Your First MLP

Recitation 1, part 1
Fall 202¢

Overview

- Neural Networks
- Perceptrons

- Multilayer perceptrons
- Forward Pass
Backpropagation
Update Weights

Neural Networks

- The brain, made up of connected
neurons, are the inspirations for
artificial neural networks.

Neural Networks

- A neuron is a node with many
inputs and one output.
- A neural network consists of

Neuron cell body
Synapse

many interconnected neurons -- a Auon of) lews
. 7] . H ihdnieg euron £l {)

“simple” device that receives data / vty \ S5

at the input and provides a N Nucleus N oA

Axon

response.

- Information are transmitted from
one neuron to another by
electrical impulses and chemical penartes
signals.

of next
neuron

tips

Synapse Electrical signal

Perceptrons

- Perceptron is a single layer neural
network.

Perceptrons

Perceptron is a single layer neural
network.

- The perceptron consists of 4
parts.

Perceptrons

Perceptron is a single layer neural
network.
- The perceptron consists of 4

parts.
Input values

I1

Perceptrons

- Perceptron is a single layer neural

network. 1
- The perceptron consists of 4 wo
parts. :
Input values :
Weights
Wp—1
Ln—1
Wr,

Perceptrons

- Perceptron is a single layer neural
network. L1
- The perceptron consists of 4

parts.

Input values
Weights
Weighted sums

wo

Perceptrons

- Perceptron is a single layer neural
network.
- The perceptron consists of 4
parts.
- Input values
- Weights

- Weighted sums
- Threshold / Activation functions

I1

wo

Perceptrons

- Perceptron is a single layer neural
network.

- The perceptron consists of 4
parts.

- The perceptron works on the

following steps:
Multiply all inputs with their weights

Perceptrons

- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- The perceptron works on the
following steps:
Multiply all inputs with their weights
Add all multiplies values — weighted
sum

Perceptrons

- Perceptron is a single layer neural

network.
- The perceptron consists of 4

parts.
- The perceptron works on the

following steps:
- Multiply all inputs with their weights
- Add all multiplies values — weighted

sum
- Apply the weighted sum to activation

function

tanh(z)

ReLU

max(0, z) ‘

Linear

i SX) =x
X

X

Perceptrons

Perceptron is usually used to
classify the data into two parts --
Linear Binary Classifier.

T

Tn—1

Ln

Wp—-1

Wy,

cat

dog

Perceptrons

- Perceptron is usually used to
classify the data into two parts --

Linear Binary Classifier.
- Weights shows the strength of the
particular node.
- Activation functions are used to
map the input between the required
values

Multilayer Perceptrons

What if we want to be able to distinguish between more classes?

Multilayer Perceptrons

What if we want to be able to distinguish between more classes?
Introduce more perceptrons !

w(i, j) w(j, k) w(k, 1) w(l, m)

> Wiy 3 >
(1.4),
s L | I | T
Y
XA A EIC XD
Z| T EI 2T

Multilayer Perceptrons

w(, k)

o

w(i, j)

HIDDEN
_LAYER

HIDDEN
_LAYER

HIDDEN
_LAYER

OUTPUT
LAYER

1 order to correctly classify things, the network
ust be learned.

But first, what do we need to learn?

The parameters (or the weights)

w(i, j) w(l, m)

How do we learn?

= Actual Function that we are trying to model:

€ Note: We don't know the actual function.

= We only have several sample data points on

this function.

= Our goal:
¢ Estimate the function with the given samples.

How do we learn?

- A measurement of error
€ How much off is the network output with respect to the desired output

Network Output

For each MLP
sample
1 \ .)
LOSS(‘/‘/) = — . d’I,’U(]L(X : L[/) d\ Desired Output
N 2 :’L 19 y Y1)
Number of Divergence Sample Current
samples function value weights of
estimated
function

= Our goal (more specifically): . ,
€ Minimize the loss W= argwimn Loss(W)

How do we learn?

-=> Gradient Descent

LOSS | NEGATIVE SLOPE

POSITIVE SLOPE

GLOBAL M
B 100 DB 4

Forward Pass

- For each single perceptron

zZ=wy1 T+
X w1,2 -y _|_
W wys -2 y = 6(2)

Y wiz,1) y —» j

Forward Pass

w(k, 1) w(l, m)

Forward Pass

Nl
o

e
,“}\?’/3‘}\?

4
o
V"‘V [/

Forward Pass

wk D Y31

TS

\ /}' \';./

W 4‘0
5 ‘\

0'
L)%
FA
/-

R R

Forward Pass

N TN/
N g Mg
WO
AOSY VoI
V"‘V V"\V

@

Ve

/>

Backpropagation

w(i, j)

%
P
A

EEE—— Y

w(, k)

W%
/00

Aﬂ> /AN

Backpropagation

w(j, k)

L aX ek T

N
2P OO
S0 ()

- S é@\' WX

Y 2% !

Backpropagation

%
; éz’(

—

Yj

*,{Ag\gg“%\g’{“
(S Ra

Yk

J
e

AV
Ne/

Yi

Backpropagation

w(i, j) w(j, k) (k. 1)

‘f VO
\ VN

}‘ %} 4}“&
N @A

Yj

Backpropagation

SO
o é(“w

Backpropagation

Backpropagation

Backpropagation

All gradients of weights w.r.t error are calculated!

Update Weights

W« W —n-VwLoss(W)

learning gradient
rate

What should be the learning rate/

https://deeplearning.cs.cmu.edu/F21/document/slides/lec8.optimizersandregularizers

.pdf

Optimizers
Gradient Descent:
0141 =6; —a-VoJ (6)
Momentum (http://proceedings.mir.press/v28/sutskever13.pdf):
Myy1 = p-my +a - VoJ (6)
Op1 = 0r — gy
Adagrad (https://jmlir.org/papers/volume12/duchi11a/duchi11a.pdf):

g < VoJ (0)
rr+g°
o
ViFe
06— N0

A —

Optimizers (Cont’)

Adam (https://arxiv.org/pdf/1412.6980.pdf):

me = 31 -my—1 + (1 — ,131) * gt
v = B2 v+ (1 = B2) ‘712

e = my /(1 — B1)
b0 = ve/(1— B)

Oy =60i_1 — - -my/(\/U + €)

Visualization

['‘Adadelta’, 10.0]
['Adagrad’, 0.1]
['‘Adam’, 0.05]

['Ftrl’, 0.05]

['GD', 0.05]
['Momentum’, 0.01]
['RMSProp’, 0.02]

o 0000

S

https://github.com/Jaewan-Yun
/optimizer-visualization

ome fun with TF Playgroun

Tinker With a Neural Network Right Here in Your Browser.

Epoch
S ° " 000,000

DATA FEATURES

Which properties do
you want to feed in?

Which dataset do

you want to use?

e D

xz D
Ratio of training to
test data: 50%

—0

Noise: 0

Batch size: 10

—0

REGENERATE

Don't Worry, You Can't Break It. We Promise.

Learning rate

0.03

+ -

4 neurons

+

Activation

Tanh

Regularization

None

2 HIDDEN LAYERS

+ -

2 neurons

L}
I

Regularization rate

0

OUTPUT

Test loss 0.531
Training loss 0.512

Problem type

Classification

