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Agenda

Problem statement;:
a. Classification
b. Verification

3. Different types of convolution layers

a. Depthwise convolution
b. Pointwise convolution
c. Depthwise Separable convolution

2. Data description

4. Verification optimized
approaches

5. Run through the

starter notebook
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1. Problem statement
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Face Classification Face Verification

Gi , i hich Determine if the person in a given
.t|_ven an image, Tigure out which person “query” picture is also present in a given
LS. gallery of images or not, with no

reference to their identity?
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In General

Classification

An N way classification task, predicting from
a fixed set of possible output classes

Verification

It is @ matching operation, where you match the
given sample to the closest sample from a

reference of N other samples

Can also be a 1 to 1 task, where we want to verify
if the two embeddings are similar (belong to the

same class)

J
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Closed Set vs. Open Set

Multi-class Classification

Closed I

I
Training and
testing samples
come from
known classes

Open Set
Recognition

Open
i —

Multiple known
classes, many
unknown
classes
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Closed Set or Open Set?

Classification

Verification

Open set

Closed set
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Closed Set or Open Set?

Classification

Verification

Open set

Closed set
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Open Set vs Closed Set

Set

Training

Testing
Set

Identities appear in training set
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Label
Predictor
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Face
Identification
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2 S Predictor pa
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Classification Problem

Learn separable
- features

Equivalent
Task
[}

Closed-set Face Recognition

Source: https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition fig1 316505674

Identities DO NOT appear in training set

Training Set
- ‘ Feature
| —

Feature
: Extractor Compare Distance
g .
o ... Testing @ I | [3
- Gallery
Features
Training Set @
1 H Feature
— 5
Feature c Distanc
Extractor om = T
"
H Feature
.
Metric Learning Problem
L J
oo _
™ Learn large-margin
-—.i\‘ features
- -
==/

Open-set Face Recognition

Carnegie
Mellon

University


https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition_fig1_316505674

1. Problem statement

Classification

This is a closed set problem, where the
subjects in the test set have also been
seen in the training set, although the
precise pictures in the test set will not be
in the training set.

Verification

This is an open set problem, where the
subjects in the test data may not have
been seen during training at all.

Task: determine if the person in a given
“query” picture is also present in a given
gallery of images or not, with no
reference to their identity

- J
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Training for classification

Task: Identify the person in a picture
aka Multi-class classification

g,
Div(Y,d) = Z d;log—
: Vi

£ Z
Feature Extraction £ Classification f2 3%
v Linear Layer 9 3 3
£ S =
& 2
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Training for classification

Task: Identify the person in a picture ' d;
aka Multi-class classification Div(Y,d) = Z d; 108;
. L
L
O
O O N\ Good for classification, Gives us separable features !
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Training for classification

Task: Identify the person in a picture ' d;
aka Multi-class classification Div(Y,d) = Z d; 108;
. L
L
O
O % O N\ Good for classification, Gives us separable features !
O O O O,,"' [ How can we use this network for verification?
o -0 @
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Face Verification

Feature Extraction

Feature Embedding

: A similarity score
Cosine Similarity :> from -;Yco 1

|

Feature Extraction

Model

Feature Embedding
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Training for classification

Task: Identify the person in a picture ' d;
aka Multi-class classification Div(Y,d) = Z d; 108;
. L
L
O
O % O N\ Good for classification, Gives us separable features !
O O g How can we use this network for verification?
O O O 1” D D
R Is separable good enough for verification?
O ,," D D D p
<@ O
X' o GO .
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What we need - Discriminative Features
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How can we get discriminative features?
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How can we get discriminative features?

Use a loss function which correlates to your evaluation criteria!

Train your network to generate
discriminative embeddings

Enter Contrastive Losses
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Training for verification - Metric Learning

Task: determine if the person in a given “query” picture is also present in a given gallery of
images or not, with no reference to their identity

Embeddings .
’ Negative m
Anchor LEARNING

@'ative

(oeoo®) Coeo®

Anchor |
Positive Positive
£ Liriplet (%,% ", X Zmax 7() = Fx)3 = 1£(x) = £(x7)]I5 +¢)
(4]
Triplet Loss setu Carnegle
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uhwbhe=

Contrastive Losses

Centre Loss

Triplet Loss

Sphere Face (Angular Softmax)
CosFace Loss

ArcFace Loss
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uhwbhe=

Contrastive Losses

Centre Loss

Triplet Loss

Sphere Face (Angular Softmax)
CosFace Loss

ArcFace Loss

See discussion in HW2 bootcamp

Carnegie
Mellon
University



1. Problem statement

/

Verification

This is an open set problem, where
the subjects in the test data may not
have been seen during training at
all.

Task: determine if the person in a
given “query” picture is also present
in a given gallery of images or not,
with no reference to their identity

/

Y T

Feature Extractor
(CNN)

Feature Extractor
(CNN)

N~ U

Distance
Calc.

\
Face Embedding

Confidence Score

For this problem you will have to find the similarity between each unknown identity C arnegie

and all the known identities, and then predict the one with the highest similarity
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Face Verification as image retrieval

Face Localisation,

Size & Pose > CNN

Vector

[ ID Validation ] Carnegie
Mellon
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2. Data description- VGG Face2

e State of the art VGG Face2 Dataset

e Largestin the world as of 2020

e 3.3 Million Face Images, ~362 samples per subject

e ~9130 identities, large variations in pose, age, demographics
e 7000 identities for classification, 1000 for verification

e Some demographics data also known (age, ethnicity)
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Verification Task - Previous semesters

e Test set- pairs of images with labels about whether they belong to the same person
e Task: calculate AUC using similarity scores

Are they the same person?
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Verification Task - now

Known Identities

Person 2

Person 3

{ Person N ¢

Person1l |

~
J

Unknown Ildentities

Person ?

Person ?

Person ?

Person ?

Test set- Balanced set of 1000 known

identities and 1000 unknown identities

Task: find the similarity between each unknown
identity and all the known identities, and then

predict the one with the highest similarity
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3. Different types of convolutions
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Conventional convolution

convolve collapse /

i £
oo
—>

convolve collapse

i @
. A <

convolve collapse

ooy
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Conventional convolution

d  Each layer of each filter scans its
corresponding map to produce a convolved
map

[ Ninput channels will require a filter with
N layers

| [ The independent convolutions of each

layer of the filter result in N convolved
ﬂ maps
mm [ The N convolved maps are added together

to produce the final output map (or
channel) for that filter
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Conventional convolution

QM input channels, N output channels

QN independent MxKxK 3D filters
which span all M input channels

i [ Each filter produces one output
channel

Total : N*M*K2 parameters

°
CLASS torxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, Carnegle
dilation=1, groups=1, bias=True, padding_mode="zeros ', device=None, dtype=None) [SOURCE] M ll
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Conventional convolution

Q  Minput channels, N output channels

ach filter produces one output
channel

Total : N*M*K2 parameters

.
CLASS torxch.nn.Conv2d(in_channels, out_ch#fihels, kernel_size, stride=1, padding=6, Carnegle
dilation=1, groups=1, bias=True, padding_mode="zeros ', device=None, dtype=None) [SOURCE] M ll
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Depthwise separable convolution
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Depthwise separable convolution

3 Apply convolution step once

d  Replace summation by a weighted
sum across channels

D 0-0-0-0-0-00

D ©0-0-0-0-0-0-0

O

. 0-0-0-0-0-0-0

- ©0-0-0-0-0-0-0

-

= When groups == in_channels and out_channels ==K *in_channels, where K is a positive integer, this
operation is also known as a “depthwise convolution”.
In other words, for an input of size (N, C'in, Lin ), a depthwise convolution with a depthwise
multiplier K can be performed with the arguments (C},, = Cip, Cont = Cin ¥
K,...,groups = Cy,).

Carnegie
Pytorch Docs: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Mellon
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https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Depthwise separable convolution

d  Minput channels, N output channels in 2 stages:
O  Stage 1: aka Filtering

O M independent KxK 2D filters, one per input
channel

O Each filter applies to only one input channel

O  # of output channels = # input channels

OmmEEOCOO

Q  Stage 2: aka Combining - Point-wise convolution

QN Mx1x1 1D filters
d  Each applies to one 2D location across all M
input channels

Total NM + MK? parameters .
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Depthwise separable convolution: Combining stage

@ Minput channels, N output channels in 2 stages:

d Stage 1: aka Filtering

d  Mindependent KxK 2D filters, one per input
channel

[ Each filter applies to only one input channel

Q  # of output channels = # input channels

[ Stage 2: aka Combining - Point-wise convolution

>
y
N O N Mx1x1 1D filters
= [ Each applies to one 2D location across all M
= input channels
Stage 2 5
Total NM + MK”“ parameters .
Carnegie
Source: https:/blog.csdn.net/shiner_chen/article/details/124319246 Mellon .
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https://blog.csdn.net/shiner_chen/article/details/124319246

Depthwise separable convolution

Let out_channels = 256 (# of desired filters)

8x8x3 input image (in_channels = 3)

: | senuarcon
8

. 5x5x3 regular conv kernel

Depthwise conv
Filtering

. 5x5x1 kernel
. 5x5x1 kernel
. 5x5x1 kernel

Combining

- 1x1x3 regular conv kernel

a

a

a

a

With kernel_size =5

Using conventional convolution (5x5x3 kernel):

a

Requires:
(8x8)*(5x5x3)*(256) = 1, 228, 800 parameters

Using Depthwise convolution

Q

Filtering stage : 3* (5x5x1) kernel
Requires: (8x8)*(5x5x1)*3 = 4, 800 parameters

Combining stage: 256*(1x1x3)
Requires: (8x8)*(1x1x3)*(256) = 49, 152 parameters

In total: 53, 952 parameters Carnegie
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Depthwise separable convolution

/

LS

“WHAT WOULD YOU CHOOSE
NOW GIVEN YOUR 224°224"3 IMAGES

L ]
=4
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4. Verification optimized approaches
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Approach 1 - Joint Loss Optimization

—_— Embeddings emd Cross Entropy
1

.

—_— Embeddings mmdl Contrastive Loss
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Approach 1: Joint loss optimization

m
3
<3
@
Q
=3
5
Q
7

Cross entropy

Contrastive

sbuippaqug

loss

logits= model(x, return_feats=False) # — 7_000 features

# get anchor, positive and negative from TripletDataset
anchor_emb = model(anchor, return_feats=True)
positive_emb = model(positive, return_feats=True)
negative_emb = model(negative, return_feats=True)

CrossEntropyLoss(logits, targets)

loss_1
TripletLoss(anchor_emb, positive_emb, negative_emb)

loss_2
L = wl*loss_1 + w2*loss_2 # e.g wl = 0.7 and w2 = 0.3
Carnegie
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Approach 2: Sequential

| THINK 1 ALREADY KNOW THIS
e

g Embeddings B ¢/05s Entropy

Step 1 Face Recognition

Face Verification

. —_— mmmmndl Embeddings oummmg Contrastive Loss

Step 2

WHAT THE..
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Approach 2: Sequential

WHAT THE..

.

Trained classifier

Face Verification

mmmndl Embeddings memmd Contrastive Loss

Step 2
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Approach 2: Sequential

WHAT THE..

Face Verification

mmmndl Embeddings memmd Contrastive Loss

e.g: output from
ArcMarginProduct

.

Trained classifier Step 2

Carnegie

Some contrastive losses and more: https://kevinmusgrave.qgithub.io/pytorch-metric-learning/losses/ Mellon
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https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential

WHAT THE.. .

Face Verification

— _— 3

. Embeddings Contrastive Loss
e.g: output from ArcFaceLoss
ArcMarginProduct c ] )

ross ntropy oss
Trained classifier Step 2
Carnegie
Some contrastive losses and more: https:/kevinmusgrave.github.io/pytorch-metric-learning/losses/ Mellon
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https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential

WHAT THE..

Face Verification

QR == Ry oo

e.g: output from ArcFaceLoss
ArcMarginProduct

.

CrossEntropyLoss
Trained classifier Step 2

Ideally, ArcMarginProduct would be an additional layer to your classification
network.

Carnegie

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/ Mellon
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https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential

|deally, ArcMarginProduct would be an additional layer to your classification network.

class VerificationNetwork(torch.nn.Module):
def (self, num_classes=7000):
super().__init_ ()

self.arcFacelayer = ArcMarginProduct(
embedding_size=# TODO,
n_classes=num_classes

def (self, x):
feats = self.backbone(x, return_feats=True)

out = self.arcFacelLayer(feats)
return out

self.backbone = model.load_state_dict(torch.load(# TODO))

Carnegie
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student after Student working on
HW1P2

HW2P2
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| did it

Student after HW2P2
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Some tips: Normalization

Batch Norm

H,W

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
1zation a part of the model architecture and performing the

VAT A A
Ll

L

normalization for each training mini-batch. Batch Nor-
malization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regu-
larizer, in some cases climinating the need for Dropout.

oW VW W Wi

BatchNorm paper: https://arxiv.org/pdf/1502.03167.pdf

Applied to a state-of-the-art image classification model,
Batch Normalization achieves the same accuracy with 14
times fewer training steps. and beats the original model
by a significant margin. Using an ensemble of batch-
normalized networks, we improve upon the best published
result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the ac-
curacy of human raters.
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https://arxiv.org/pdf/1502.03167.pdf

Some tips: Normalization

Layer Norm Abstract

Training state-of-the-art, deep neural networks is computationally expensive. One
way to reduce the training time is to normalize the activities of the neurons. A
recently introduced technique called batch normalization uses the distribution of
the summed input to a neuron over a mini-batch of training cases to compute a
mean and variance which are then used to normalize the summed input to that
neuron on each training case. This significantly reduces the training time in feed-
forward neural networks. However, the effect of batch normalization is dependent
on the mini-batch size and it is not obvious how to apply it to recurrent neural net-
works. In this paper, we transpose batch normalization into layer normalization by
computing the mean and variance used for normalization from all of the summed
inputs to the neurons in a layer on a single training case. Like batch normalization,
we also give each neuron its own adaptive bias and gain which are applied after
the normalization but before the non-linearity. Unlike batch normalization, layer
normalization performs exactly the same computation at training and test times.
It 15 also straightforward to apply to recurrent neural networks by computing the
normalization statistics separately at each time step. Layer normalization is very
effective at stabilizing the hidden state dynamics in recurrent networks. Empiri-
cally, we show that layer normalization can substantially reduce the training time
compared with previously published techniques.

LT

NAVAVAVATAN

| Carnegie
LayerNorm paper: https://arxiv.org/pdf/1607.06450.pdf Mell()n
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https://arxiv.org/pdf/1607.06450.pdf

Some tips: Normalization

Layer Norm

. Beas i 5
u=ﬁzai ‘ Za—u

1

H, W

A  Hdenotes the number of hidden units in a layer

LT

NAVAVAVATAN

L

No constraints on the size of the mini-batches
[  All the hidden units in a layer share the same

normalization terms g and o
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https://arxiv.org/pdf/1607.06450.pdf

Some tips: Normalization

Group Norm

H,W

L
L

AN

W
Z A\ N\ N\ N\ N\

GroupNorm paper: https://arxiv.org/pdf/1803.08494.pdf

Abstract

Batch Normalization (BN) is a milestone technique in the
development of deep learning, enabling various networks
to train. However, normalizing along the batch dimension
introduces problems — BN'’s error increases rapidly when
the batch size becomes smaller, caused by inaccurate batch
statistics estimation. This limits BN’s usage for training
larger models and transferring features to computer vision
tasks including detection, segmentation, and video, which
require small batches constrained by memory consumption.

In this paper, we present Group Normalization (GN) as
a simple alternative to BN. GN divides the channels into
groups and computes within each group the mean and vari-
ance for normalization. GN’s computation is independent
of batch sizes, and its accuracy is stable in a wide range
of batch sizes. On ResNet-50 trained in ImageNet, GN has

10.6% lower error than its BN counterpart when using a
batch size of 2; when using typical batch sizes, GN is com-
parably good with BN and outperforms other normaliza-
tion variants. Moreover, GN can be naturally transferred
from pre-training to fine-tuning. GN can outperform its BN-
based counterparts for object detection and segmentation in
COCO," and for video classification in Kinetics, showing
that GN can effectively replace the powerful BN in a variety
of tasks. GN can be easily implemented by a few lines of
code in modern libraries.
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https://arxiv.org/pdf/1803.08494.pdf

Some tips: Normalization

Instance Norm Abstract

It this paper we revisit the fast stylization method introduced in Ulyanov et al.
(2016). We show how a small change in the stylization architecture results in a
significant qualitative improvement in the generated images. The change is lim-
ited to swapping batch normalization with instance normalization, and to apply
the latter both at training and testing times. The resulting method can be used to
train high-performance architectures for real-time image generation. The code is
available at https://github.com/DmitryUlyanov/texture_nets. Full pa-
per can be found at https://arxiv.org/abs/1701.02096.

H, W

VA A
Ll
) A

NAVAVAVAWAN

[T 7777
Y

NAVAVAVAVAN
Z

3  InstanceNorm removes the effect of contrast in images
[ Much useful in stylization (image generation)
[ One can argue that the result of stylization should not,
in general, depend on the contrast of the content
image

| Carnegie
InstanceNorm paper: https://arxiv.org/pdf/1607.08022.pdf Mell()n
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https://arxiv.org/pdf/1607.08022.pdf

Label Smoothing

e Deep Learning Models undergo a problem of Overfitting and
Overconfidence.

e Label Smoothing is a technique that can help us solve the problem of
Overconfidence.

What is Overconfidence?

For each sample, the model predicts outcomes with higher probabilities than
the accuracy over the entire dataset.
This is a poorly calibrated model.

For example, it may predict 0.9 for inputs where the accuracy is only 0.6.
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Example

Without Label Smoothing

Suppose we have K = 3 classes, and our label belongs to the 1st class. Logit Vector
z=1a, b, ]

Label vectory =[1, O, 0] (one-hot encoded)

Gradient of Loss = softmax(z) —y
Our model will makea > banda > ¢

z=[10, 0, 0]
softmax(z) = [0.9999, 0, 0]

Carnegie
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Label smoothing

y 1s = (1 - a) » y_hot + (a / K)
Example: With Label Smoothing (« = 0.1)

y 1s = [0.9333, 0.0333, 0.0333]
This would result into the logits z = [3.3332, 0, 0]

softmax(z) = [0.9333, 0.0333, 0.0333]

https://arxiv.org/pdf/1812.01187.pdf
https://arxiv.org/abs/1812.01187
https://github.com/ankandrew/online-label-smoothing-pt



https://arxiv.org/pdf/1812.01187.pdf
https://github.com/ankandrew/online-label-smoothing-pt

Some tips: DropBlock

« Dropout usually works better with Fully Connected Networks

* Dropout has not proven to be useful in CNNs because of the spatial
correlation between the activation outputs

« DropBlock is a regularization technique that has proven to be useful for CNNs

 Itis a structured form of dropout that drops contiguous regions and not just
random pixels

(XX

(a) (b) () (a) (b)
Paper: https://arxiv.org/pdf/1810.12890.pdf

Pytorch docs: https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html



https://arxiv.org/pdf/1810.12890.pdf
https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html

Some tips: And...

(‘l

PLERSE, S'I'ABT EARLY




5. Run through the starter notebook
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