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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or 

“does this recording include HELLO”  are best performed by scanning for 
the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or subnetwork makes the final decision

• Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a 
convolutional network

• For 1-D scan along time, it is called a Time-delay neural network

2



3



A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research: 
– largely based on behavioral studies 

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images
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Hubel and Wiesel 1959

• First study on neural correlates of vision. 
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”:  Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied
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Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina 
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and 
measured neural responses in striate cortex
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Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical 
units were called receptive fields. 

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina, 

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– A spot of light gave greater response for some directions of movement than others.
• Can be used to determine the receptive field

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel
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Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands
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Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating 

striate cortex neurons

• The orientation selectivity resulted from the previous level of input 
because lower-level neurons responding to a slit also responded to 
patterns of spots if they were aligned with the same orientation as 
the slit. 

• In a later paper (Hubel & Wiesel, 1962), they showed that within 
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells. 
– Both types responded to oriented slits of light, but complex cells were 

not “confused” by spots of light while simple cells could be confused
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Hubel and Wiesel model

• ll

Transform from circular retinal 
receptive fields to elongated fields for 
simple cells.  The simple cells are 
susceptible to fuzziness and noise

Composition of complex receptive 
fields from simple cells. The C-cell 
responds to the largest output from a 
bank of S-cells to achieve oriented 
response that is robust to distortion 
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Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns 
by composing early neural responses
– Successive transformation through Simple-Complex 

combination layers

• Demonstrated more and more complex responses in 
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall
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Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of 
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing 
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall
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Adding insult to injury..

• “However, this model cannot accommodate 
the color, spatial frequency and many other 
features to which neurons are tuned.  The 
exact organization of all these cortical columns 
within V1 remains a hot topic of current 
research.”
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Poll 1

@673

• According to Hubel and Wiesel which type of 
cells found patterns in the input and which 
cells “cleaned” up these patterns?
– S cells find patterns and C cells clean them up
– C cells find patterns and S cells clean them up 
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Poll 1

15

According to Hubel and Wiesel which type of cells found patterns in the input and which cells “cleaned” 
up these patterns? 

 S cells find patterns and C cells clean them up 
 C cells find patterns and S cells clean them up  



Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of 
input
– Your grandmother cell fires even if your grandmother 

moves to a different location in your field of vision

Kunihiko Fukushima
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NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising  a 
layer of “S-cells” followed by a layer of “C-cells”
– ௌ௟ is the lth layer of S cells, ஼௟ is the lth layer of C cells

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their 
response

Figures from Fukushima, ‘80
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NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.  
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the 
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input than the adjacent cells in 
the plane.

… “through” the previous layer planes
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NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-specific 
patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding planes of the 
S layers 19



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–
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Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–

Could simply replace these 
strange functions with a
RELU and a max
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NeoCognitron

• The deeper the layer, the larger the receptive field of 
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer 22



Learning in the neocognitron

• Unsupervised learning 
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤௜௝ = 𝑥௜𝑦௝

• Within any layer,  at any position, only the maximum S from all the layers is 
selected for update

– Also viewed as max-valued cell from each S column
• Ensures only one of the planes picks up any feature
• If multiple max selections are on the same plane, only the largest is chosen

– But across all positions, multiple planes will be selected

• Updates are distributed across all cells within the plane

max
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Learning in the neocognitron

• Ensures different planes learn different features
– E.g.  Given many examples of the character “A” the different cell 

planes in the S-C layers may learn the patterns shown
• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering
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Neocognitron – finale

• Fukushima showed it successfully learns to 
cluster semantic visual concepts
– E.g. number or characters, even in noise
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Poll 2
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@674, @675

Fukushima’s model is an unsupervised CNN, true or false
• True
• False

Supervision can be added to Fukushima’s model, true or false
• True
• False



Poll 2
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Fukushima’s model is an unsupervised CNN, true or false 

 True 
 False 

 

Supervision can be added to Fukushima’s model, true or false 

 True 
 False 



Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation:  Homma, Atlas, Marks, ‘88
– TDNN:  Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun
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Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of 
every layer
– C-cells are not updated

Output
class 
label(s)
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Scanning vs. multiple filters

• Note: The original Neocognitron actually uses many 
identical copies of a neuron in each S and C plane
– Mathematically identical to “scanning” with a single copy
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Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is ௟ ௟

– Receptive field of C cells in lth layer is ௟ ௟

• C cells “stride” by more than one pixel, resulting in a shrinking, or “downsampling” of 
the maps

Output
class 
label(s)
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Supervising the neocognitron

• This is, identical to “scanning” (convolving) with a 
single neuron/filter (what LeNet actually did)

Output
class 
label(s)

𝑺,𝒍,𝒏 𝑺,𝒍,𝒏 𝑪,𝒍ି𝟏,𝒑

𝑲𝒍

௟ୀଵ

𝑲𝒍

௞ୀଵ𝒑

𝑪,𝒍,𝒏
௞∈ ௜,௜ା௅೗ ,௝∈(௟,௟ା௅೗)

𝑺,𝒍,𝒏
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Convolutional Neural Networks
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Story so far
• The mammalian visual cortex contains of S cells, which capture oriented 

visual patterns and C cells which perform a “majority” vote over groups of 
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C 
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution) 

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”
34



The general architecture of a 
convolutional neural network

• A convolutional neural network comprises “convolutional” and “pooling” layers
– Convolutional layers comprise neurons that scan their input for patterns 

• Correspond to S planes

– Pooling layers perform max operations on groups of outputs from the convolutional layers 
• Correspond to C planes

– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of “pooling” and 
“downsampling” layers
– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target 

classification task

• Pooling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output
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A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer
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A convolutional layer

• Each activation map has two components
– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer
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A convolutional layer: affine map

• All the maps in the previous layer contribute 
to each convolution 

Previous
layer

Previous
layer
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A convolutional layer: affine map

• All the maps in the previous layer contribute to 
each convolution 
– Consider the contribution of a single map

Previous
layer

Previous
layer

41



What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights 

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias
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What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

filter
Input layer

Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

filter1 filter2
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various 
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)
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The “cube” view of input maps

• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

One map

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

All maps

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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CNN: Vector notation to compute a 
single output map

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
66



Engineering consideration: The size of 
the result of the convolution

• The size of the output of the convolution operation depends on 
implementation factors
– The size of the input, the size of the filter

• And may not be identical to the size of the input
– Let’s take a brief look at this for completeness sake

bias

67



The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Output size = ? 68



The size of the convolution

• Image size: 
• Filter: 
• Output size = (N-M)+1 on each side

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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Convolution Size

• Simple convolution size pattern:
– Image size: 

– Filter: 

– Output size (each side) =
• Assuming you’re not allowed to go beyond the edge of 

the input

• Results in a reduction in the output size
– Sometimes not considered acceptable
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Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– The result of the convolution is the same size as 

the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0
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Zero padding
• For an width filter:

– Odd : Pad on both left and right with 
columns of zeros

– Even :  Pad one side with columns of zeros, and 

the other with columns of zeros

– The resulting image is width  

– The result of the convolution is width 

• The top/bottom zero padding follows the same 
rules to maintain map height after convolution
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A convolutional layer

• The convolution operation results in an affine map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,x,y) = W(l).segment #tensor inner prod.

Y(l,:,x,y) = activation(z(l,;,x,y))

Y = softmax( {Y(L,:,:,:)} )
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Convolution Summary

• Convolutional layers “scan” the input using a bank of 
“filters”
– A “filter” is just a neuron in a scanning layer

• Each filter jointly scans the maps in the previous layer to 
produce an output “map”
– As many output maps as filters (one output map per filter)

• Regardless of the number of input maps

• We may have to pad the edges of the input maps to ensure 
that the output maps are the same size as input maps
– If not, convolution loses rows/columns at the edges of the scan
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The other component: Pooling

• Convolution (and activation) layers are followed intermittently by 
“pooling” layers
– Typically (but not always) “max” pooling
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

76



Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6
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Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer jitter-
robustness
– Typically performed with a stride > 1, whereupon it 

also results in “downsampling”
• We return to downsampling shortly 82



Max Pooling layer at layer 

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,x,y) = Y(l-1,j,pidx(l,j,x,y))

83

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2 
filters 3.25

Alternative to Max pooling: 
Mean Pooling

• Compute the mean of the pool, instead of the max



Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Y(l,j,x,y) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

85

Performed separately for every map (j).



Alternative to Max pooling: 
-norm

• Compute a p-norm of the pool

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters 
and = 5

ଶ ௜௝
௣

௜,௝

೛

4.86



Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each 
2x2 block n this example

Network in network

4.1



Pooling Summary

• Pooling layers “scan” the input using a “pooling” 
operation
– E.g. selecting the max from a KxK block of input

• Each “pooling filter” scans an individual maps in the 
previous layer to produce an output “pooled map”
– As many output maps as input maps

• For pooling we do not generally pad the edges
– The zeros may result in bogus pooled values, e.g. when all 

inputs are –ve and we apply max pooling
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The types of layers considered so far

• So far we have only considered layers where the output size is 
approximately equal to input size

• There are two other operations that change the size of the output

Multi-layer
Perceptron

Output

89



The Downsampling Layer

• A downsampling layer simply “drops” of rows and columns 
for every map in the layer
– Effectively reducing the size of the map by factor S in every direction

90

D/S



Downsampling Pseudocode

m = 1
for i = 1:S:W

n = 1
for j = 1:S:H

y(m,n) = x(i,j)
n++

end
m++

end
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Downsampling in practice

• In practice, the downsampling is combined 
with the layers just before it
– Which could be convolutional or pooling layers

92

Convolution with D/S

D/SPooling

Pooling with D/S

D/SConvolution



Downsampling after Convolution

• A downsampling layer can be combined with a 
convolutional layer into a single convolutional 
layer with convolution stride S

93
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Downsampling after Convolution

• A downsampling layer can be combined with a 
convolutional layer into a single convolutional 
layer with convolution stride S
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1 0 1
0 1 0

11 0

Filter

0

bias
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Downsampling after Convolution

• A downsampling layer can be combined with a 
convolutional layer into a single convolutional 
layer with convolution stride S
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1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4
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Downsampling after Convolution

• A downsampling layer can be combined with a 
convolutional layer into a single convolutional 
layer with convolution stride S
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1 0 1
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11 0

Filter

0

bias
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x1x1 x0

4 4
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Downsampling after Convolution

• If a D/S layer occurs immediately after a convolutional 
layer, the two can be combined into a single 
convolutional layer with convolution stride S
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1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4

2 4

For an input of size and filters of size 
and stride , the output size will be 
on every side



Convolution with downsampling
The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

m = 1

for x = 1:S:Wl-1-Kl+1 

n = 1

for y = 1:S:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,m,n) = W(l).segment #tensor inner prod.

Y(l,:,m,n) = activation(z(l,:,m,n))

n++

m++

Y = softmax( {Y(L,:,:,:)} )
98
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Downsampling and Pooling

• Downsampling after a pooling layer can be 
merged with it to obtain pooling with stride S
– More on pooling later…

99

D/SPooling

Pooling with D/S

Pooling
with D/S



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6

Max Pooling

• Find the max in each block and stride by 2



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

Max Pooling

• Find the max in each block and stride by 2



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3

Max Pooling

• Find the max in each block and stride by 2



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Max Pooling

• Find the max in each block and stride by 2



Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
104

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2 
filters and stride 2 3.25 5.25

2 2

Mean Pooling

• Compute the mean of the pool, instead of the max



Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

106

Performed separately for every map (j).
*) Not combining multiple maps within a single operation.



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

pool with 2x2 filters and 
stride 2 6 8

3 4

Downsampling: Size of output

• An picture compressed by a pooling filter with 
stride results in an output map of side 
• Typically do not zero pad



The Upsampling Layer

• A upsampling (or dilation) layer simply introduces 
rows and columns for every map in the layer
– Effectively increasing the size of the map by factor in every 

direction

• Used explicitly to increase the map size by a uniform factor
108



The Upsampling Layer

• A upsampling layer is generally followed by a 
CNN layer
– It is not useful to follow it by a pooling layer

– It is also not useful as the final layer of a CNN
109

Up
Sample Convolution

Convolution with upsampling



Upsampling

X is a 3D DlxWxH tensor

Assuming Dl, W and H are also passed in

function dilate(X)

Xup = zeros(Dl,(W-1)S+1, (H-1)S+1)

for i = 1:W

for j = 1:H

Xup(:,(i-1)S+1,(j-1)S+1) = X(:,i,j)

return Xup
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The Upsampling Layer

• Upsampling layers followed by a convolutional layer are 
also often viewed as convolving with a fractional stride
– Upsampling by factor is the same as striding by factor 

111

Convolution
with stride 

0.5



Resampling Summary

• Map sizes can be changed by downsampling or upsampling
– Downsampling:  Drop S-1 of S rows and columns
– Upsampling: Insert S-1 zeros between every two rows / columns

• Downsampling typically follows convolution or pooling
– Reduces the size of the maps

• Upsampling occurs before convolution
– Increases the size of the map
– Does not generally occur before pooling layers
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– “Pooling” layers that vote over groups of outputs from the 
convolutional layer

• Convolution can change the size of the output. This may be 
controlled via zero padding.

• Pooling layers may perform max, p-norms, or be learned
• Resampling layers increase or decrease the size of the map

– Downsampling can be merged with the preceding operation, by simply 
scanning with a stride > 1

– Upsampling must occur before convolution operations
113



Poll 3

114

Mark all that are true of upsampling layers

 Upsampling by S introduces S-1 zeroes between adjacent rows and columns
 Upsampling layers are generally followed by pooling layers
 Upsampling layers are generally followed by convolutional layers
 Upsampling layers can be combined with the convolutional or pooling layers before them 

into a single operation with fractional stride

Mark all that are true of downsampling layers

 Downsampling by S replaces every Sth row and column with zeros
 Downsampling by S deletes S-1 consecutive rows/columns and retains only every Sth

row/column
 Downsampling layers are usually merged with the convolution or pooling layers after them, 

which are then modified to convolution or pooling with a stride
 Downsampling layers are usually merged with the convolution or pooling layers before them, 

which are then modified to convolution or pooling with a stride



Poll 3

115

Mark all that are true of upsampling layers

 Upsampling by S introduces S-1 zeroes between adjacent rows and columns
 Upsampling layers are generally followed by pooling layers
 Upsampling layers are generally followed by convolutional layers
 Upsampling layers can be combined with the convolutional or pooling layers before them 

into a single operation with fractional stride

Mark all that are true of downsampling layers

 Downsampling by S replaces every Sth row and column with zeros
 Downsampling by S deletes S-1 consecutive rows/columns and retains only every Sth

row/column
 Downsampling layers are usually merged with the convolution or pooling layers after them, 

which are then modified to convolution or pooling with a stride
 Downsampling layers are usually merged with the convolution or pooling layers before 

them, which are then modified to convolution or pooling with a stride



Setting everything together

• Typical image classification task
– Assuming maxpooling..
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Convolutional Neural Networks

• Input: 1 or 3 images
– Grey scale or color
– Will assume color to be generic

117



• Input: 3 pictures

Convolutional Neural Networks

118



• Input: 3 pictures

Convolutional Neural Networks

119



Preprocessing

• Large images are a problem
– Too large
– Compute and memory intensive to process

• Sometimes scaled to smaller sizes, e.g.
128x128 or even 32x32
– Based on how much will fit on your GPU
– Typically cropped to square images
– Filters are also typically square
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• Input: 3 pictures

Convolutional Neural Networks

121



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  
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• A 1x1 filter is simply a perceptron that operates over the depth of the 
stack of maps, but has no spatial extent
– Takes one pixel from each of the maps (at a given location) as input
– A non-distributed layer of the scanning MLP

The 1x1 filter
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or 

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride:  1 or 2

Convolutional Neural Networks

Total number of parameters: 

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 

K1 total filters
Filter size:  
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• The input may be zero-padded according to 
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:  
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• First convolutional layer:  Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

Convolutional Neural Networks

௠
ଵ

௠
ଵ

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

K1 filters of size:  
𝐿 × 𝐿 × 3

௠
ଵ

௠
ଵ

௖ ௠
(ଵ)

௅

௟ୀଵ

௅

௞ୀଵ௖∈{ோ,ீ,஻}

The layer includes a convolution operation
followed by an activation (typically RELU)
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Learnable parameters in the first 
convolutional layer

• The first convolutional layer comprises filters, 
each of size 
– Spatial span: 
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned
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• First pooling/downsampling layer: From each block 
of each map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of ௠

ଵ into a single value
It employs a stride D between
adjacent blocks

௠
ଶ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
ଵ
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• First pooling/downsampling layer: From each block 
of each map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block 
Pooling stride 

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

௄భ

ଵ

௠
ଶ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
ଵ

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ
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• First pooling/downsampling layer: From each block 
of each map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ
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• First pooling/downsampling layer: From each block 
of each map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

ଵ
ଶ

ଶ
ଶ

௄మ

ଶ

ଶ ଵ. Just using the
new index ଶ for notational
uniformity.
Pooling layers do not change
the number of maps because
pooling is performed individually
on each of the maps in the
previous layer.
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• First pooling layer: Drawing it differently for 
convenience

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ

135



• First pooling layer: Drawing it differently for 
convenience

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

Convolutional Neural Networks

2

௄మ

ଶ
௄భ

ଵ

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters ( 1, 2, etc) is the number of channels

136



• Second convolutional layer: 3-D filters resulting in 2-D maps
– Alternately,  a kernel with ଷ output channels

Convolutional Neural Networks
௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ
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• Second convolutional layer: 3-D filters resulting in 2-D maps

௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ

Total number of parameters: 
All these parameters must be learned

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 
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Convolutional Neural Networks

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠ 2 3 3

3

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

4
௠

௡ାଵ
௠

௡
௠

௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ
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௠ 2 3 3

3

௄య

ଷ

3

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

4

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠
௡ାଵ

௠
௡

௠
௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 

௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

Parameters to choose:
Size of pooling block 4

Pooling stride 4
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Convolutional Neural Networks

• This continues for several layers until the final convolved output is fed to 
a softmax
– Or a full MLP

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

1

4

௄భ

ଵ

௠ 2 3 3

3

2

2

௄మ

ଶ

141



The Size of the Layers
• Each convolution layer with stride 1 typically maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer will generally increase the number of maps from the 
previous layer
– Increasing layers reduces the amount of information lost by subsequent 

downsampling

• Each pooling layer with stride decreases the size of the maps by a factor of 

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers
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Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters ௜

– Spatial extent of filter ௜ ௜

• The “depth” of the filter is fixed by the number of filters in the previous layer ௜ିଵ

– The stride ௜

• For each downsampling/pooling layer:
– Spatial extent of filter ௜ ௜

– The stride ௜

• For the final MLP:
– Number of layers, and number of neurons in each layer
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Poll 4

144

@678 

What is the relationship between the number of channels in the output of a 
convolutional layer and the number of neurons in the corresponding layer 
of a scanning MLP

 They are the same
 The two are not related.



Poll 4

145

What is the relationship between the number of channels in 
the output of a convolutional layer and the number of 
neurons in the corresponding layer of a scanning MLP

 They are the same
 The two are not related.



Digit classification
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Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the 

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation

௄భ

ଵ

1
௄మ

ଶ

2

3
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Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

1

3

learnable learnable

learnable

௠ 2 3 3

3

2

2

௄మ

ଶ
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Learning the CNN

• In the final “flat” multi-layer perceptron, all the weights and biases 
of each of the perceptrons must be learned

• In the convolutional layers the filters must be learned
• Let each layer have maps

– ଴ is the number of maps (colours) in the input

• Let the filters in the th layer be size 

• For the th layer we will require filter parameters
• Total parameters required for the convolutional layers:  
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Defining the loss

• The loss for a single instance
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Problem Setup
• Given a training set of input-output pairs 

• The loss on the ith instance is 
• The total loss

• Minimize w.r.t 
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Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
152

Total training loss:

Assuming the bias is also
represented as a weight



Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
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The derivative

• Computing the derivative
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Total derivative:

Total training loss:



The derivative

• Computing the derivative
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Total derivative:
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Backpropagation: Final flat layers

• Backpropagation continues in the usual manner 
until the computation of the derivative of the 
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the 

“flattening” of the maps from the final convolutional 
layer
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156



Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolutional layers

– The pooling layers (particularly maxout)
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Backprop through a CNN

• In the next class…
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Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network
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Story so far

• The convolutional neural network is a supervised 
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan 

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs 
from the convolutional layer to reduce network size

• The parameters of the network can be learned through 
regular back propagation
– Continued in next lecture..
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