stage 2 - The Cepstrum

Bring signal from
time-domain to frequency
domain

Decompose signal into
series of sinusoids

Mapping the signal onto
separate frequency bands
at the mel-frequency
scale

Close to the non-linear
human perception of
sound

Put signal back into the
time-domain - Selectively

Cepstrum ↔ Spectrum

C(x(t)) = F-1[log(F[x(t)])]

Analogue to
Digital

Pre-Emphasis
Hamming
Windows

Digital Fourier
Transforms

Mel Filter
Banks + loge

Inverse Digital
Fourier Transforms

Dynamic
Features

Feature
Transforms

E
ne

rg
y

Stage 3 and Energy

With 12 features from the cepstrum, 1 from Energy, we get 13
features in all.

Further including the first and second order derivatives, we have
39 features from this process.

