
Deep Neural Networks
Convolutional Networks II

Bhiksha Raj
Spring 2022

1

Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or

“does this recording include HELLO” are best performed by scanning for
the target pattern

• Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or subnetwork makes the final decision

• Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a
convolutional network

• For 1-D scan along time, it is called a Time-delay neural network

2

3

A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research:
– largely based on behavioral studies

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images
4

Hubel and Wiesel 1959

• First study on neural correlates of vision.
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”: Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied
5

Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and
measured neural responses in striate cortex

6

Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical
units were called receptive fields.

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina,

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– A spot of light gave greater response for some directions of movement than others.
• Can be used to determine the receptive field

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel

7

Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands

8

Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating

striate cortex neurons

• The orientation selectivity resulted from the previous level of input
because lower-level neurons responding to a slit also responded to
patterns of spots if they were aligned with the same orientation as
the slit.

• In a later paper (Hubel & Wiesel, 1962), they showed that within
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells.
– Both types responded to oriented slits of light, but complex cells were

not “confused” by spots of light while simple cells could be confused

9

Hubel and Wiesel model

• ll

Transform from circular retinal
receptive fields to elongated fields for
simple cells. The simple cells are
susceptible to fuzziness and noise

Composition of complex receptive
fields from simple cells. The C-cell
responds to the largest output from a
bank of S-cells to achieve oriented
response that is robust to distortion

10

Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns
by composing early neural responses
– Successive transformation through Simple-Complex

combination layers

• Demonstrated more and more complex responses in
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall
11

Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall

12

Adding insult to injury..

• “However, this model cannot accommodate
the color, spatial frequency and many other
features to which neurons are tuned. The
exact organization of all these cortical columns
within V1 remains a hot topic of current
research.”

13

Poll 1

@673

• According to Hubel and Wiesel which type of
cells found patterns in the input and which
cells “cleaned” up these patterns?
– S cells find patterns and C cells clean them up
– C cells find patterns and S cells clean them up

14

Poll 1

15

According to Hubel and Wiesel which type of cells found patterns in the input and which cells “cleaned”
up these patterns?

 S cells find patterns and C cells clean them up
 C cells find patterns and S cells clean them up

Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of
input
– Your grandmother cell fires even if your grandmother

moves to a different location in your field of vision

Kunihiko Fukushima

16

NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising a
layer of “S-cells” followed by a layer of “C-cells”
– ௌ௟ is the lth layer of S cells, ஼௟ is the lth layer of C cells

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their
response

Figures from Fukushima, ‘80

17

NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input than the adjacent cells in
the plane.

… “through” the previous layer planes

18

NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-specific
patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding planes of the
S layers 19

Neocognitron

• S cells: RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly

enough

–
20

Neocognitron

• S cells: RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly

enough

–

Could simply replace these
strange functions with a
RELU and a max

21

NeoCognitron

• The deeper the layer, the larger the receptive field of
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer 22

Learning in the neocognitron

• Unsupervised learning
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤௜௝ = 𝑥௜𝑦௝

• Within any layer, at any position, only the maximum S from all the layers is
selected for update

– Also viewed as max-valued cell from each S column
• Ensures only one of the planes picks up any feature
• If multiple max selections are on the same plane, only the largest is chosen

– But across all positions, multiple planes will be selected

• Updates are distributed across all cells within the plane

max

23

Learning in the neocognitron

• Ensures different planes learn different features
– E.g. Given many examples of the character “A” the different cell

planes in the S-C layers may learn the patterns shown
• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering

24

Neocognitron – finale

• Fukushima showed it successfully learns to
cluster semantic visual concepts
– E.g. number or characters, even in noise

25

Poll 2

26

@674, @675

Fukushima’s model is an unsupervised CNN, true or false
• True
• False

Supervision can be added to Fukushima’s model, true or false
• True
• False

Poll 2

27

Fukushima’s model is an unsupervised CNN, true or false

 True
 False

Supervision can be added to Fukushima’s model, true or false

 True
 False

Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation: Homma, Atlas, Marks, ‘88
– TDNN: Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun

28

Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of
every layer
– C-cells are not updated

Output
class
label(s)

29

Scanning vs. multiple filters

• Note: The original Neocognitron actually uses many
identical copies of a neuron in each S and C plane
– Mathematically identical to “scanning” with a single copy

30

Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is ௟ ௟

– Receptive field of C cells in lth layer is ௟ ௟

• C cells “stride” by more than one pixel, resulting in a shrinking, or “downsampling” of
the maps

Output
class
label(s)

31

Supervising the neocognitron

• This is, identical to “scanning” (convolving) with a
single neuron/filter (what LeNet actually did)

Output
class
label(s)

𝑺,𝒍,𝒏 𝑺,𝒍,𝒏 𝑪,𝒍ି𝟏,𝒑

𝑲𝒍

௟ୀଵ

𝑲𝒍

௞ୀଵ𝒑

𝑪,𝒍,𝒏
௞∈ ௜,௜ା௅೗ ,௝∈(௟,௟ା௅೗)

𝑺,𝒍,𝒏

32

Convolutional Neural Networks

33

Story so far
• The mammalian visual cortex contains of S cells, which capture oriented

visual patterns and C cells which perform a “majority” vote over groups of
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution)

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”
34

The general architecture of a
convolutional neural network

• A convolutional neural network comprises “convolutional” and “pooling” layers
– Convolutional layers comprise neurons that scan their input for patterns

• Correspond to S planes

– Pooling layers perform max operations on groups of outputs from the convolutional layers
• Correspond to C planes

– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

35

The general architecture of a
convolutional neural network

• A convolutional neural network comprises of “pooling” and
“downsampling” layers
– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

36

The general architecture of a
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target

classification task

• Pooling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output

37

A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer

38

A convolutional layer

• Each activation map has two components
– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer

39

A convolutional layer: affine map

• All the maps in the previous layer contribute
to each convolution

Previous
layer

Previous
layer

40

A convolutional layer: affine map

• All the maps in the previous layer contribute to
each convolution
– Consider the contribution of a single map

Previous
layer

Previous
layer

41

What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias

42

What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are

multiplied component wise, and the products are added along with
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

43

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

filter
Input layer

Output map

44

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

45

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

46

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

47

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

48

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

49

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

50

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

51

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

52

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

53

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

filter1 filter2

54

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

55

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

56

A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)

57

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

58

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

One map

bias

The “cube” view of input maps

59

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

All maps

bias

The “cube” view of input maps

60

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

61

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

62

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

63

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

64

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

65

CNN: Vector notation to compute a
single output map

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})
66

Engineering consideration: The size of
the result of the convolution

• The size of the output of the convolution operation depends on
implementation factors
– The size of the input, the size of the filter

• And may not be identical to the size of the input
– Let’s take a brief look at this for completeness sake

bias

67

The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Output size = ? 68

The size of the convolution

• Image size:
• Filter:
• Output size = (N-M)+1 on each side

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?

69

Convolution Size

• Simple convolution size pattern:
– Image size:

– Filter:

– Output size (each side) =
• Assuming you’re not allowed to go beyond the edge of

the input

• Results in a reduction in the output size
– Sometimes not considered acceptable

70

Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– The result of the convolution is the same size as

the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0

71

Zero padding
• For an width filter:

– Odd : Pad on both left and right with
columns of zeros

– Even : Pad one side with columns of zeros, and

the other with columns of zeros

– The resulting image is width

– The result of the convolution is width

• The top/bottom zero padding follows the same
rules to maintain map height after convolution

72

A convolutional layer

• The convolution operation results in an affine map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer

73

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,x,y) = W(l).segment #tensor inner prod.

Y(l,:,x,y) = activation(z(l,;,x,y))

Y = softmax({Y(L,:,:,:)})

74

Convolution Summary

• Convolutional layers “scan” the input using a bank of
“filters”
– A “filter” is just a neuron in a scanning layer

• Each filter jointly scans the maps in the previous layer to
produce an output “map”
– As many output maps as filters (one output map per filter)

• Regardless of the number of input maps

• We may have to pad the edges of the input maps to ensure
that the output maps are the same size as input maps
– If not, convolution loses rows/columns at the edges of the scan

75

The other component: Pooling

• Convolution (and activation) layers are followed intermittently by
“pooling” layers
– Typically (but not always) “max” pooling
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

76

Max pooling

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

77

Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

78

Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

79

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

80

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

81

Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer jitter-
robustness
– Typically performed with a stride > 1, whereupon it

also results in “downsampling”
• We return to downsampling shortly 82

Max Pooling layer at layer

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,x,y) = Y(l-1,j,pidx(l,j,x,y))

83

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2
filters 3.25

Alternative to Max pooling:
Mean Pooling

• Compute the mean of the pool, instead of the max

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Y(l,j,x,y) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

85

Performed separately for every map (j).

Alternative to Max pooling:
-norm

• Compute a p-norm of the pool

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters
and = 5

ଶ ௜௝
௣

௜,௝

೛

4.86

Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each
2x2 block n this example

Network in network

4.1

Pooling Summary

• Pooling layers “scan” the input using a “pooling”
operation
– E.g. selecting the max from a KxK block of input

• Each “pooling filter” scans an individual maps in the
previous layer to produce an output “pooled map”
– As many output maps as input maps

• For pooling we do not generally pad the edges
– The zeros may result in bogus pooled values, e.g. when all

inputs are –ve and we apply max pooling

88

The types of layers considered so far

• So far we have only considered layers where the output size is
approximately equal to input size

• There are two other operations that change the size of the output

Multi-layer
Perceptron

Output

89

The Downsampling Layer

• A downsampling layer simply “drops” of rows and columns
for every map in the layer
– Effectively reducing the size of the map by factor S in every direction

90

D/S

Downsampling Pseudocode

m = 1
for i = 1:S:W

n = 1
for j = 1:S:H

y(m,n) = x(i,j)
n++

end
m++

end

91

Downsampling in practice

• In practice, the downsampling is combined
with the layers just before it
– Which could be convolutional or pooling layers

92

Convolution with D/S

D/SPooling

Pooling with D/S

D/SConvolution

Downsampling after Convolution

• A downsampling layer can be combined with a
convolutional layer into a single convolutional
layer with convolution stride S

93

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0
1 0 1
0 1 0

11 0

Filter

0

bias

Downsampling after Convolution

• A downsampling layer can be combined with a
convolutional layer into a single convolutional
layer with convolution stride S

94

1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4

Downsampling after Convolution

• A downsampling layer can be combined with a
convolutional layer into a single convolutional
layer with convolution stride S

95

1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4

2

Downsampling after Convolution

• A downsampling layer can be combined with a
convolutional layer into a single convolutional
layer with convolution stride S

96

1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4

2 4

Downsampling after Convolution

• If a D/S layer occurs immediately after a convolutional
layer, the two can be combined into a single
convolutional layer with convolution stride S

97

1 0 1
0 1 0

11 0

Filter

0

bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

4 4

2 4

For an input of size and filters of size
and stride , the output size will be
on every side

Convolution with downsampling
The weight W(l,j)is now a 4D DlxDl-1xKlxKl tensor

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

m = 1

for x = 1:S:Wl-1-Kl+1

n = 1

for y = 1:S:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,:,m,n) = W(l).segment #tensor inner prod.

Y(l,:,m,n) = activation(z(l,:,m,n))

n++

m++

Y = softmax({Y(L,:,:,:)})
98

STRIDE

Downsampled indices

Downsampling and Pooling

• Downsampling after a pooling layer can be
merged with it to obtain pooling with stride S
– More on pooling later…

99

D/SPooling

Pooling with D/S

Pooling
with D/S

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6

Max Pooling

• Find the max in each block and stride by 2

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

Max Pooling

• Find the max in each block and stride by 2

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3

Max Pooling

• Find the max in each block and stride by 2

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

• Find the max in each block and stride by 2

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
104

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2
filters and stride 2 3.25 5.25

2 2

Mean Pooling

• Compute the mean of the pool, instead of the max

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

106

Performed separately for every map (j).
*) Not combining multiple maps within a single operation.

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

pool with 2x2 filters and
stride 2 6 8

3 4

Downsampling: Size of output

• An picture compressed by a pooling filter with
stride results in an output map of side
• Typically do not zero pad

The Upsampling Layer

• A upsampling (or dilation) layer simply introduces
rows and columns for every map in the layer
– Effectively increasing the size of the map by factor in every

direction

• Used explicitly to increase the map size by a uniform factor
108

The Upsampling Layer

• A upsampling layer is generally followed by a
CNN layer
– It is not useful to follow it by a pooling layer

– It is also not useful as the final layer of a CNN
109

Up
Sample Convolution

Convolution with upsampling

Upsampling

X is a 3D DlxWxH tensor

Assuming Dl, W and H are also passed in

function dilate(X)

Xup = zeros(Dl,(W-1)S+1, (H-1)S+1)

for i = 1:W

for j = 1:H

Xup(:,(i-1)S+1,(j-1)S+1) = X(:,i,j)

return Xup

110

The Upsampling Layer

• Upsampling layers followed by a convolutional layer are
also often viewed as convolving with a fractional stride
– Upsampling by factor is the same as striding by factor

111

Convolution
with stride

0.5

Resampling Summary

• Map sizes can be changed by downsampling or upsampling
– Downsampling: Drop S-1 of S rows and columns
– Upsampling: Insert S-1 zeros between every two rows / columns

• Downsampling typically follows convolution or pooling
– Reduces the size of the maps

• Upsampling occurs before convolution
– Increases the size of the map
– Does not generally occur before pooling layers

112

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– “Pooling” layers that vote over groups of outputs from the
convolutional layer

• Convolution can change the size of the output. This may be
controlled via zero padding.

• Pooling layers may perform max, p-norms, or be learned
• Resampling layers increase or decrease the size of the map

– Downsampling can be merged with the preceding operation, by simply
scanning with a stride > 1

– Upsampling must occur before convolution operations
113

Poll 3

114

Mark all that are true of upsampling layers

 Upsampling by S introduces S-1 zeroes between adjacent rows and columns
 Upsampling layers are generally followed by pooling layers
 Upsampling layers are generally followed by convolutional layers
 Upsampling layers can be combined with the convolutional or pooling layers before them

into a single operation with fractional stride

Mark all that are true of downsampling layers

 Downsampling by S replaces every Sth row and column with zeros
 Downsampling by S deletes S-1 consecutive rows/columns and retains only every Sth

row/column
 Downsampling layers are usually merged with the convolution or pooling layers after them,

which are then modified to convolution or pooling with a stride
 Downsampling layers are usually merged with the convolution or pooling layers before them,

which are then modified to convolution or pooling with a stride

Poll 3

115

Mark all that are true of upsampling layers

 Upsampling by S introduces S-1 zeroes between adjacent rows and columns
 Upsampling layers are generally followed by pooling layers
 Upsampling layers are generally followed by convolutional layers
 Upsampling layers can be combined with the convolutional or pooling layers before them

into a single operation with fractional stride

Mark all that are true of downsampling layers

 Downsampling by S replaces every Sth row and column with zeros
 Downsampling by S deletes S-1 consecutive rows/columns and retains only every Sth

row/column
 Downsampling layers are usually merged with the convolution or pooling layers after them,

which are then modified to convolution or pooling with a stride
 Downsampling layers are usually merged with the convolution or pooling layers before

them, which are then modified to convolution or pooling with a stride

Setting everything together

• Typical image classification task
– Assuming maxpooling..

116

Convolutional Neural Networks

• Input: 1 or 3 images
– Grey scale or color
– Will assume color to be generic

117

• Input: 3 pictures

Convolutional Neural Networks

118

• Input: 3 pictures

Convolutional Neural Networks

119

Preprocessing

• Large images are a problem
– Too large
– Compute and memory intensive to process

• Sometimes scaled to smaller sizes, e.g.
128x128 or even 32x32
– Based on how much will fit on your GPU
– Typically cropped to square images
– Filters are also typically square

120

• Input: 3 pictures

Convolutional Neural Networks

121

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:

122

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:

123

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:

124

• A 1x1 filter is simply a perceptron that operates over the depth of the
stack of maps, but has no spatial extent
– Takes one pixel from each of the maps (at a given location) as input
– A non-distributed layer of the scanning MLP

The 1x1 filter

125

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:

126

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride: 1 or 2

Convolutional Neural Networks

Total number of parameters:

Parameters to choose: , and
1. Number of filters
2. Size of filters
3. Stride of convolution

K1 total filters
Filter size:

127

• The input may be zero-padded according to
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:

128

• First convolutional layer: Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

Convolutional Neural Networks

௠
ଵ

௠
ଵ

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

K1 filters of size:
𝐿 × 𝐿 × 3

௠
ଵ

௠
ଵ

௖ ௠
(ଵ)

௅

௟ୀଵ

௅

௞ୀଵ௖∈{ோ,ீ,஻}

The layer includes a convolution operation
followed by an activation (typically RELU)

129

Learnable parameters in the first
convolutional layer

• The first convolutional layer comprises filters,
each of size
– Spatial span:
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned

130

• First pooling/downsampling layer: From each block
of each map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of ௠

ଵ into a single value
It employs a stride D between
adjacent blocks

௠
ଶ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
ଵ

131

• First pooling/downsampling layer: From each block
of each map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block
Pooling stride

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

௄భ

ଵ

௠
ଶ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
ଵ

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

132

• First pooling/downsampling layer: From each block
of each map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

133

• First pooling/downsampling layer: From each block
of each map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

ଵ
ଶ

ଶ
ଶ

௄మ

ଶ

ଶ ଵ. Just using the
new index ଶ for notational
uniformity.
Pooling layers do not change
the number of maps because
pooling is performed individually
on each of the maps in the
previous layer.

134

• First pooling layer: Drawing it differently for
convenience

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ

135

• First pooling layer: Drawing it differently for
convenience

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

Convolutional Neural Networks

2

௄మ

ଶ
௄భ

ଵ

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters (1, 2, etc) is the number of channels

136

• Second convolutional layer: 3-D filters resulting in 2-D maps
– Alternately, a kernel with ଷ output channels

Convolutional Neural Networks
௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ

137

• Second convolutional layer: 3-D filters resulting in 2-D maps

௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

௄మ

ଶ
௄భ

ଵ

Total number of parameters:
All these parameters must be learned

Parameters to choose: , and
1. Number of filters
2. Size of filters
3. Stride of convolution

138

Convolutional Neural Networks

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D

maps

௠ 2 3 3

3

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

4
௠

௡ାଵ
௠

௡
௠

௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

139

௠ 2 3 3

3

௄య

ଷ

3

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1 2

2

4

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D

maps

௠
௡ାଵ

௠
௡

௠
௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜),

௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

Parameters to choose:
Size of pooling block 4

Pooling stride 4

140

Convolutional Neural Networks

• This continues for several layers until the final convolved output is fed to
a softmax
– Or a full MLP

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

1

4

௄భ

ଵ

௠ 2 3 3

3

2

2

௄మ

ଶ

141

The Size of the Layers
• Each convolution layer with stride 1 typically maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer will generally increase the number of maps from the
previous layer
– Increasing layers reduces the amount of information lost by subsequent

downsampling

• Each pooling layer with stride decreases the size of the maps by a factor of

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers
142

Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters ௜

– Spatial extent of filter ௜ ௜

• The “depth” of the filter is fixed by the number of filters in the previous layer ௜ିଵ

– The stride ௜

• For each downsampling/pooling layer:
– Spatial extent of filter ௜ ௜

– The stride ௜

• For the final MLP:
– Number of layers, and number of neurons in each layer

143

Poll 4

144

@678

What is the relationship between the number of channels in the output of a
convolutional layer and the number of neurons in the corresponding layer
of a scanning MLP

 They are the same
 The two are not related.

Poll 4

145

What is the relationship between the number of channels in
the output of a convolutional layer and the number of
neurons in the corresponding layer of a scanning MLP

 They are the same
 The two are not related.

Digit classification

146

Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation

௄భ

ଵ

1
௄మ

ଶ

2

3

147

Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

1

3

learnable learnable

learnable

௠ 2 3 3

3

2

2

௄మ

ଶ

148

Learning the CNN

• In the final “flat” multi-layer perceptron, all the weights and biases
of each of the perceptrons must be learned

• In the convolutional layers the filters must be learned
• Let each layer have maps

– ଴ is the number of maps (colours) in the input

• Let the filters in the th layer be size

• For the th layer we will require filter parameters
• Total parameters required for the convolutional layers:

149

Defining the loss

• The loss for a single instance

௠

1

ଵ
ଵ

ଶ
ଵ

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

௄య

ଷ

3

௄భ

ଵ

1

1

4

௠ 2 3 3

3

2

2

௄మ

ଶ

150

Problem Setup
• Given a training set of input-output pairs

• The loss on the ith instance is
• The total loss

• Minimize w.r.t

151

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases

• Do:
– For every layer for all filter indices update:

•

• Until has converged
152

Total training loss:

Assuming the bias is also
represented as a weight

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases

• Do:
– For every layer for all filter indices update:

•

• Until has converged
153

Total training loss:

Assuming the bias is also
represented as a weight

The derivative

• Computing the derivative

154

Total derivative:

Total training loss:

The derivative

• Computing the derivative

155

Total derivative:

Total training loss:

Backpropagation: Final flat layers

• Backpropagation continues in the usual manner
until the computation of the derivative of the
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the

“flattening” of the maps from the final convolutional
layer

௒(௅)

௄భ

ଵ

1
௄మ

ଶ

2

3

Conventional backprop until here

156

Backpropagation: Convolutional and
Pooling layers

• Backpropagation from the flat MLP requires
special consideration of
– The shared computation in the convolutional layers

– The pooling layers (particularly maxout)

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)

157

Backprop through a CNN

• In the next class…

158

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

159

Story so far

• The convolutional neural network is a supervised
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs
from the convolutional layer to reduce network size

• The parameters of the network can be learned through
regular back propagation
– Continued in next lecture..

160

