Deep Neural Networks Convolutional Networks III

Bhiksha Raj Fall 2022

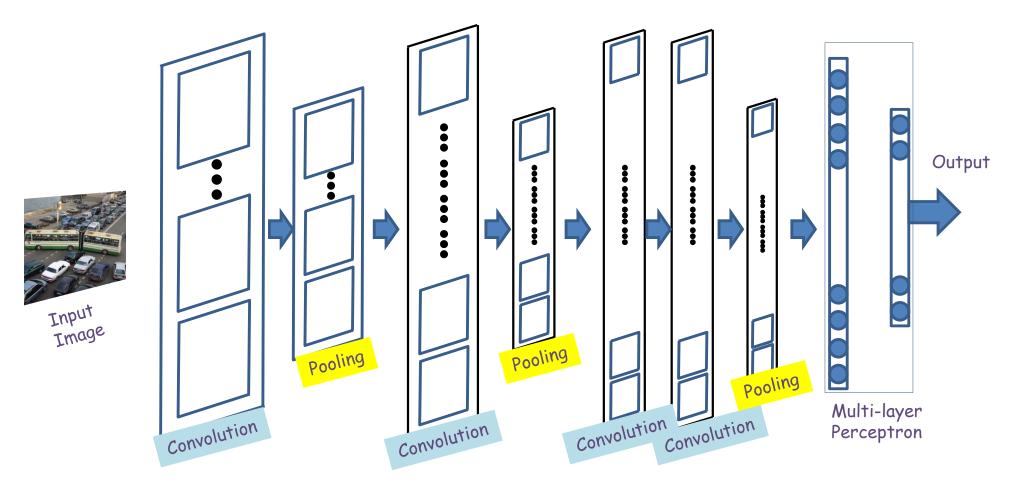
Outline

- Quick recap
- Back propagation through a CNN
- Modifications: Transposition, scaling, rotation and deformation invariance
- Segmentation and localization
- Some success stories
- Some advanced architectures
 - Resnet
 - Densenet

Story so far

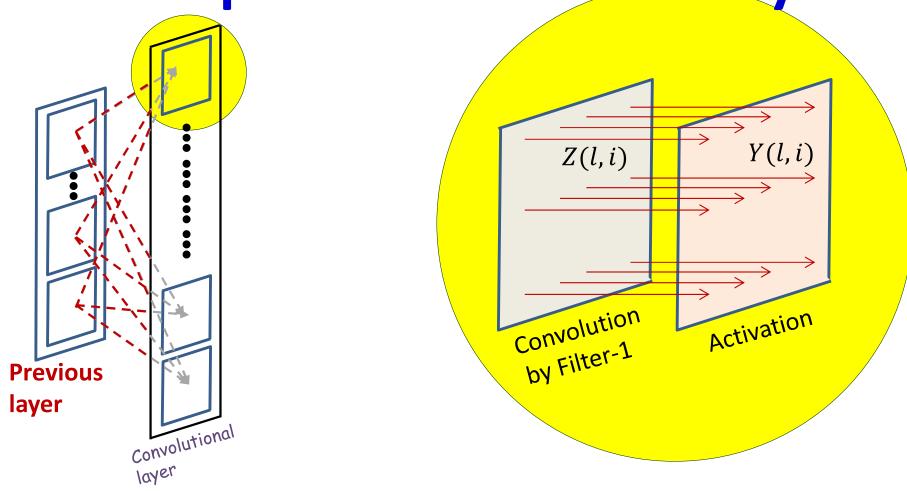
- Pattern classification tasks such as "does this picture contain a cat", or "does this recording include HELLO" are best performed by scanning for the target pattern
- Scanning an input with a network and combining the outcomes is equivalent to scanning with individual neurons hierarchically
 - First level neurons scan the input
 - Higher-level neurons scan the "maps" formed by lower-level neurons
 - A final "decision" unit or layer makes the final decision
 - Deformations in the input can be handled by "pooling"
- For 2-D (or higher-dimensional) scans, the structure is called a convnet
- For 1-D scan along time, it is called a Time-delay neural network

Recap: The general architecture of a convolutional neural network



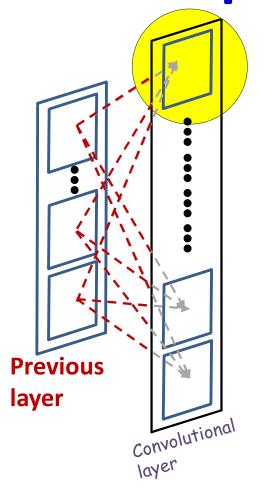
- A convolutional neural network comprises of "convolutional" and optional "pooling" layers
- Followed by an MLP with one or more layers

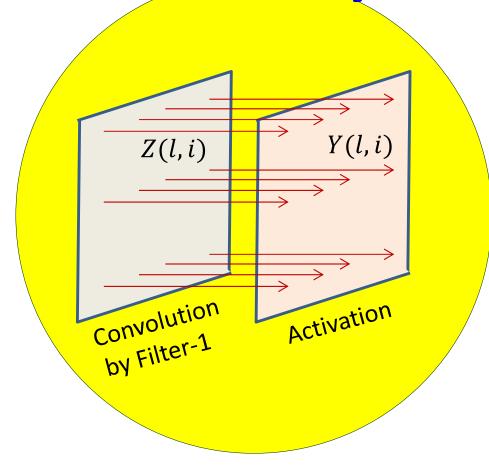
Recap: A convolutional layer



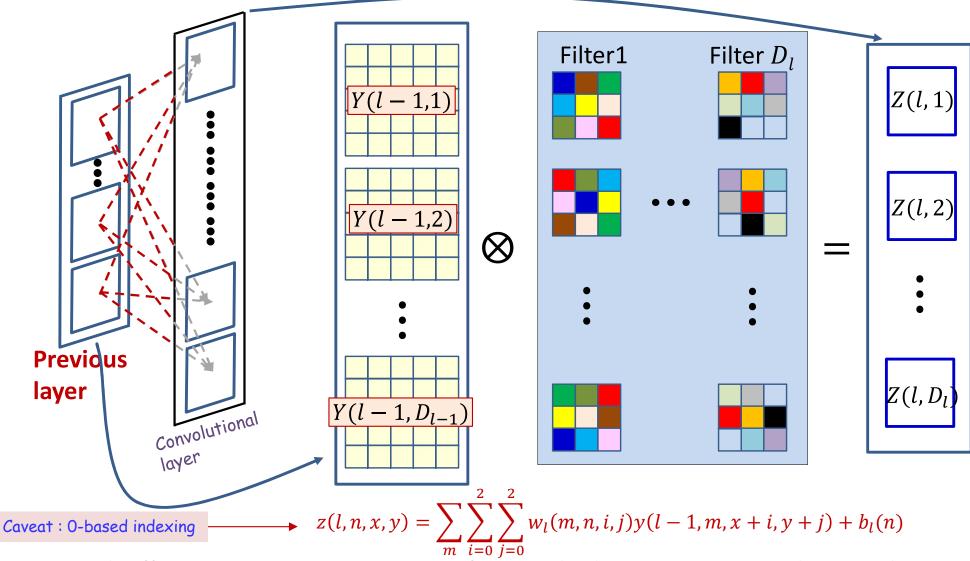
- The computation of each output map has two stages
 - Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates point-wise on the output of the convolution

Recap: A convolutional layer





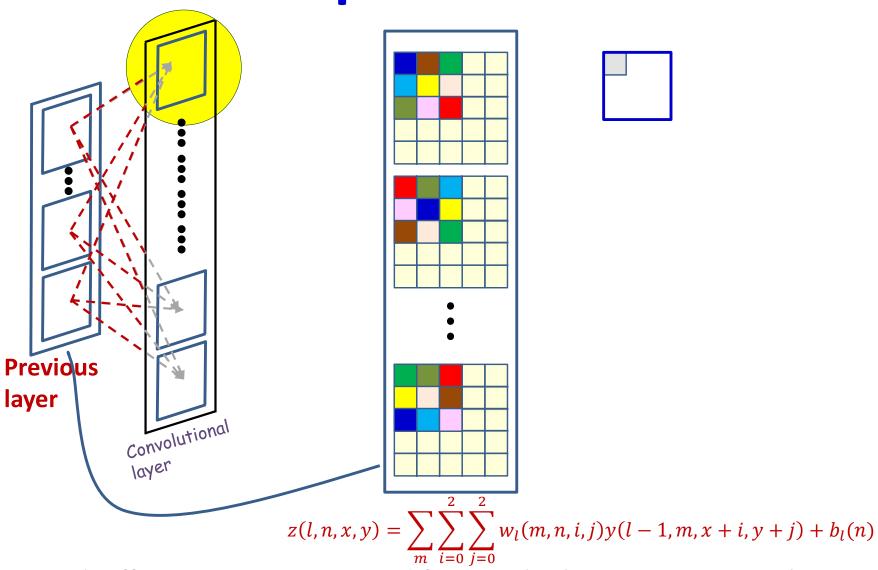
- The computation of each output map has two stages
 - Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
 - Each affine map has, associated with it, a learnable filter
 - An activation that operates point-wise on the output of the convolution



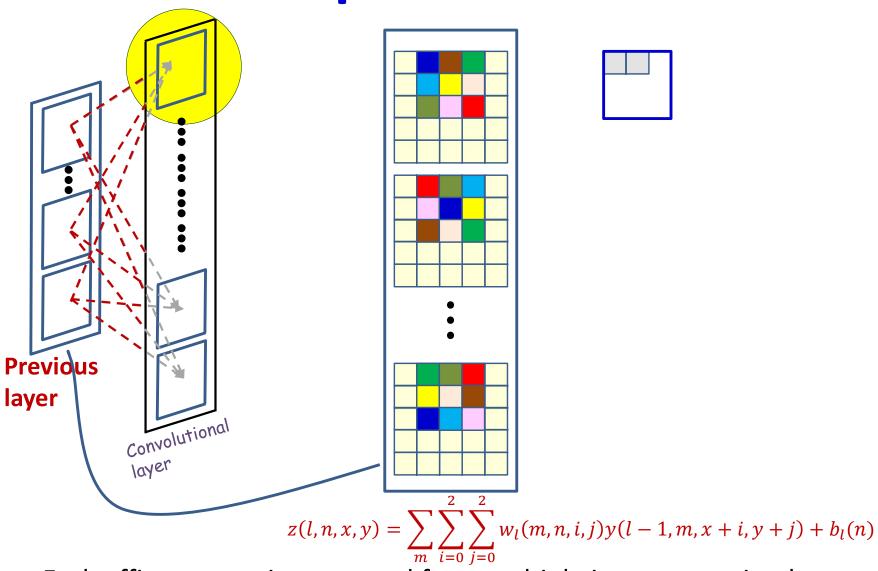
- Each affine output map is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



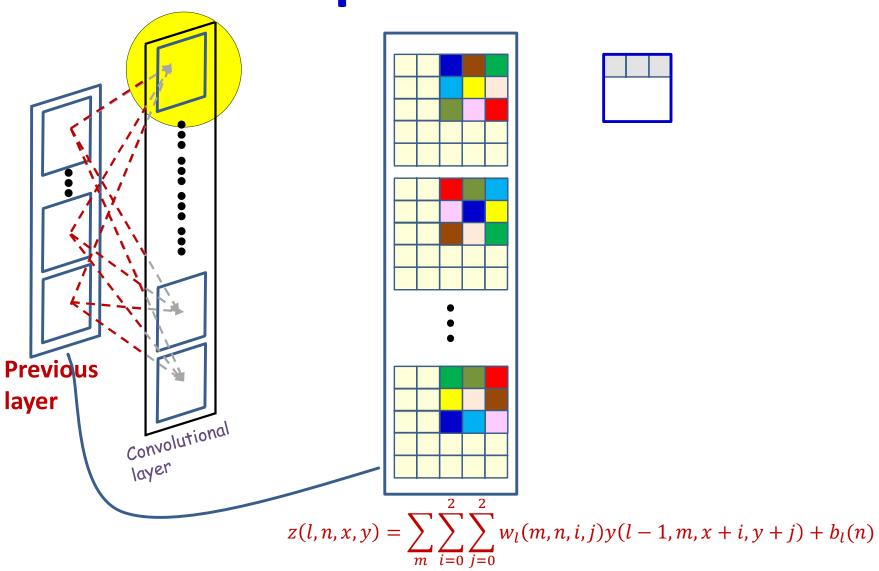
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



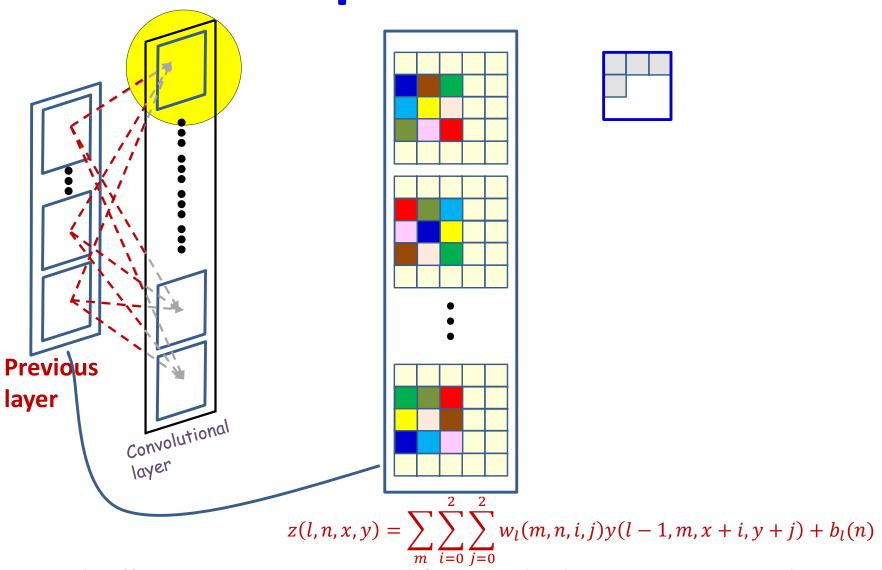
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



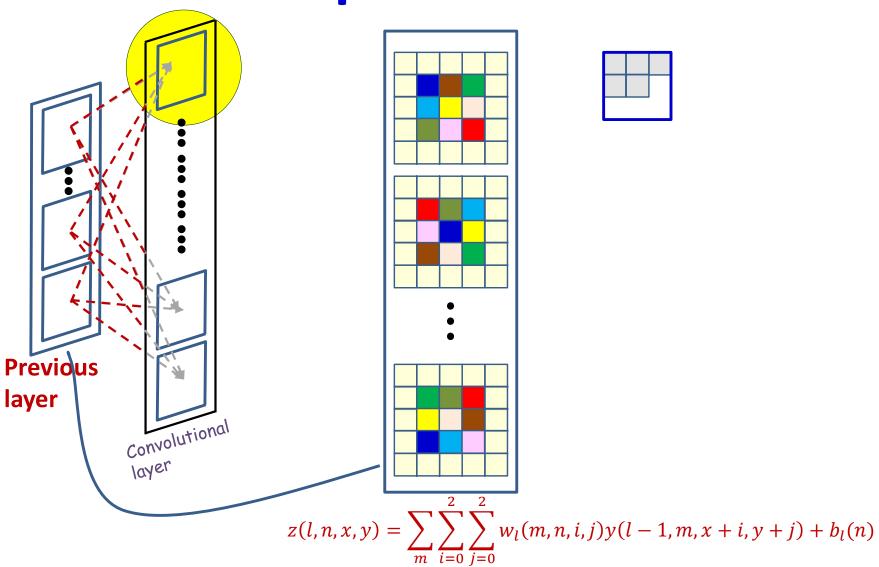
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



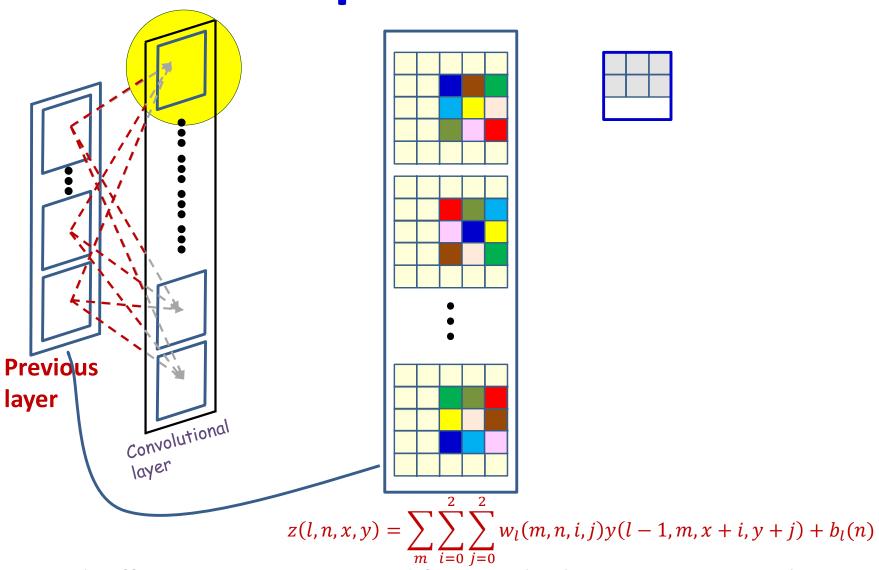
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



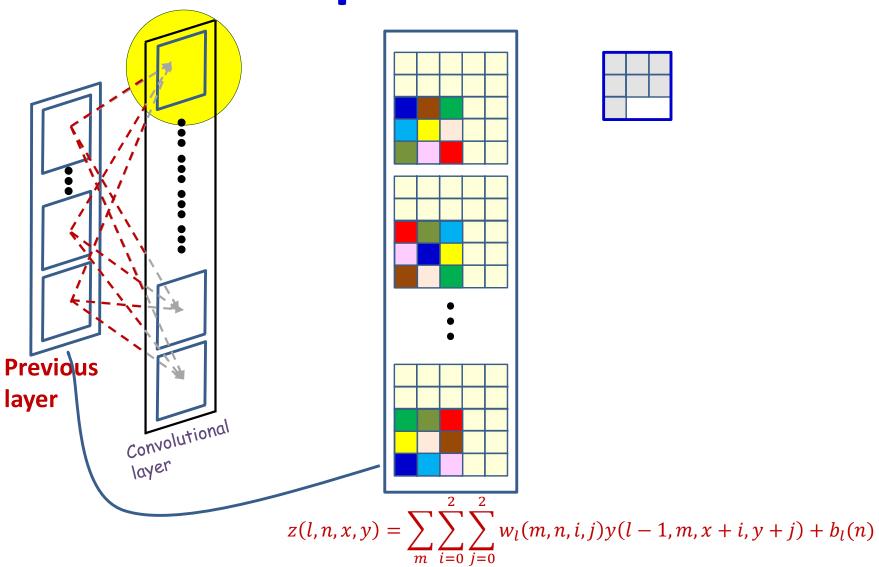
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



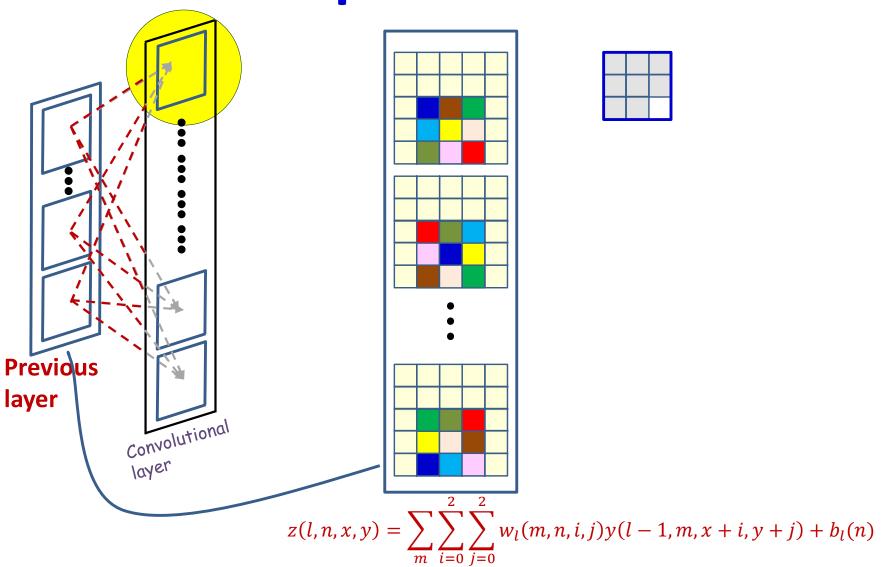
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



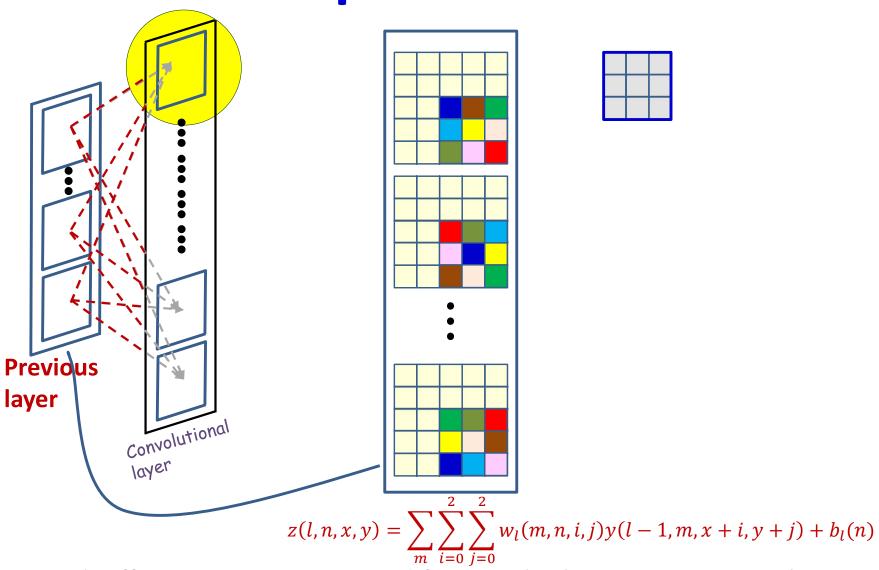
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

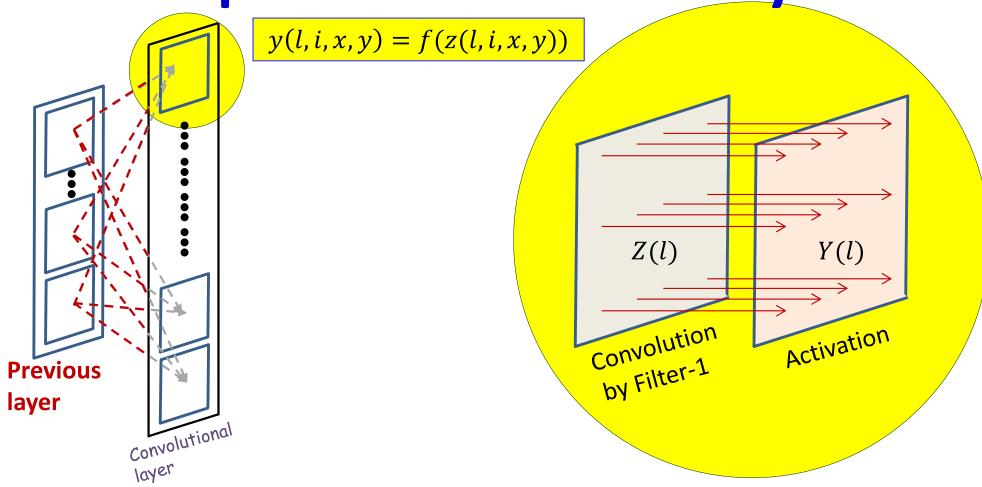


- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



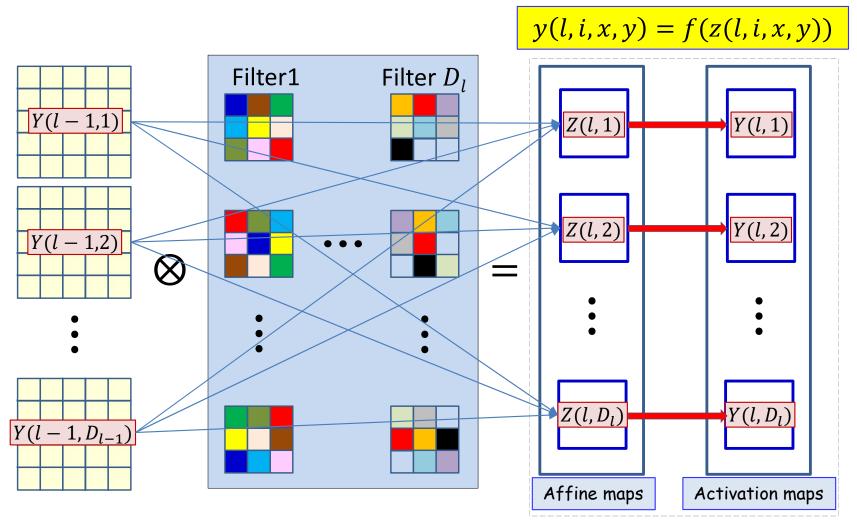
- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

Recap: A convolutional layer



- The computation of each output map has two stages
 - Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates on the output of the convolution

Convolution layer: A more explicit illustration



- Input maps Y(l-1,st) are convolved with several filters to generate the affine maps Z(l,st)
 - Each filter consists of a set of square patterns of weights, with one set for each map in Y(l-1,*)

19

- We get one affine map per filter
- A *point-wise* activation function f(z) is applied to each map in Z(l,*) to produce the activation maps Y(l,*)

Pseudocode: Vector notation

The weight W(1,j) is a 3D $D_{1-1} \times K_1 \times K_1$ tensor $\mathbf{Y}(0) = Image$ for 1 = 1:L # layers operate on vector at (x,y) for $x = 1:W_{1-1}-K_1+1$ for $y = 1:H_{1-1}-K_1+1$ for $j = 1:D_1$ **segment** = $Y(1-1, :, x:x+K_1-1, y:y+K_1-1)$ #3D tensor z(1,j,x,y) = W(1,j).segment + b(1,j)#tensor prod. $\mathbf{Y}(1,j,x,y) = \mathbf{activation}(\mathbf{z}(1,j,x,y))$

 $Y = softmax(\{Y(L, :, :, :)\})$

Poll 1

@727

Select all true statements about a convolution layer.

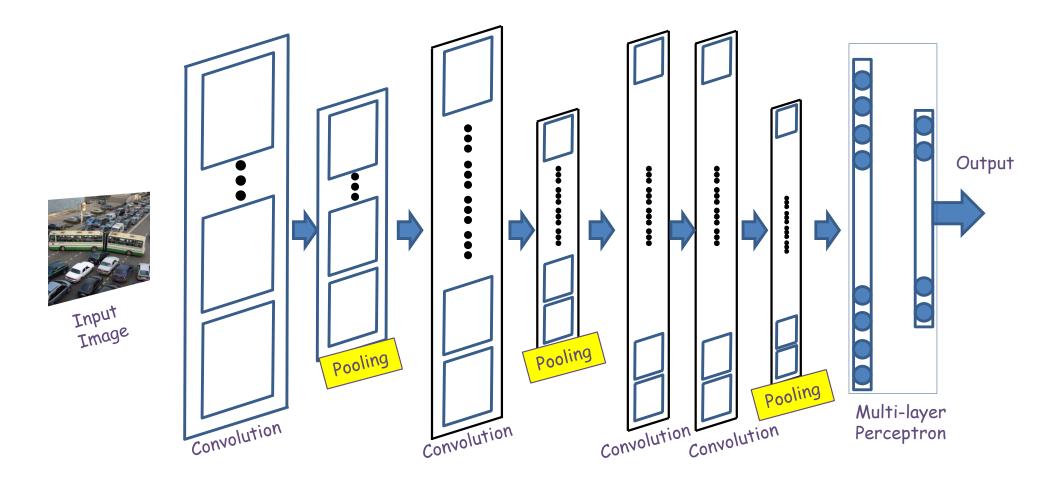
- The number of "channels" in any filter equals the number of input maps (output maps from the previous layer)
- The number of "channels" in any filter equals the number of output maps (affine maps output by the layer)
- The number of filters equals the number of input maps
- The number of filters equals the number of output maps

Poll 1

Select all true statements about a convolution layer.

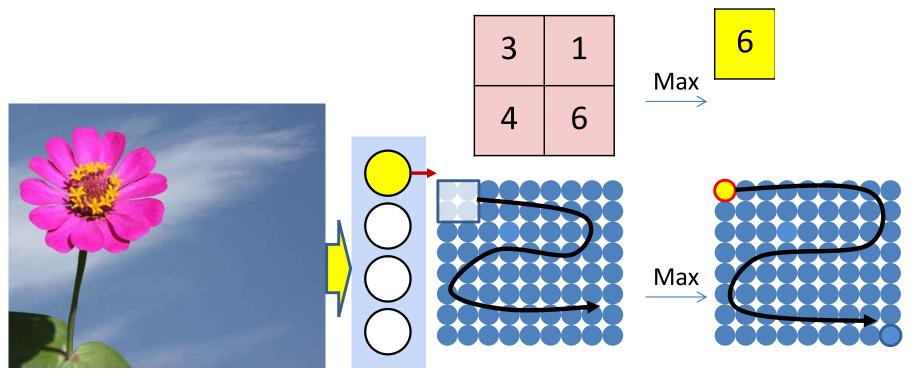
- The number of "channels" in any filter equals the number of input maps (output maps from the previous layer)
- The number of "channels" in any filter equals the number of output maps (affine maps output by the layer)
- The number of filters equals the number of input maps
- The number of filters equals the number of output maps

Pooling



- Convolutional (and activation) layers are followed intermittently by "pooling" layers
 - Often, they alternate with convolution, though this is not necessary

Recall: Max pooling



- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input with a "max-pooling filter"

Recap: Pooling and downsampling layer

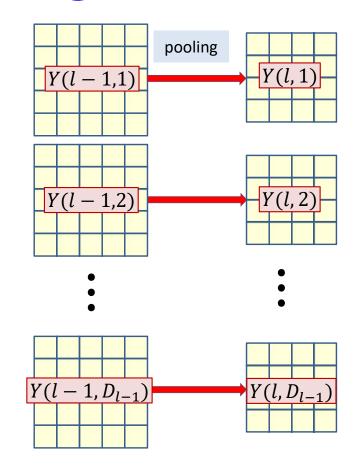


Image assumes pooling with window of size 2x2

• Input maps Y(l-1,*) are operated on individually by pooling operations to produce the pooled maps Y(l,*)

Recap: Max Pooling layer at layer l

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling

```
for j = 1:D_1
```

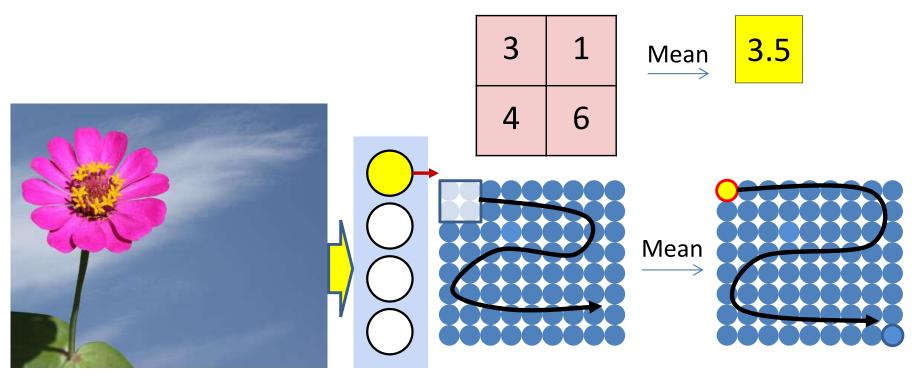
```
for x = 1:W_{1-1}-K_1+1

for y = 1:H_{1-1}-K_1+1

pidx(l,j,x,y) = maxidx(Y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))

u(l,j,x,y) = Y(l-1,j,pidx(l,j,m,n))
```

Recall: Mean pooling



- Mean pooling computes the *mean* of the window of values
 - As opposed to the max of max pooling

Recap: Mean Pooling layer at layer *l*

a) Performed separately for every map (j)

Mean pooling

```
for j = 1:D_1
```

```
for x = 1:W_{1-1}-K_1+1

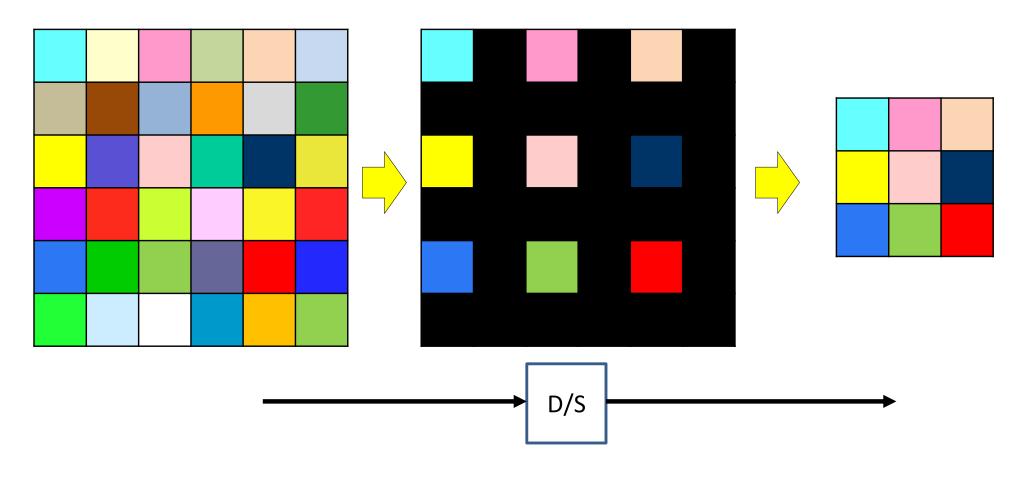
for y = 1:H_{1-1}-K_1+1

u(1,j,x,y) = mean(Y(1-1,j,x:x+K_1-1,y:y+K_1-1))
```

Recap: Resampling

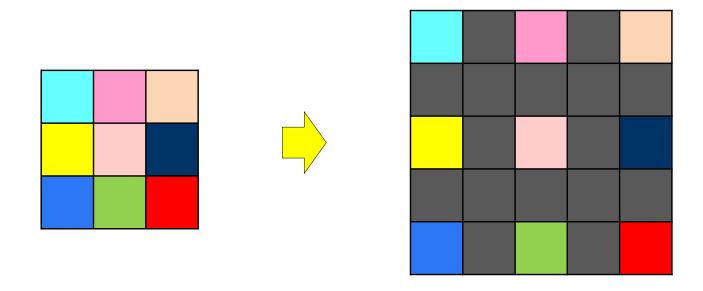
- We can also proportionately decrease or increase the size of the maps by dropping or inserting zeros
 - Downsampling: Drop S-1 rows/columns between rows/columns
 - Reduces the size of the maps by S on each side
 - Upsampling: Insert S-1 rows/columns of zeros between adjacent entries
 - Increases the size of the map by S on each side

The Downsampling Layer



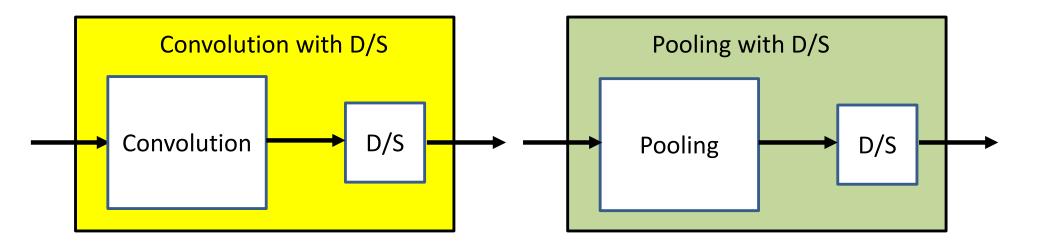
- A downsampling layer simply "drops" S-1 of S rows and columns for every map in the layer
 - Effectively reducing the size of the map by factor S in every direction

The Upsampling Layer



- A *upsampling* (or dilation) layer simply introduces S-1 rows and columns for every map in the layer
 - Effectively increasing the size of the map by factor S in every direction
- Used explicitly to increase the map size by a uniform factor

Downsampling in practice



- In practice, the downsampling is combined with the layers just before it by performing the operations with a stride > 1
 - Could be convolutional or pooling layers

Convolution with downsampling

```
The weight W(1,j) is now a 4D D_1 \times D_{1-1} \times K_1 \times K_1 tensor
The product in blue is a tensor inner product with a
scalar output
\mathbf{Y}(0) = Image
for 1 = 1:L # layers operate on vector at (x,y)
   m = 1
   for x = 1:S:W_{1-1}-K_1+1
                                   STRIDE
     n = 1
      for y = 1:S:H_{1-1}-K_1+1
         segment = Y(1-1, :, x:x+K_1-1, y:y+K_1-1) #3D tensor
         z(1,:,m,n) = W(1).segment #tensor inner prod.
         Y(1,:,m,n) = activation(z(1,:,m,n))
         n++
               Downsampled indices
    m++
```

= softmax($\{Y(L,:,:,:)\}$)

Max Pooling with Downsampling

Max pooling

```
for j = 1:D<sub>1</sub>

m = 1

for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1

n = 1

for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
```

Mean Pooling with Downsampling

Mean pooling

```
for j = 1:D<sub>1</sub>

m = 1

for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1

n = 1

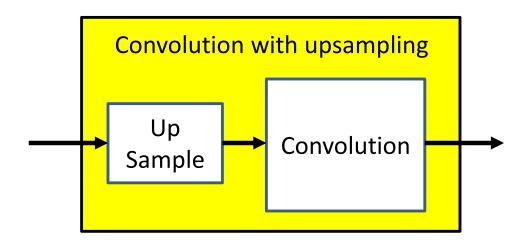
for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))

n = n+1

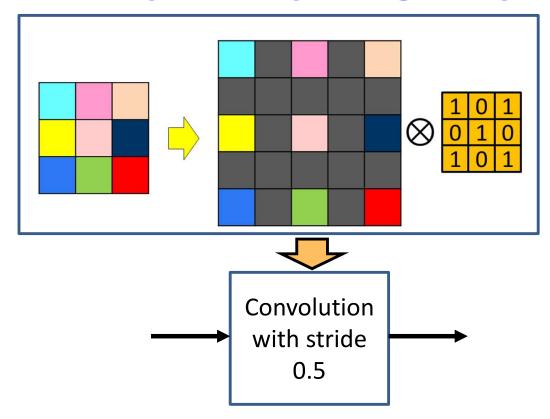
m = m+1
```

The Upsampling Layer



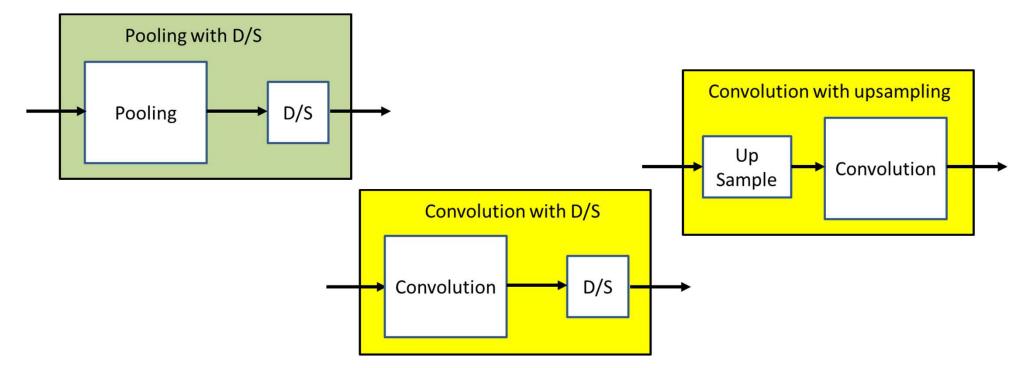
- A upsampling layer is generally followed by a CNN layer
 - It is not useful to follow it by a pooling layer
 - It is also not useful as the final layer of a CNN

The Upsampling Layer



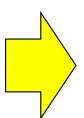
- Upsampling layers followed by a convolutional layer are also often viewed as convolving with a fractional stride
 - Upsampling by factor S is the same as striding by factor 1/S
- Also called "transpose convolutions" for reasons we won't get into here

* with resampling



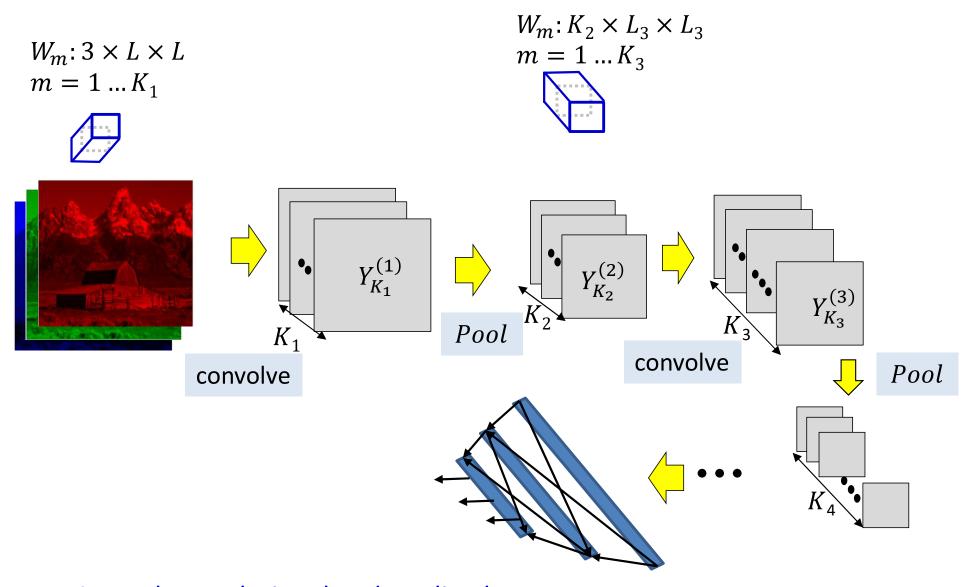
- Although the resampling operation is generally merged with convolutions or pooling (by changing their stride) in the forward pass in practical implementations...
- ...It is more convenient to think of the two as separate operations in the backward pass
 - More on this later...

Recap: A CNN, end-to-end



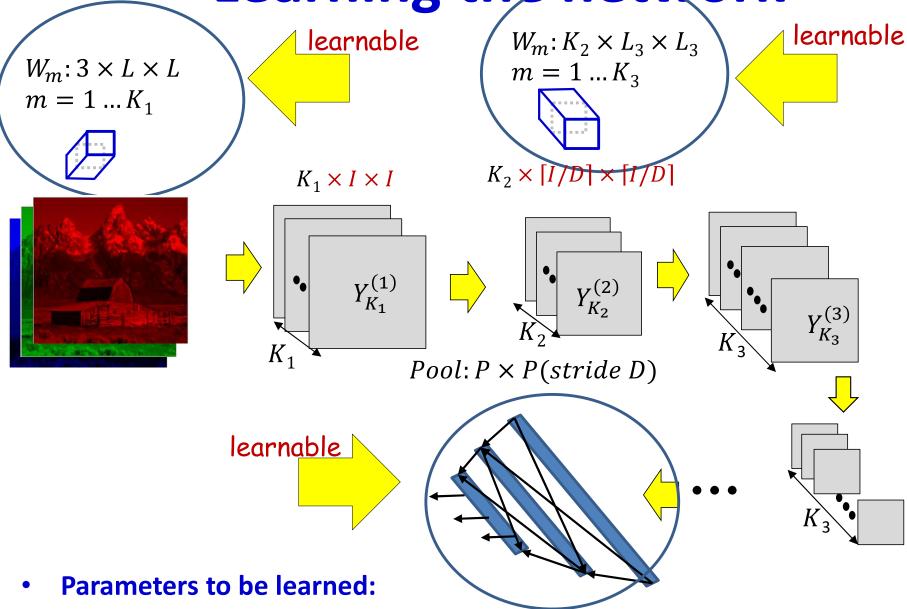
- Typical image classification task
 - Assuming maxpooling..
- Input: RBG images
 - Will assume color to be generic

Recap: A CNN, end-to-end



- Several convolutional and pooling layers.
- The output of the last layer is "flattened" and passed through an MLP

Learning the network



- The weights of the neurons in the final MLP
- The (weights and biases of the) filters for every convolutional layer

Recap: Learning the CNN

- Training is as in the case of the regular MLP
 - The only difference is in the structure of the network
- Training examples of (Image, class) are provided

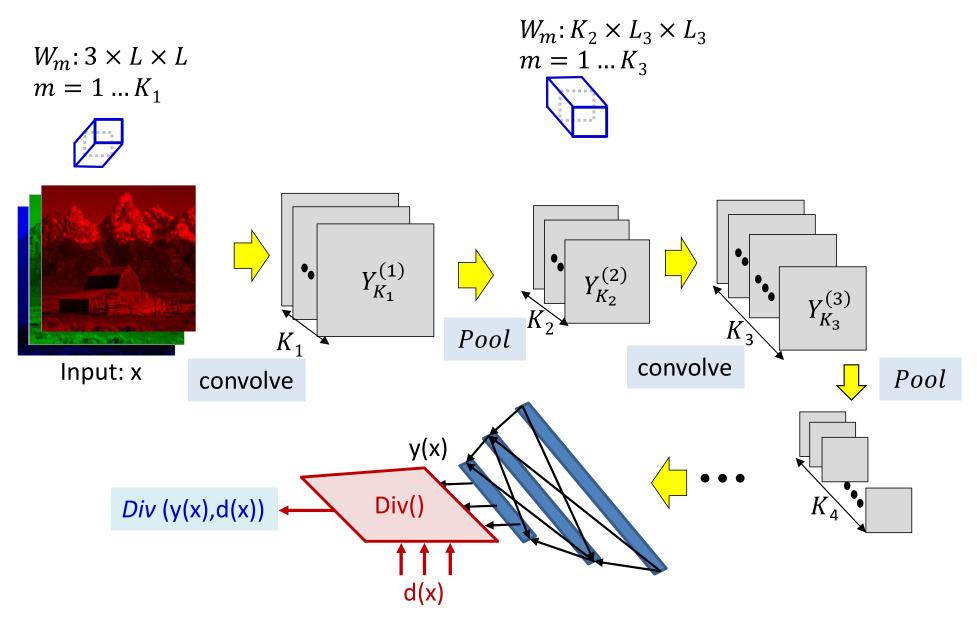
Define a loss:

- Define a divergence between the desired output and true output of the network in response to any input
- The loss aggregates the divergences of the training set

Network parameters are trained to minimize the loss

- Through variants of gradient descent
- Gradients are computed through backpropagation

Defining the loss



The loss for a single instance

Recap: Problem Setup

• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

- The divergence on the ith instance is $div(Y_i, d_i)$
- The aggregate Loss

$$Loss = \frac{1}{T} \sum_{i=1}^{T} div(Y_i, d_i)$$

- Minimize Loss w.r.t $\{W_m, b_m\}$
 - Using gradient descent

Recap: The derivative

Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

Computing the derivative

Total derivative:

$$\frac{dLoss}{dw} = \frac{1}{T} \sum_{i} \frac{dDiv(Y_i, d_i)}{dw}$$

Recap: The derivative

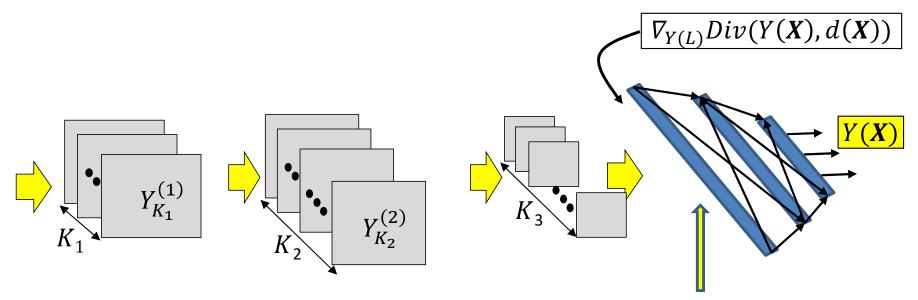
Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

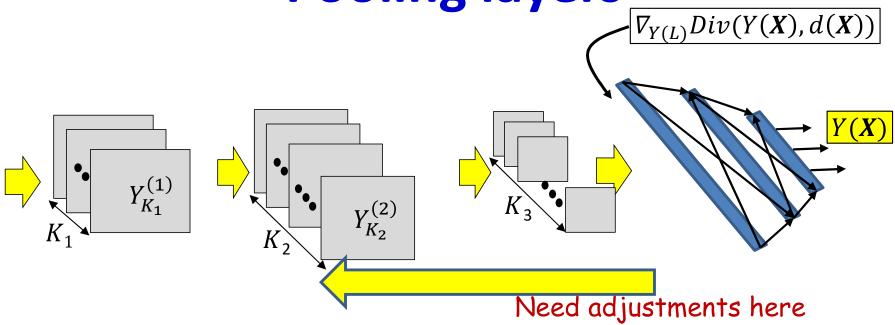
Computing the derivative

Total derivative:
$$\frac{dLoss}{dw} = \frac{1}{T} \sum_{k} \frac{dDiv(Y_i, d_i)}{dw}$$

Backpropagation: Final flat layers

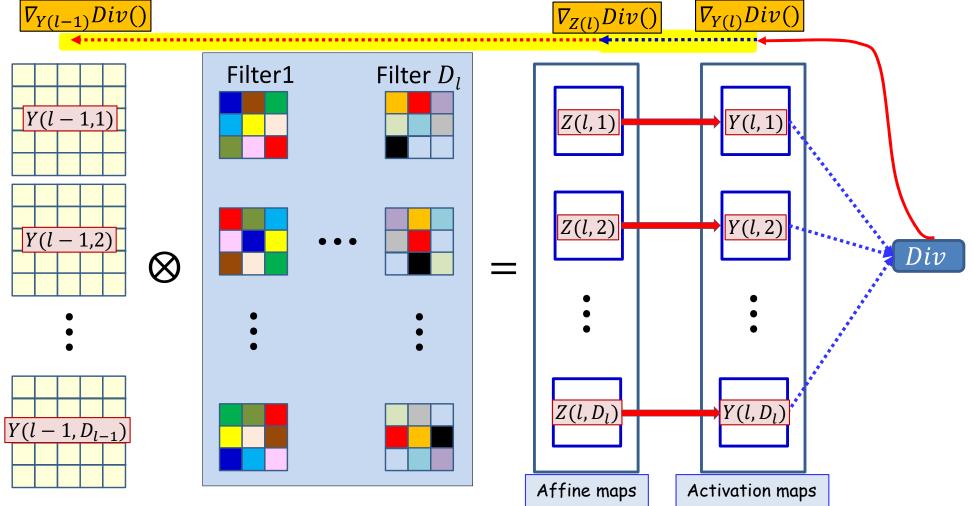


- Conventional backprop until here
- For each training instance: First, a forward pass through the net
- Then the backpropagation of the derivative of the divergence
- Backpropagation continues in the usual manner until the computation of the derivative of the divergence w.r.t the inputs to the first "flat" layer
 - Important to recall: the first flat layer is only the "unrolling" of the maps from the final convolutional layer



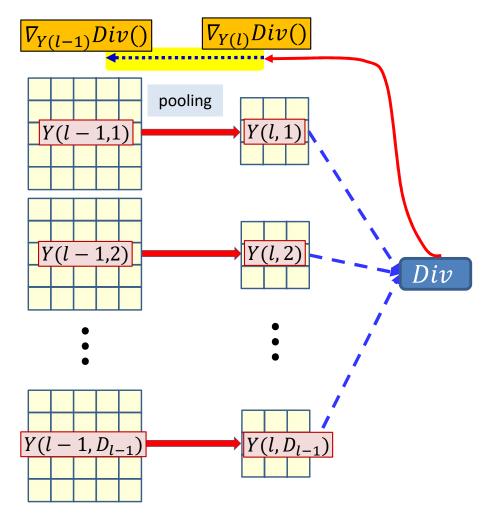
- Backpropagation from the flat MLP requires special consideration of
 - The shared computation in the convolution layers
 - The pooling layers

Backpropagating through the convolution



- Convolution layers:
- We already have the derivative w.r.t (all the elements of) activation map Y(l,*)
 - Having backpropagated it from the divergence
- We must backpropagate it through the activation to compute the derivative w.r.t. Z(l,*) and further back to compute the derivative w.r.t the filters and Y(l-1,*)

Backprop: Pooling layer



- Pooling layers:
- We already have the derivative w.r.t Y(l,*)
 - Having backpropagated it from the divergence
- We must compute the derivative w.r.t Y(l-1,*)

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

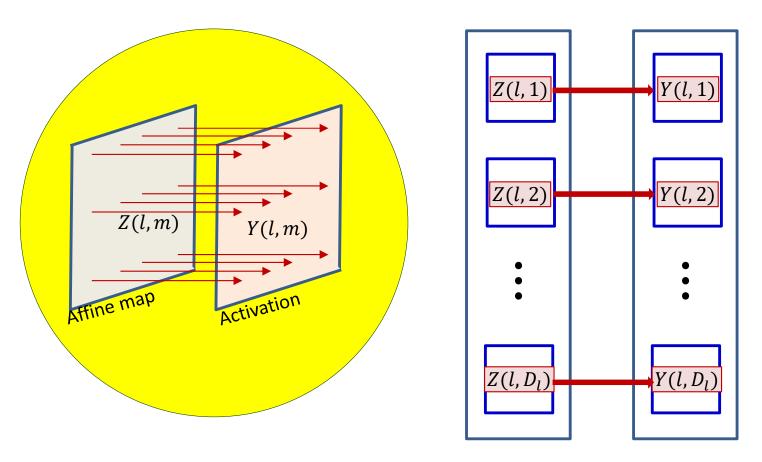
- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

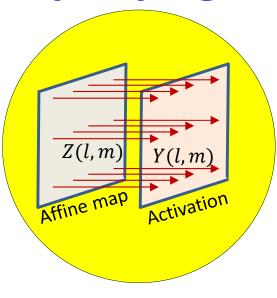
Backpropagating through the activation



Forward computation: The activation maps are obtained by point-wise application of the activation function to the affine maps

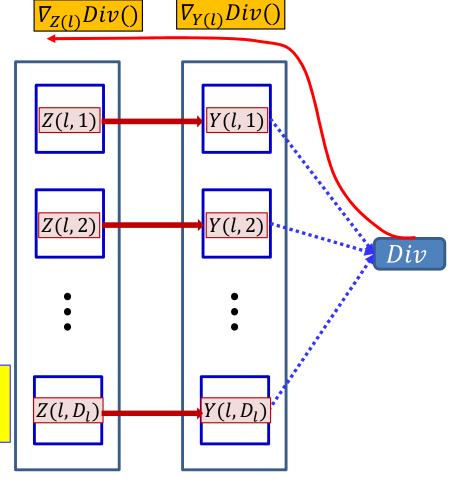
$$y(l, m, x, y) = f(z(l, m, x, y))$$

 The affine map entries z(l, m, x, y) have already been computed via convolutions over the previous layer Backpropagating through the activation



$$y(l, m, x, y) = f(z(l, m, x, y))$$

$$\frac{dDiv}{dz(l,m,x,y)} = \frac{dDiv}{dy(l,m,x,y)} f'(z(l,m,x,y))$$



- Backward computation: For every map Y(l,m) for every position (x,y), we already have the derivative of the divergence w.r.t. y(l,m,x,y)
 - Obtained via backpropagation
- We obtain the derivatives of the divergence w.r.t. z(l, m, x, y) using the chain rule:

$$\frac{dDiv}{dz(l,m,x,y)} = \frac{dDiv}{dy(l,m,x,y)} f'(z(l,m,x,y))$$

Simple component-wise computation

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

- For convolutional layers:
 - \checkmark How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

Backpropagating through affine map

- Forward affine computation:
 - Compute affine maps z(l,n,x,y) from previous layer maps y(l-1,m,x,y) and filters $w_l(m,n,x,y)$

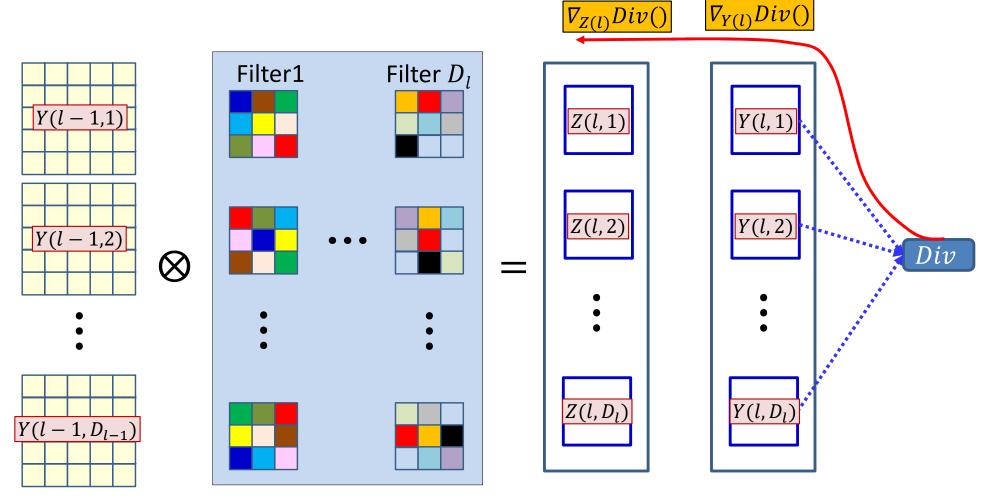
- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$
 - Compute derivative w.r.t. y(l-1, m, x, y)
 - Compute derivative w.r.t. $w_l(m, n, x, y)$

Backpropagating through affine map

- Forward affine computation:
 - Compute affine maps z(l,n,x,y) from previous layer maps y(l-1,m,x,y) and filters $w_l(m,n,x,y)$

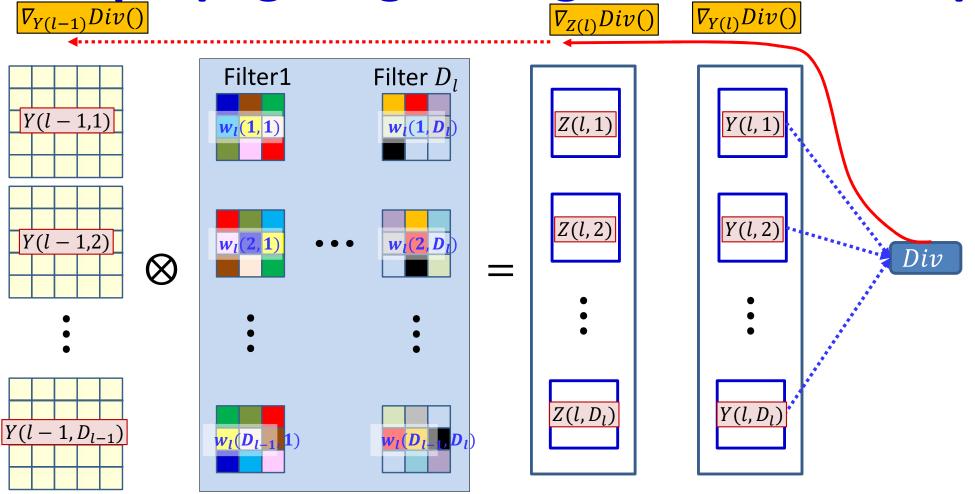
- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$
 - Compute derivative w.r.t. y(l-1, m, x, y)
 - Compute derivative w.r.t. $w_l(m, n, x, y)$

Backpropagating through the affine map



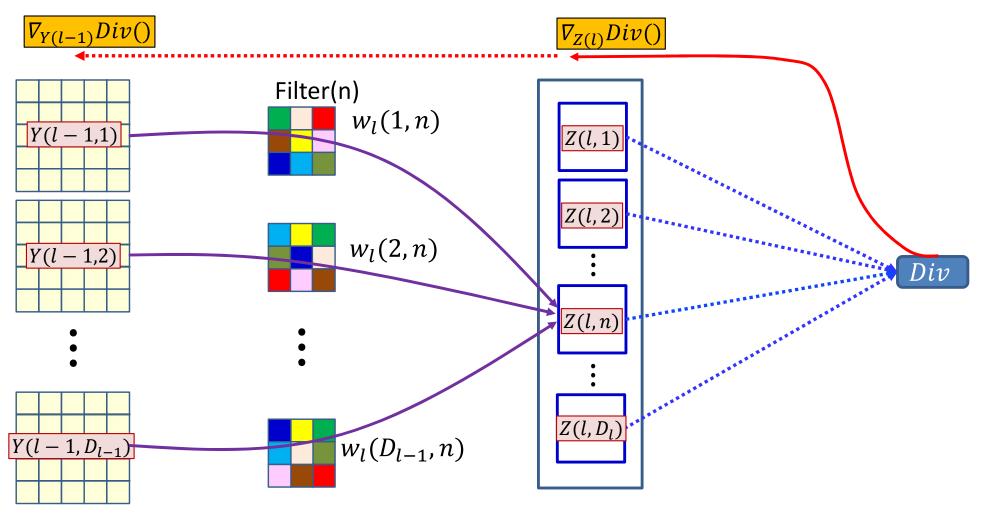
- We already have the derivative w.r.t Z(l,*)
 - Having backpropagated it past Y(l,*)

Backpropagating through the affine map

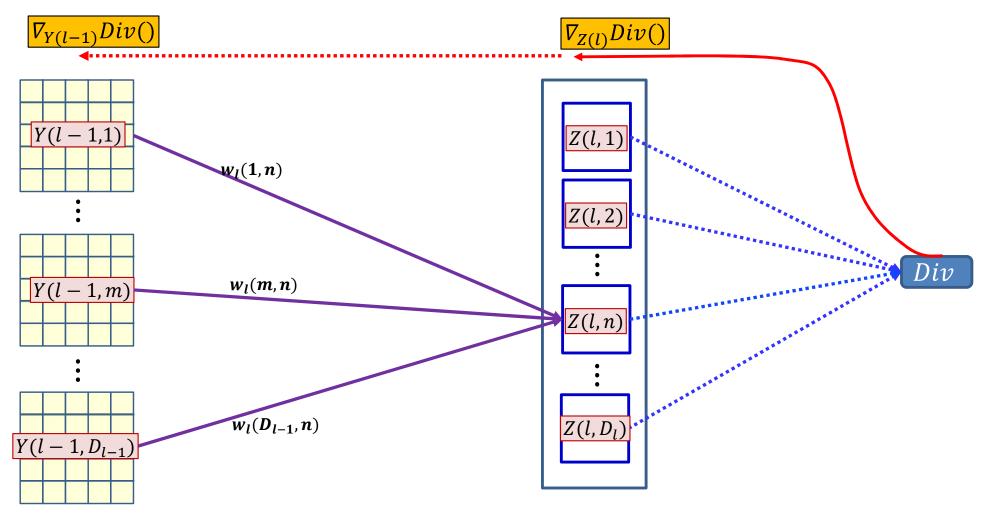


- We already have the derivative w.r.t Z(l,*)
 - Having backpropagated it past Y(l,*)
- We must compute the derivative w.r.t Y(l-1,*)

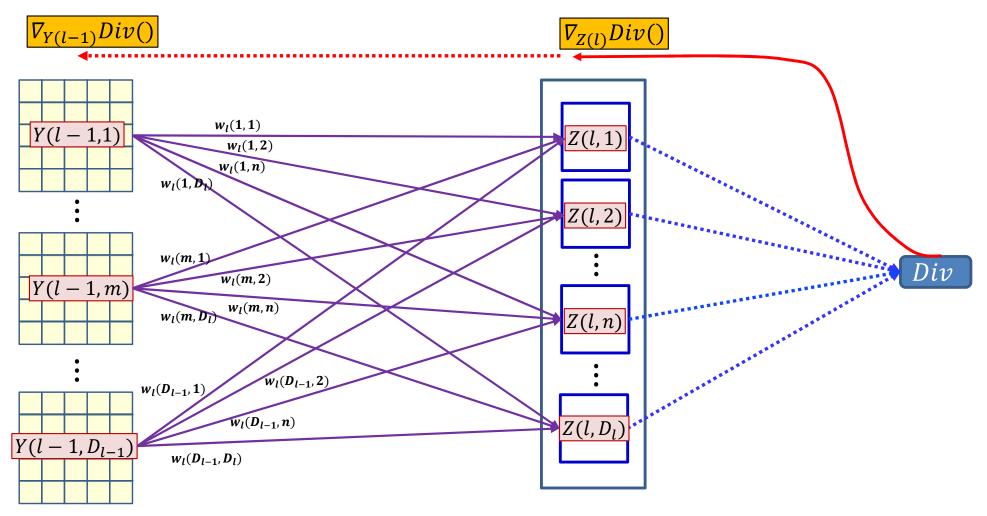
Dependency between Z(I,n) and Y(I-1,*)



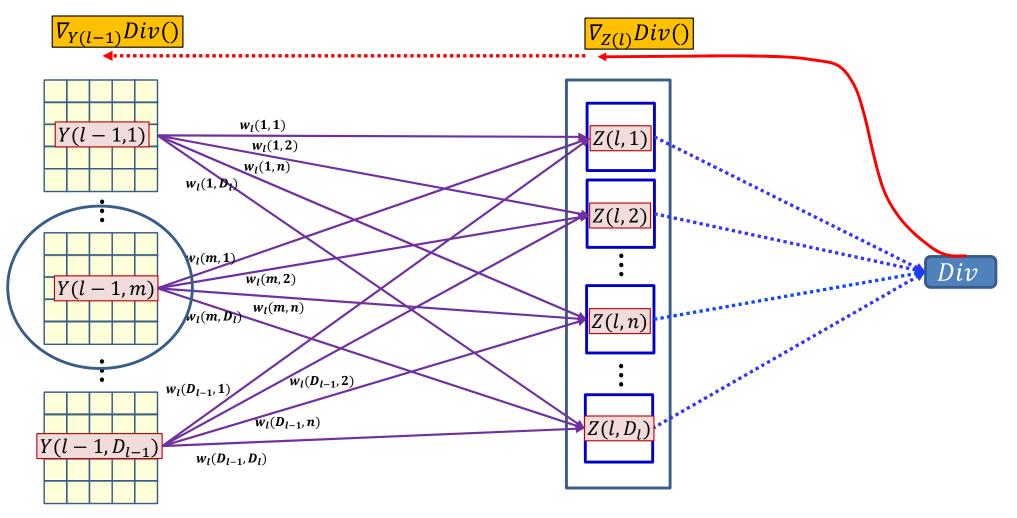
Dependency between Z(I,n) and Y(I-1,*)



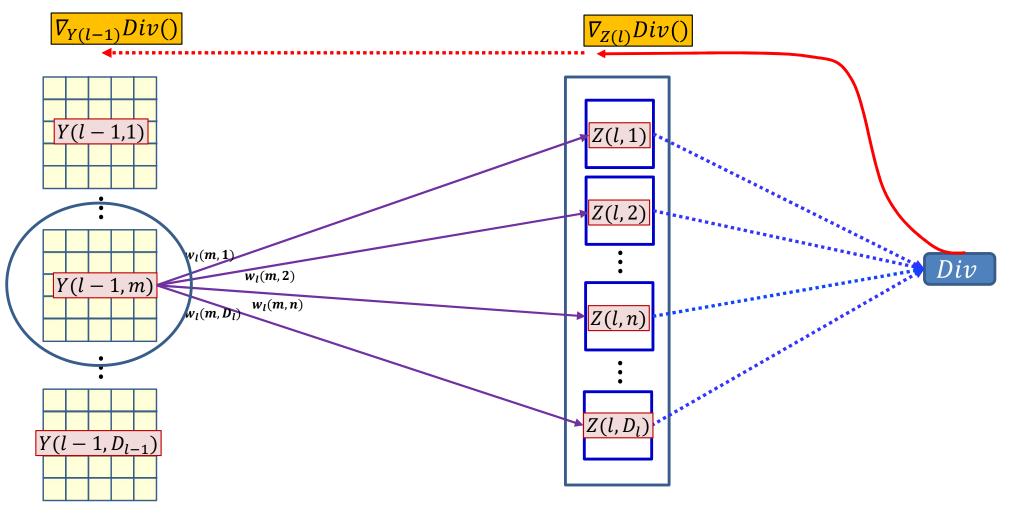
Dependency between Z(I,*) and Y(I-1,*)



Dependency between Z(I,*) and Y(I-1,*)

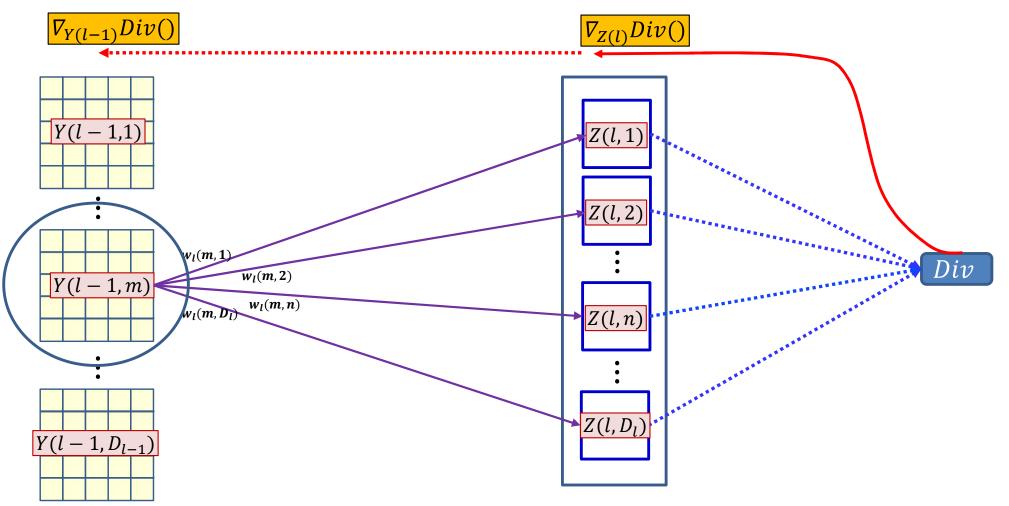


Dependency diagram for a single map



- Each Y(l-1,m) map/channel influences Z(l,n) through the mth "plane"(channel) of the nth filter $w_l(m,n)$
- Y(l-1,m,*,*) influences the divergence through all Z(l,n,*,*) maps

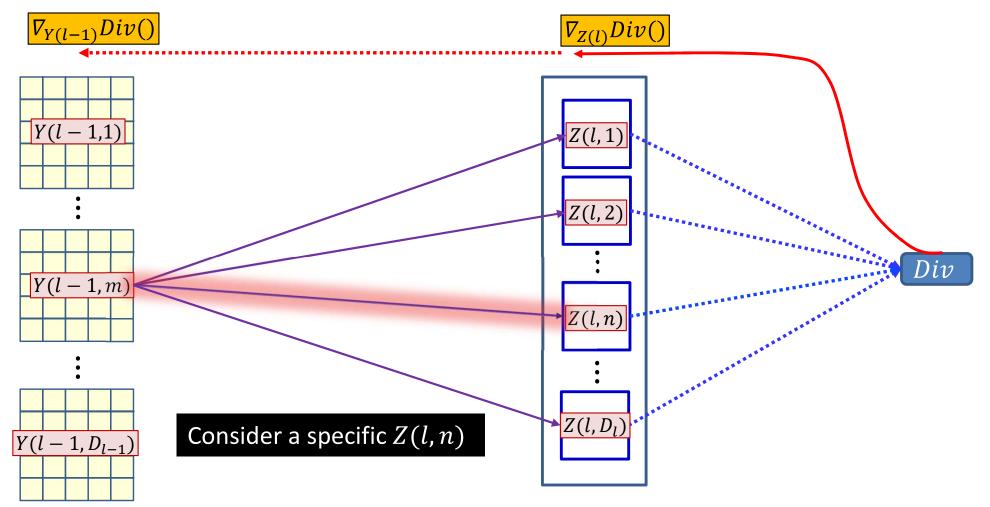
Dependency diagram for a single map



$$\nabla_{Y(l-1,m)}Div(.) = \sum_{n} \nabla_{Z(l,n)}Div(.) \nabla_{Y(l-1,m)}Z(l,n)$$

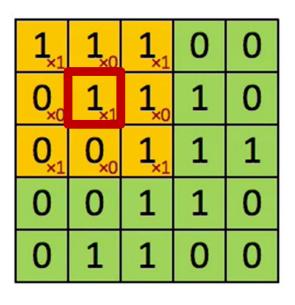
• Need to compute $\nabla_{Y(l-1,m)}Z(l,n)$, the derivative of Z(l,n) w.r.t. Y(l-1,m) to complete the computation of the formula

Dependency diagram for a single map



$$\nabla_{Y(l-1,m)}Div(.) = \sum_{n} \nabla_{Z(l,n)}Div(.) \nabla_{Y(l-1,m)}Z(l,n)$$

• Need to compute $\nabla_{Y(l-1,m)}Z(l,n)$, the derivative of Z(l,n) w.r.t. Y(l-1,m) to complete the computation of the formula

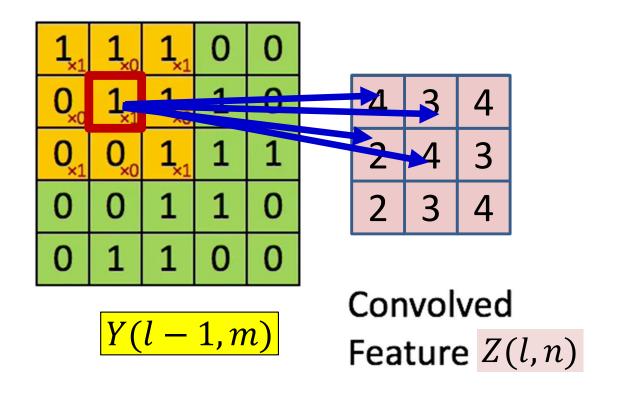


4	

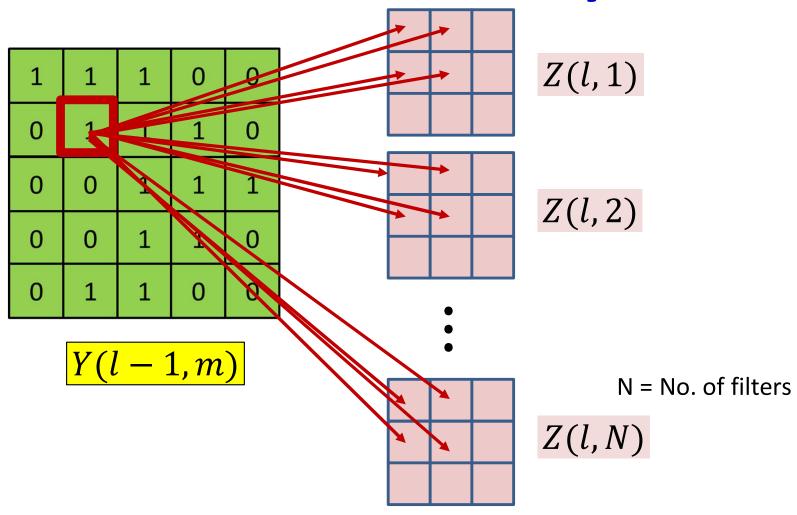
$$Y(l-1,m)$$

Convolved Feature Z(l,n)

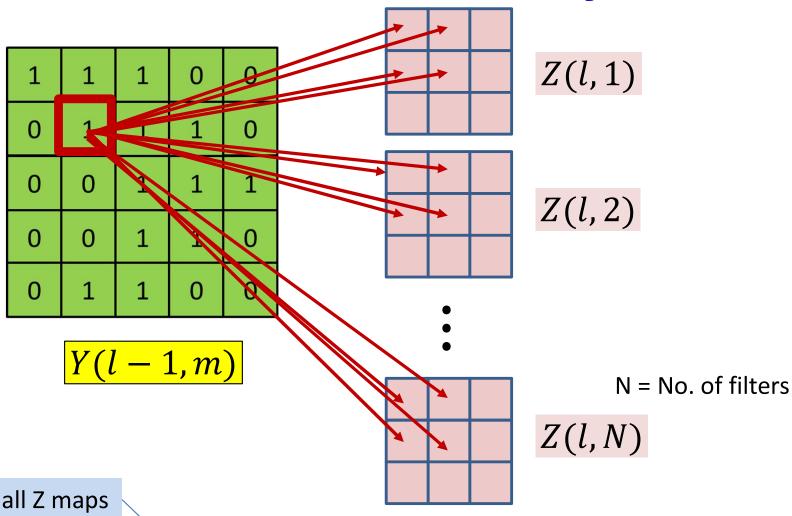
• Each Y(l-1, m, x, y) affects several z(l, n, x', y') terms



• Each Y(l-1,m,x,y) affects several z(l,n,x',y') terms

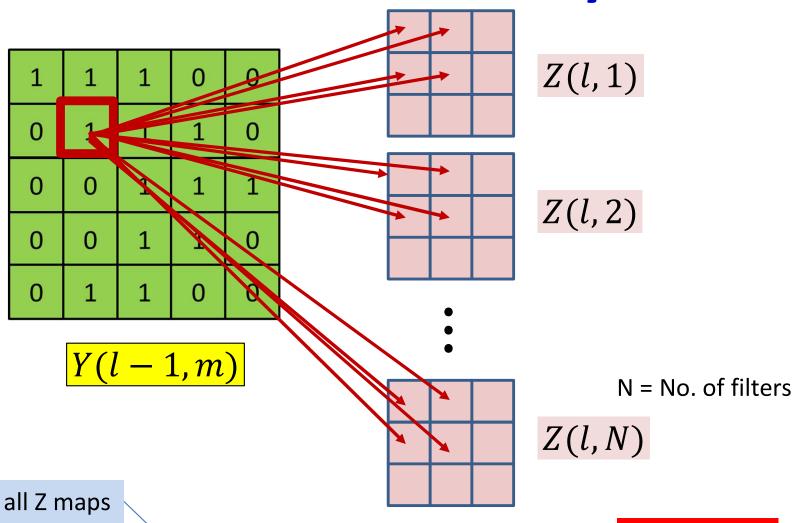


- Each Y(l-1, m, x, y) affects several z(l, n, x', y') terms
 - Affects terms in all l th layer Z maps



Summing over all Z maps

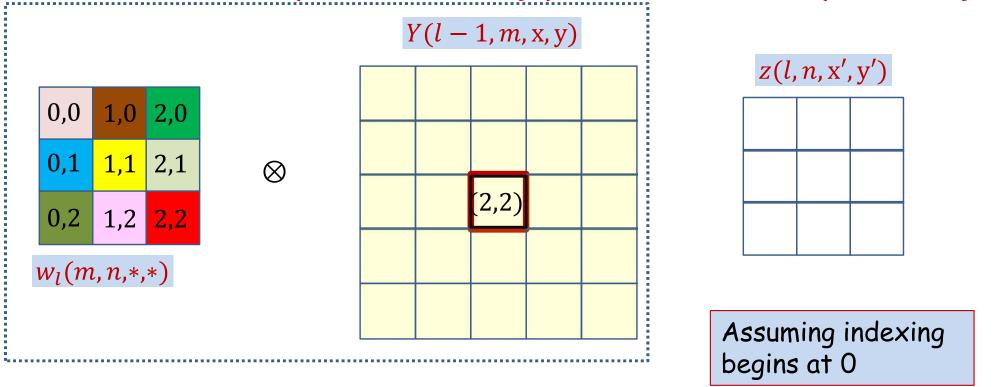
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} \frac{dz(l,n,x',y')}{dY(l-1,m,x,y)}$$



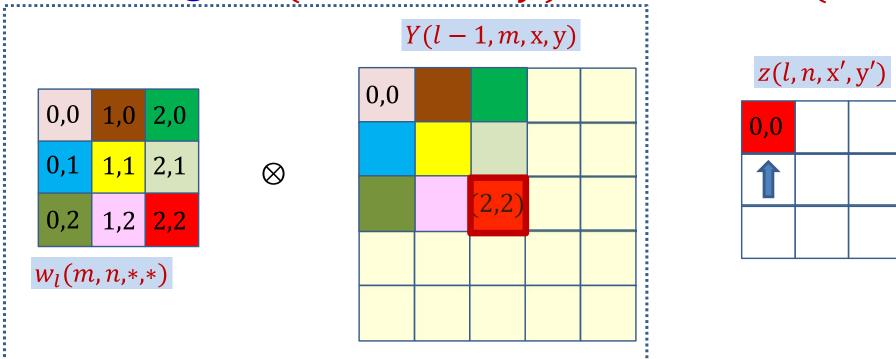
Summing over all Z maps

What is this?

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} \frac{dz(l,n,x',y')}{dY(l-1,m,x,y)}$$

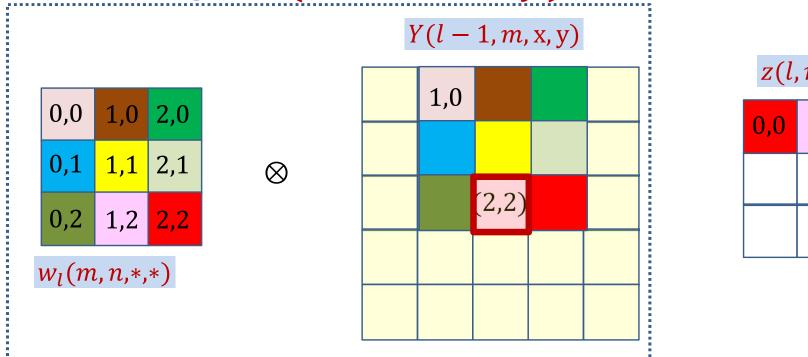


 Compute how each x, y in Y influences various locations of z



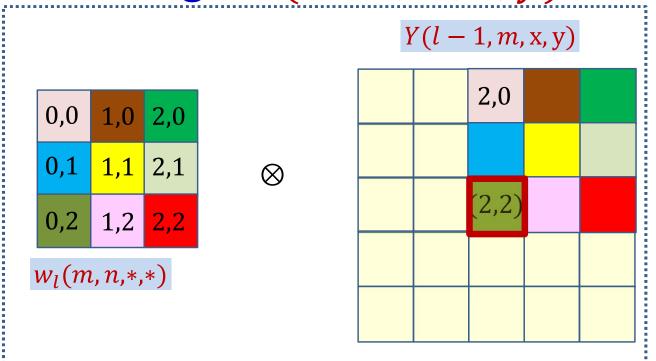
$$z(l, n, 0, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



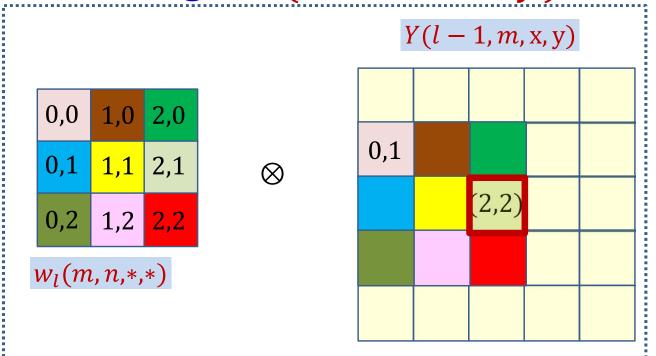
$$z(l, n, 1, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



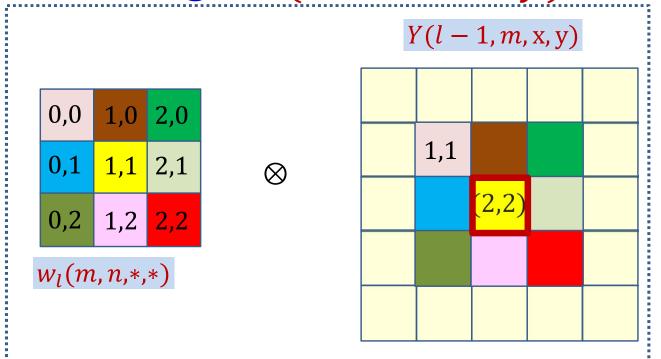
$$z(l, n, 2, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



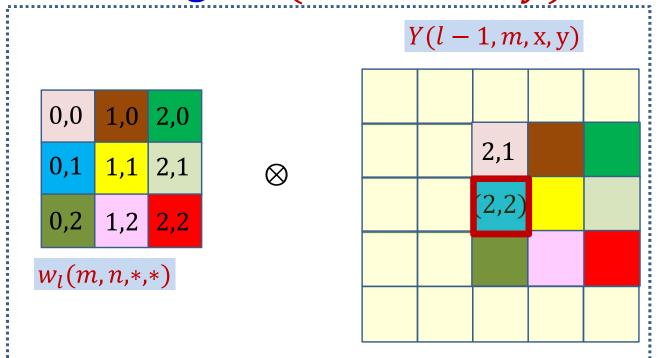
$$z(l, n, 0, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



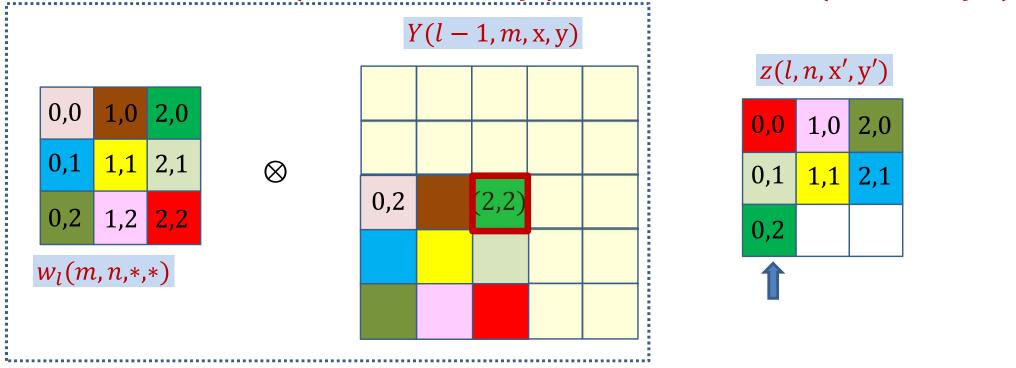
$$z(l, n, 1, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



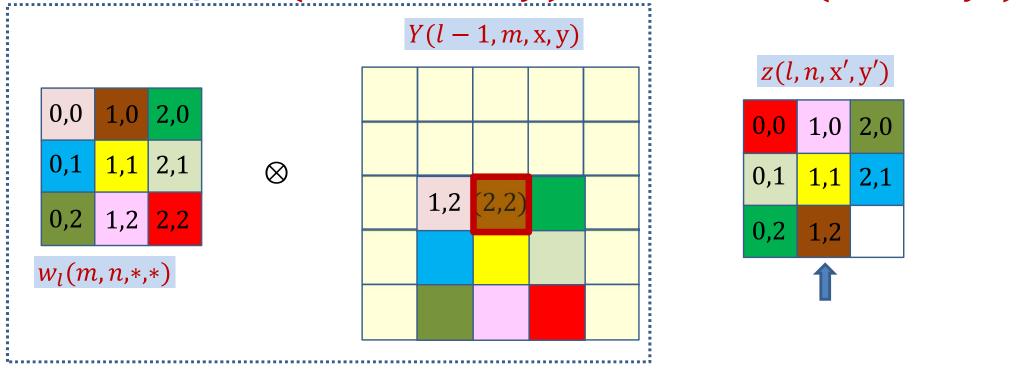
$$z(l, n, 2, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



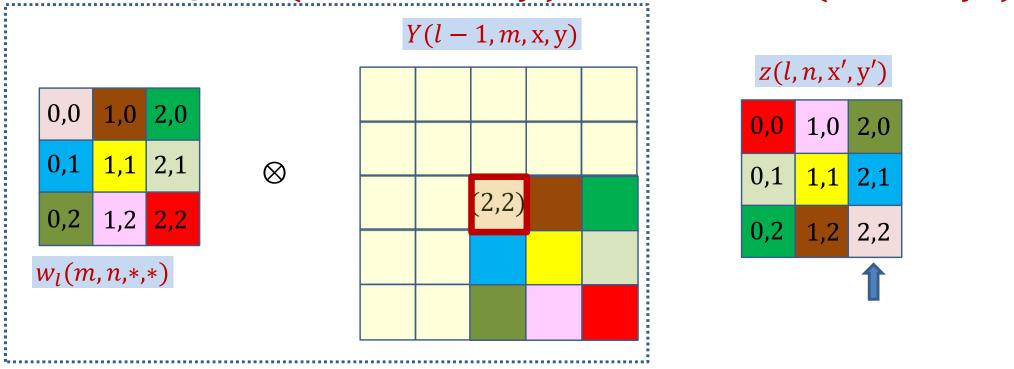
$$z(l, n, 0, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



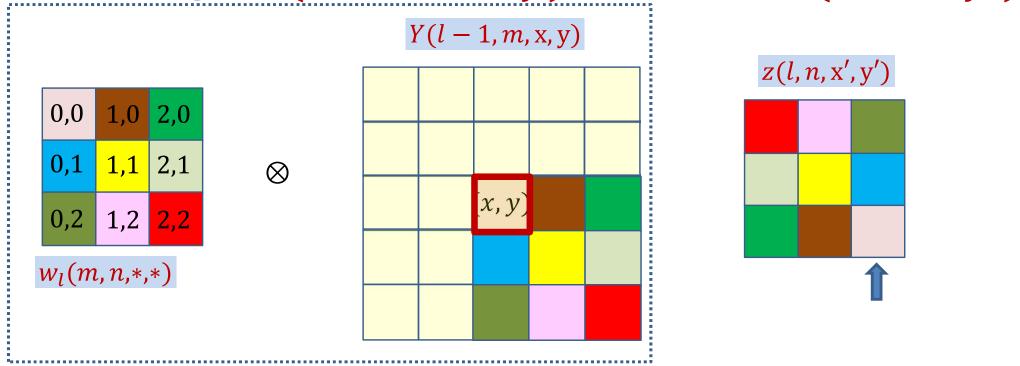
$$z(l, n, 1, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

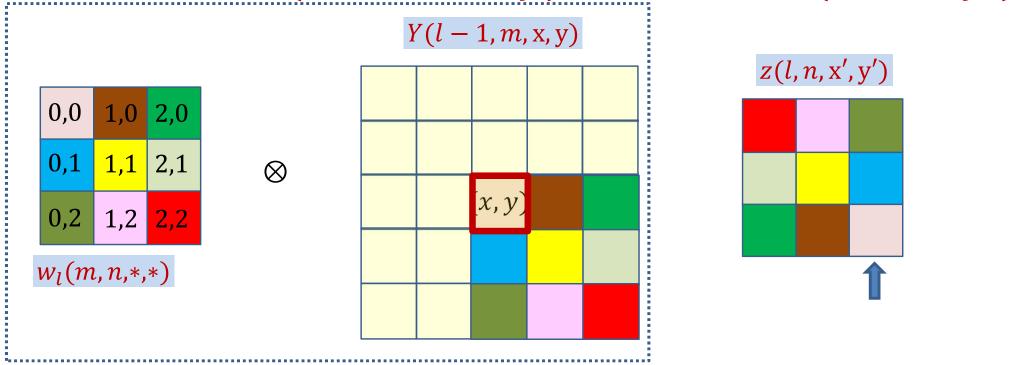


$$z(l, n, 2, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$



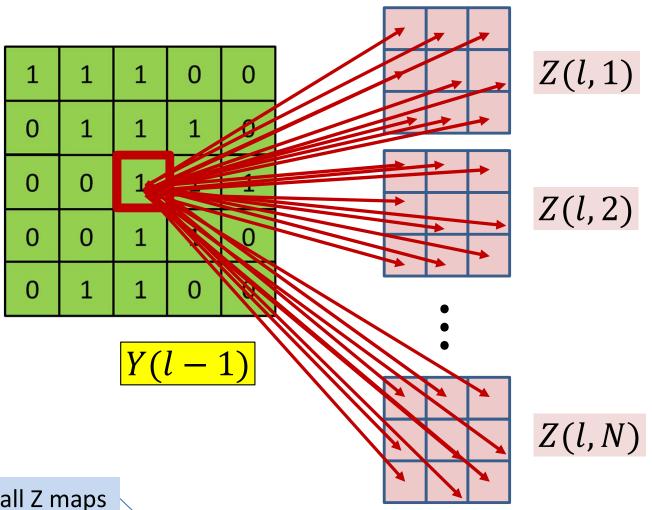
$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x - x', y - y')$$



$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x - x', y - y')$$

$$\frac{dz(l, n, x', y')}{dY(l-1, m, x, y)} = w_l(m, n, x - x', y - y')$$

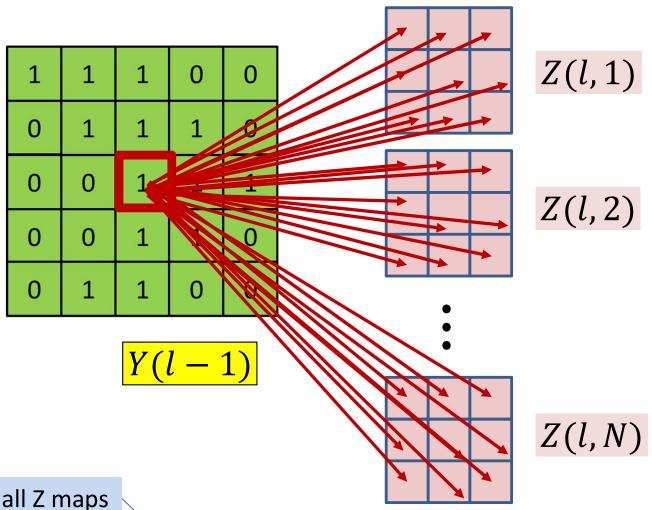
BP: Convolutional layer



Summing over all Z maps

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} \frac{dz(l,n,x',y')}{dY(l-1,m,x,y)}$$

BP: Convolutional layer



Summing over all Z maps

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

Poll 2

@728 @729

In order to compute the derivative at a single affine element Y(l,m,x,y), we must consider the contributions of *every* position of *every* affine map at the next layer: True or false

- True
- False

The derivative for a single affine element Y(l,m,x,y) will require summing over every position of every Z map in the next layer: True of false

- True
- False

Poll 2

In order to compute the derivative at a single affine element Y(l,m,x,y), we must consider the contributions of *every* position of *every* affine map at the next layer: True or false

- True
- False

The derivative for an single affine element Y(I,m,x,y) will require summing over every position of every Z map in the next layer: True of false

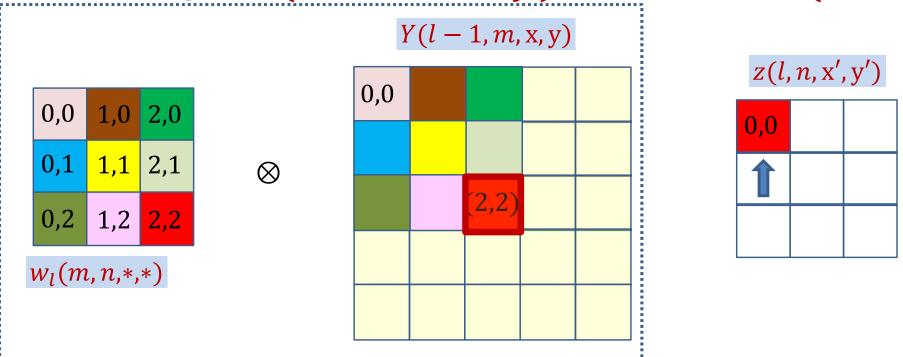
- True
- False

Computing derivative for Y(l-1, m, *, *)

• The derivatives for every element of every map in Y(l-1) by direct implementation of the formula:

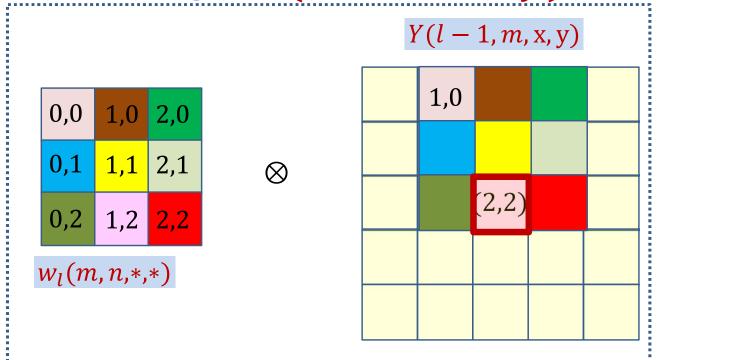
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

- But this is actually a convolution!
 - Let's see how



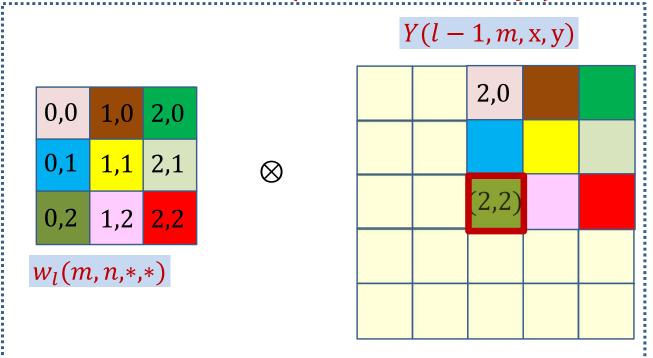
$$z(l, n, 0, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 2)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,0)} w_l(m,n,2,2)$$



$$z(l, n, 1, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 2)$$

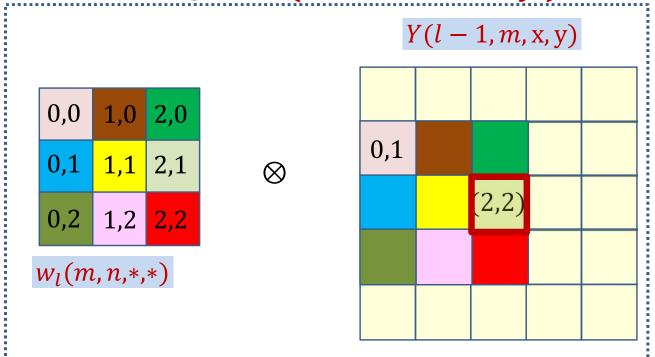
$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,0)} w_l(m,n,1,2)$$



z(l, n, x', y')		
0,0	1,0	2,0
		1

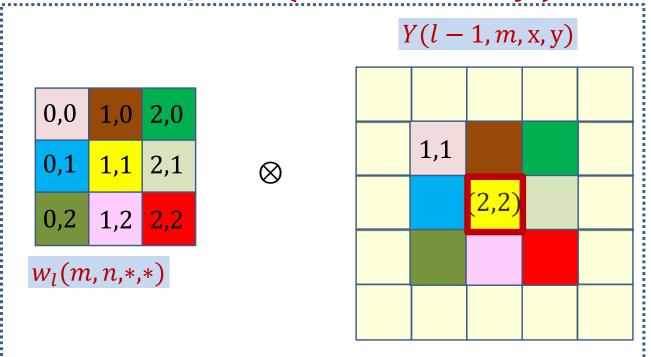
$$z(l, n, 2, 0) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 2)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,0)} w_l(m,n,0,2)$$



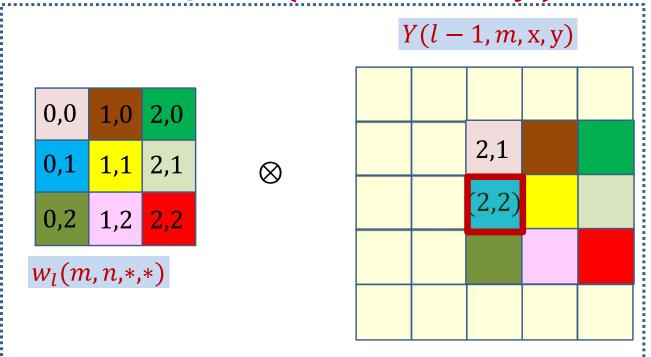
$$z(l, n, 0, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,1)} w_l(m,n,2,1)$$



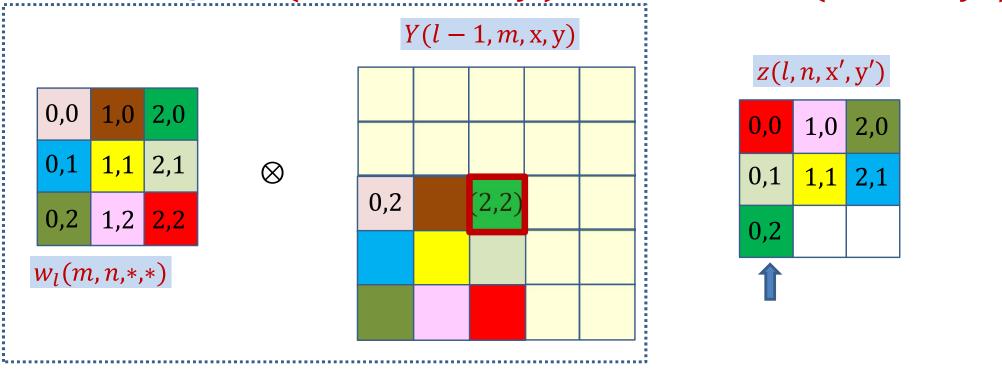
$$z(l, n, 1, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 1, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,1)} w_l(m,n,1,1)$$



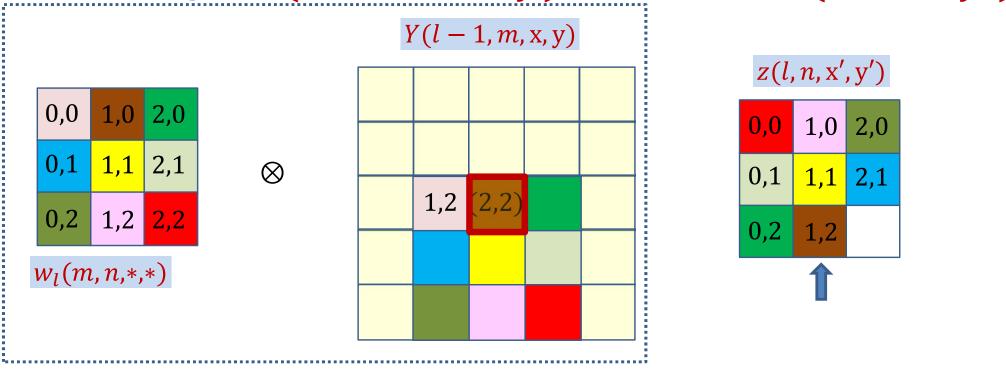
$$z(l, n, 2, 1) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,1)} w_l(m,n,0,1)$$



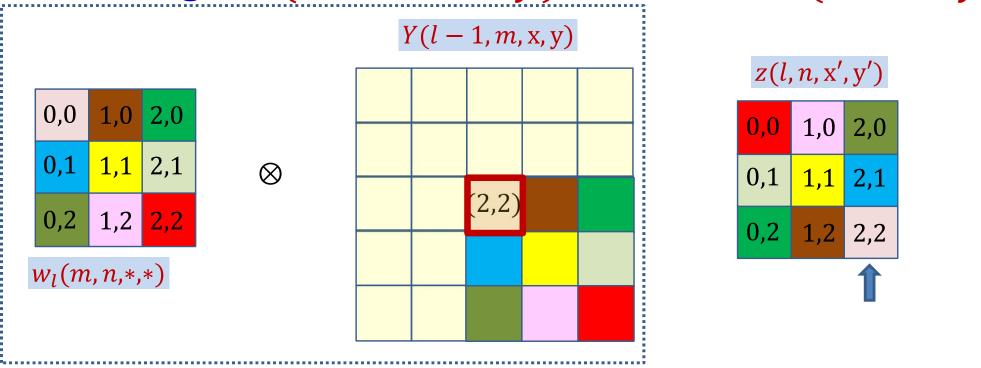
$$z(l, n, 0, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 0)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,0,2)} w_l(m,n,2,0)$$



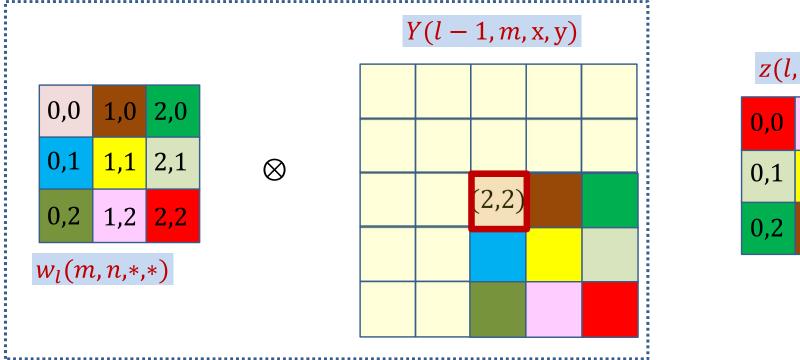
$$z(l, n, 1, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 2, 1)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,1,2)} w_l(m,n,1,0)$$



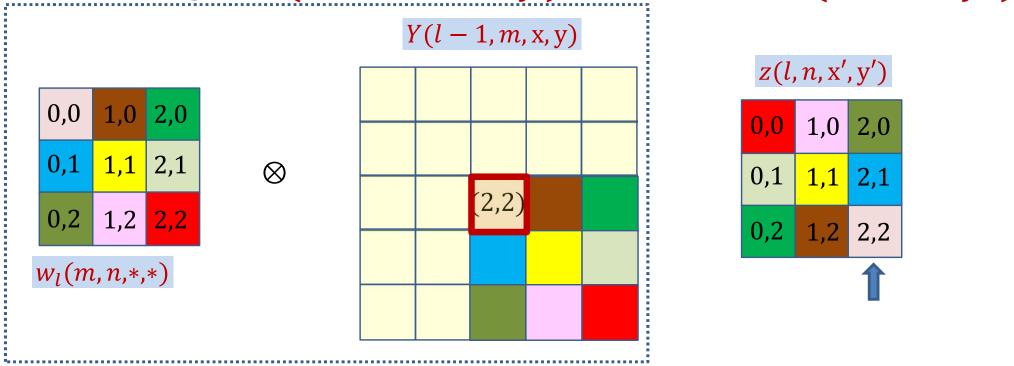
$$z(l, n, 2, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

$$\frac{dDiv}{dY(l-1,m,2,2)} += \frac{dDiv}{dz(l,n,2,2)} w_l(m,n,0,0)$$



$$z(l, n, 2, 2) += Y(l - 1, m, 2, 2)w_l(m, n, 0, 0)$$

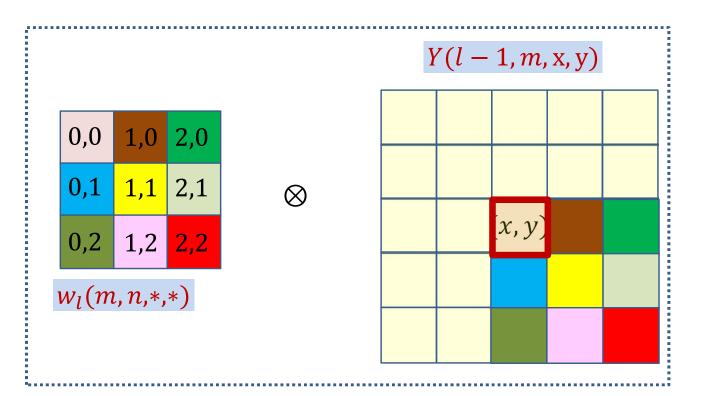
$$\frac{dDiv}{dY(l-1,m,2,2)} = \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,2-x',2-y')$$



$$z(l, n, x', y') += Y(l-1, m, 2, 2)w_l(m, n, 2-x', 2-y')$$

$$\frac{dDiv}{dY(l-1,m,2,2)} = \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,2-x',2-y')$$

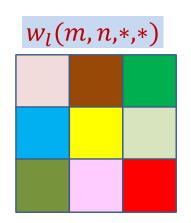
• The derivative at Y(l-1,m,2,2) is the sum of component-wise product of the filter elements (shown by color) and the elements of the derivative at z(l,m,...)

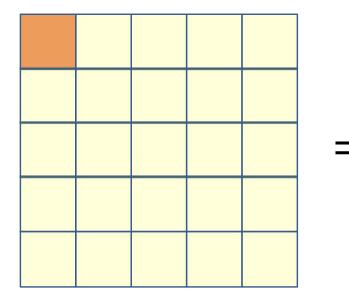


$$z(l, n, x', y') += Y(l-1, m, x, y)w_l(m, n, x - x', y - y')$$

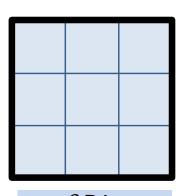
$$\frac{dDiv}{dY(l-1,m,x,y)} += \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',x-y')$$

Contribution of the entire nth affine map z(l, n, *, *)

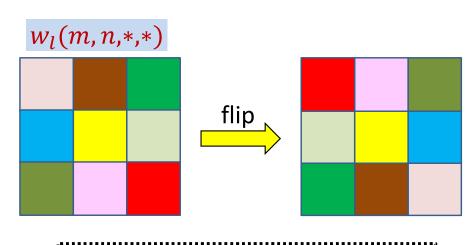


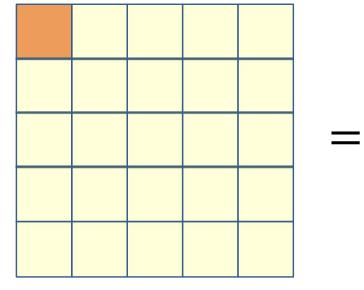


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

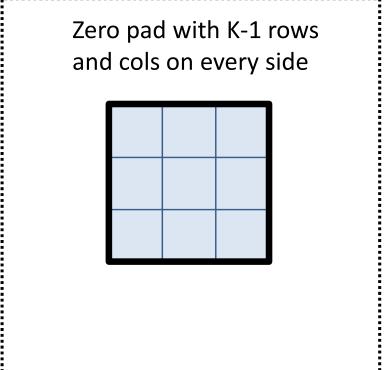


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

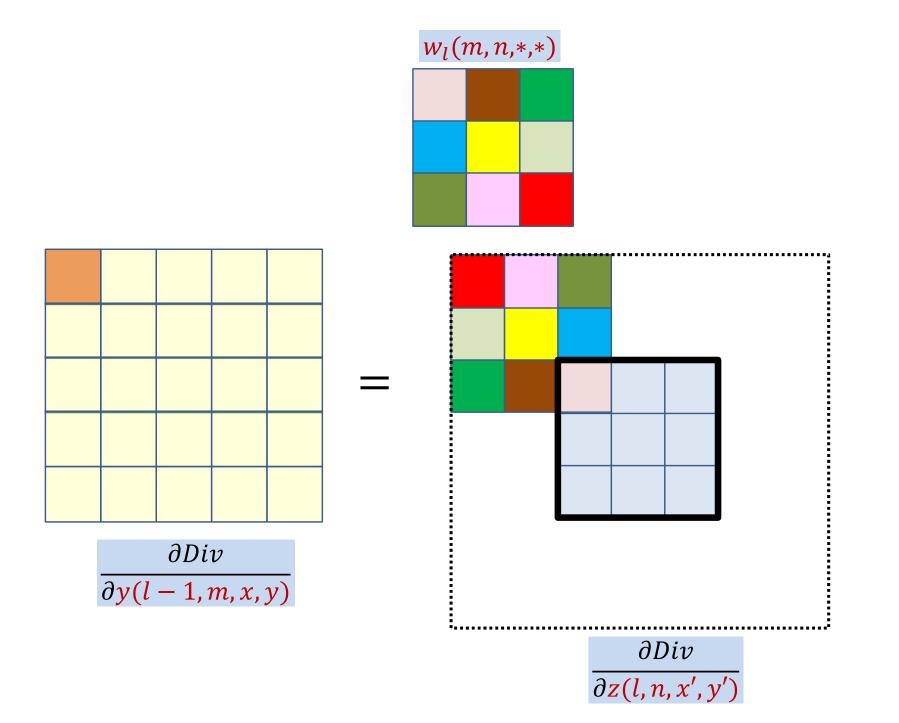


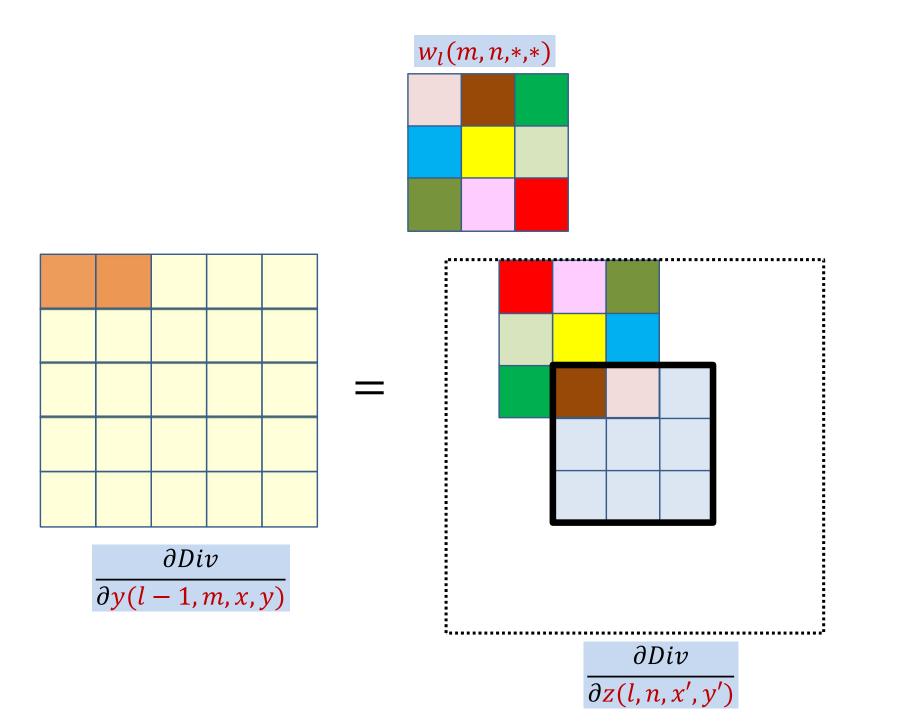


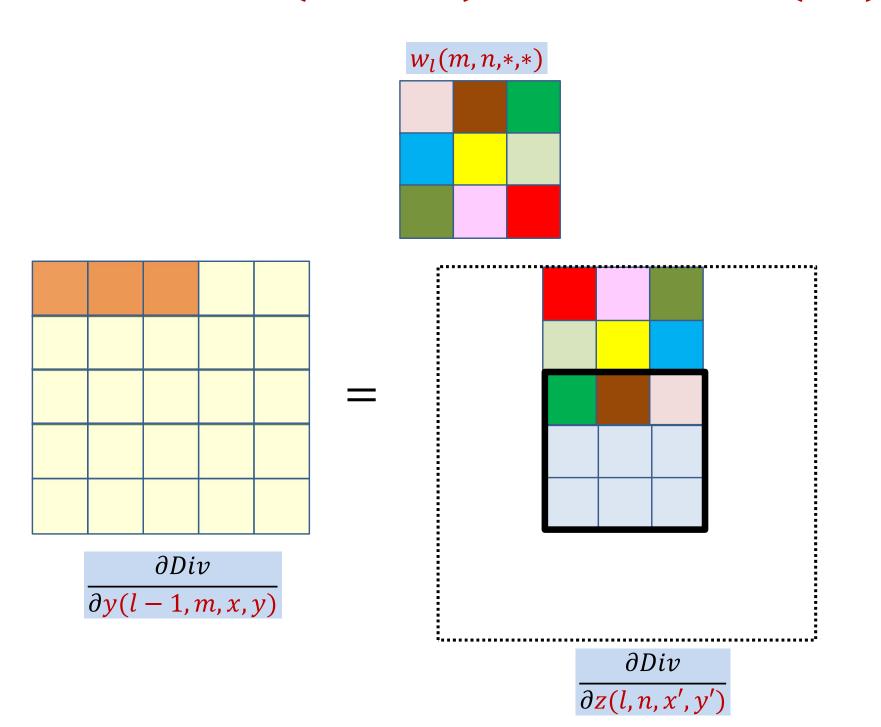
 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

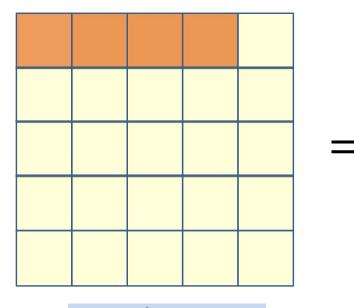


 $\frac{\partial Div}{\partial z(l,n,x',y')}$

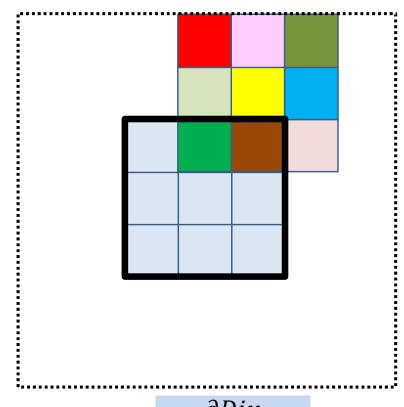




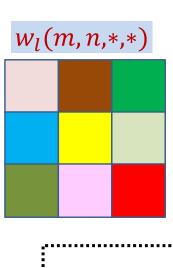


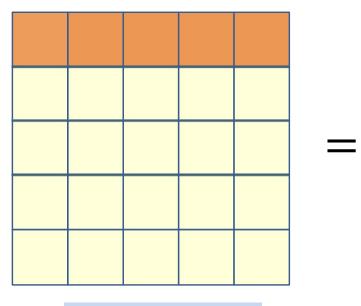


 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

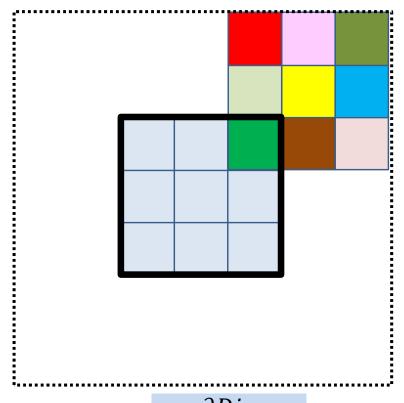


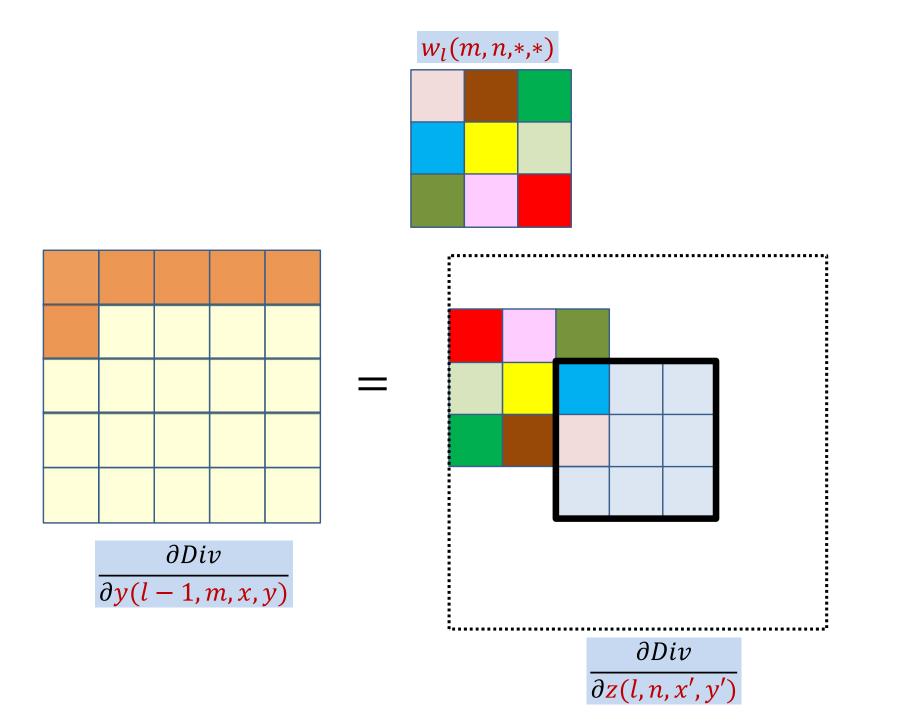
 $\frac{\partial Div}{\partial z(l,n,x',y')}$

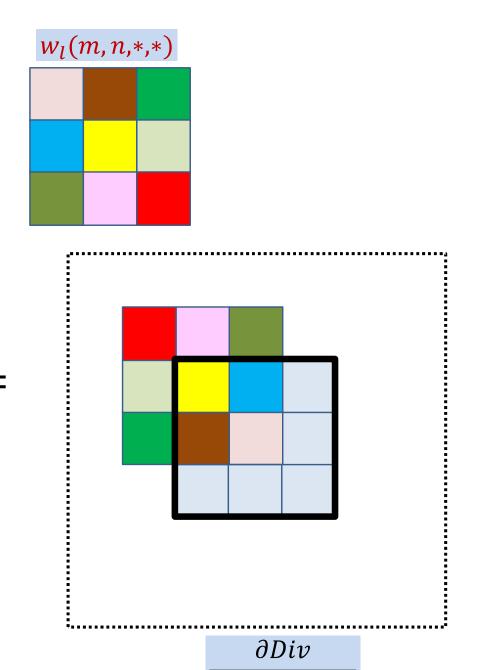


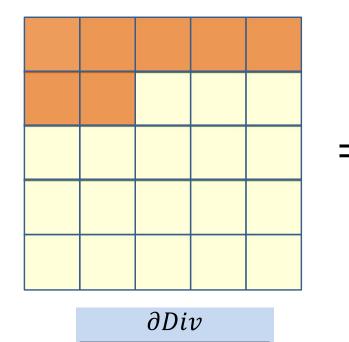


 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

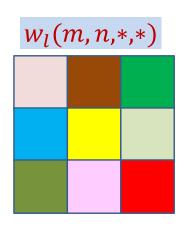


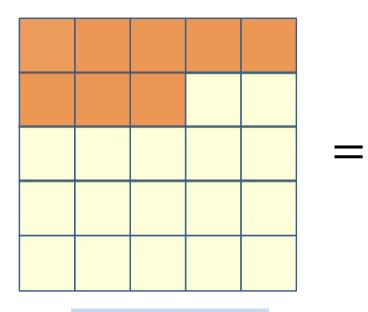


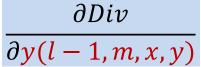


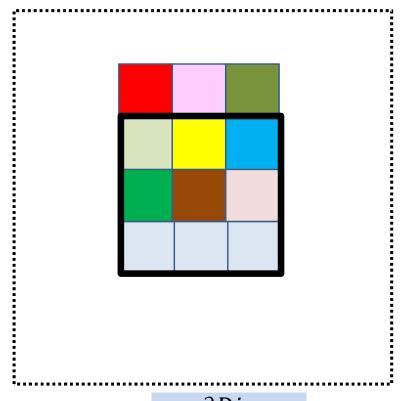


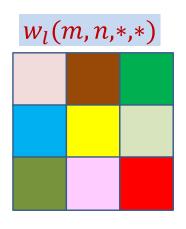
 $\partial y(l-1,m,x,y)$

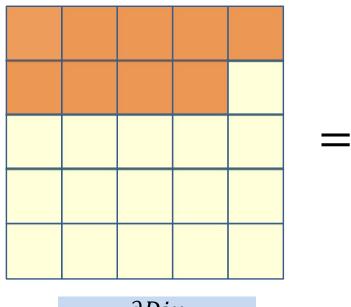








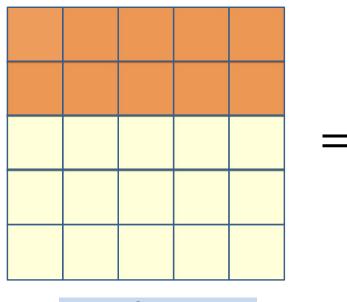




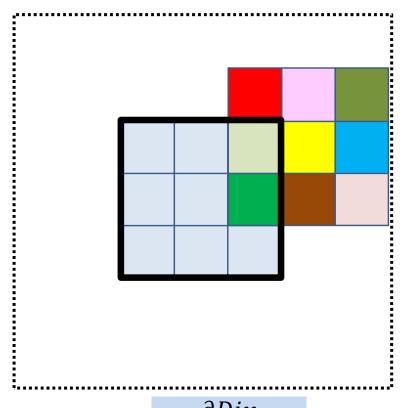




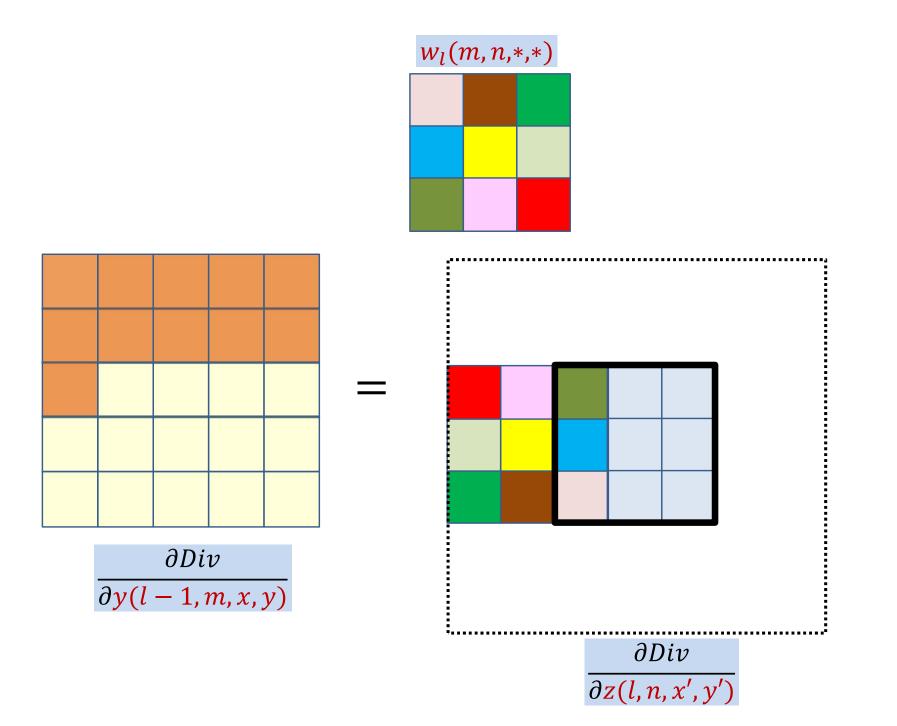
 $\frac{\partial Div}{\partial z(l,n,x',y')}$

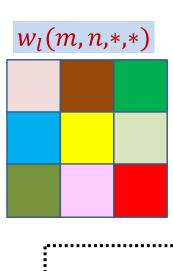


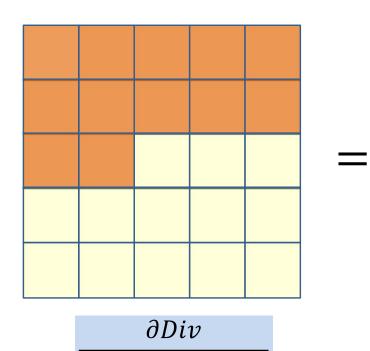




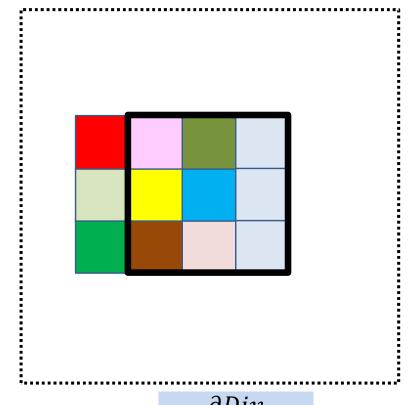
 $\frac{\partial Div}{\partial z(l,n,x',y')}$

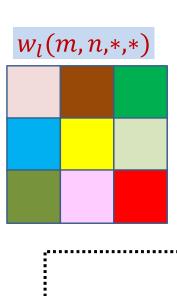


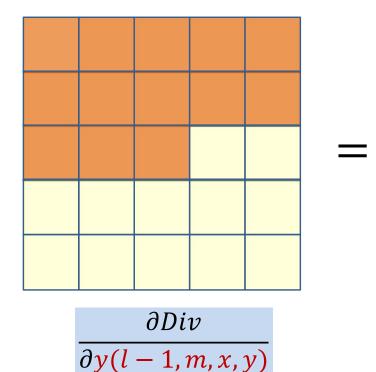


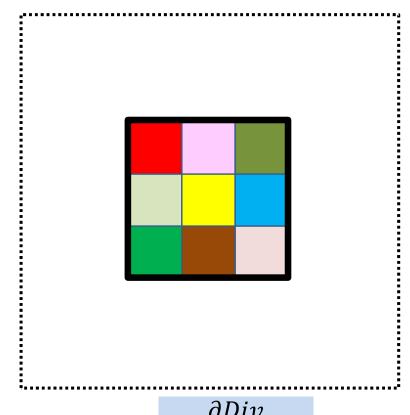


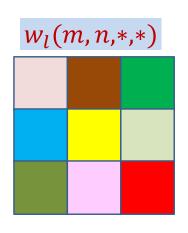
 $\partial y(l-1,m,x,y)$

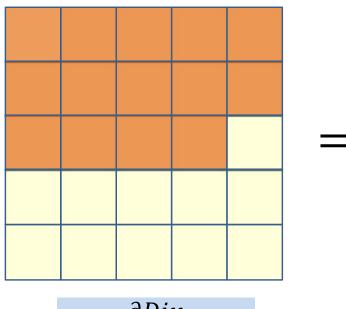


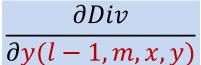


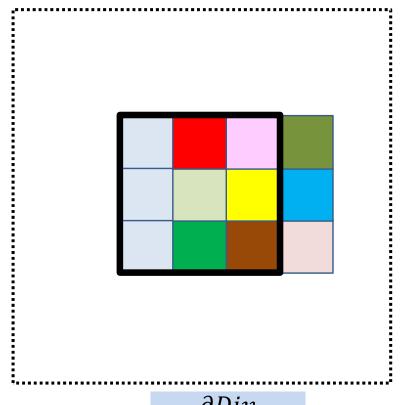


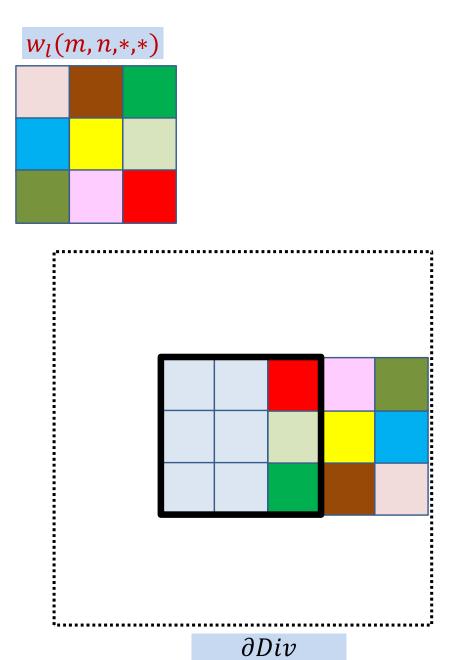


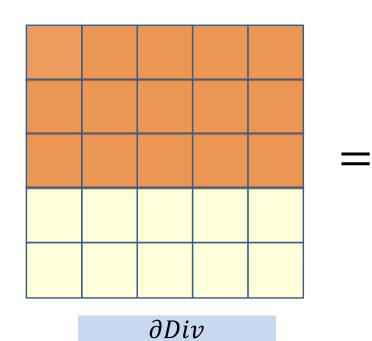




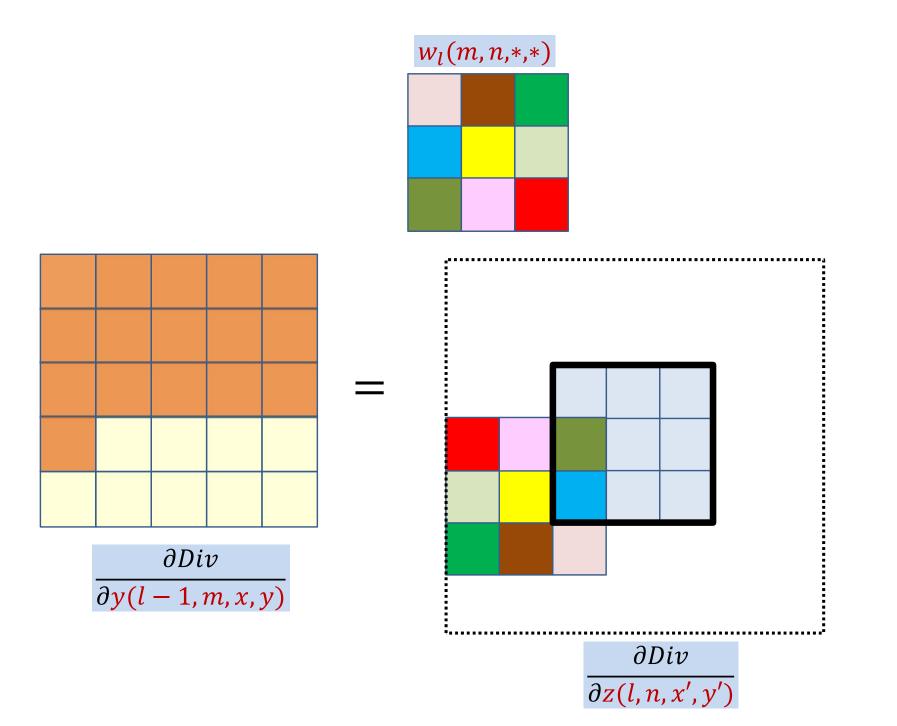


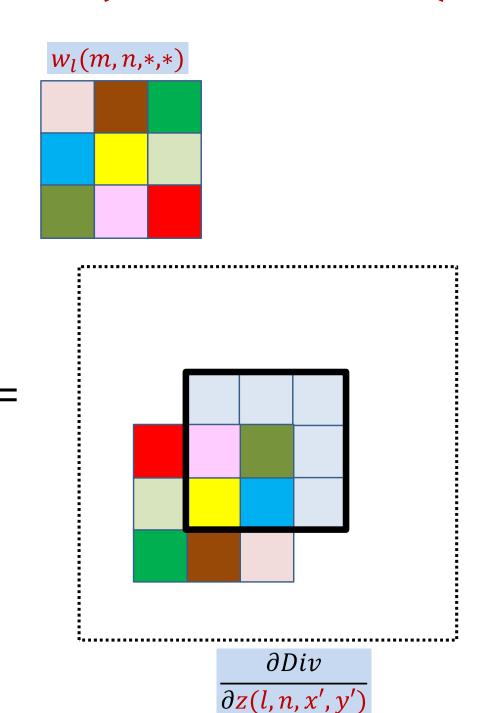


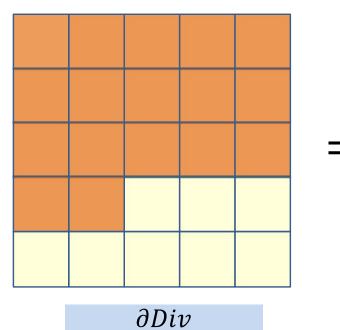




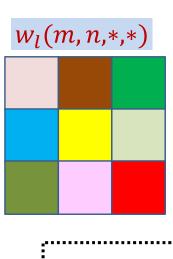
 $\partial y(l-1,m,x,y)$

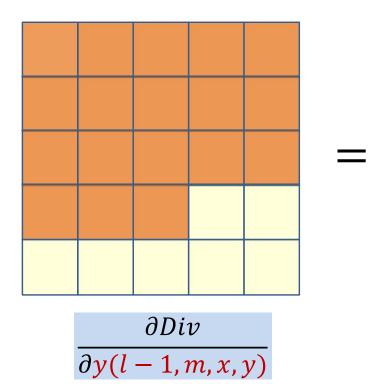


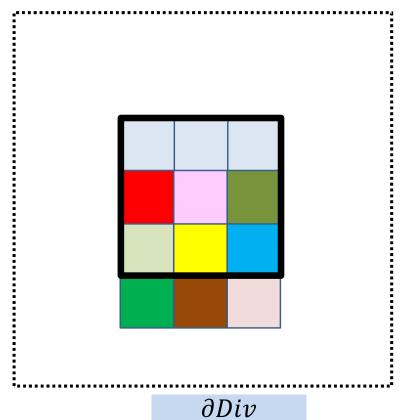


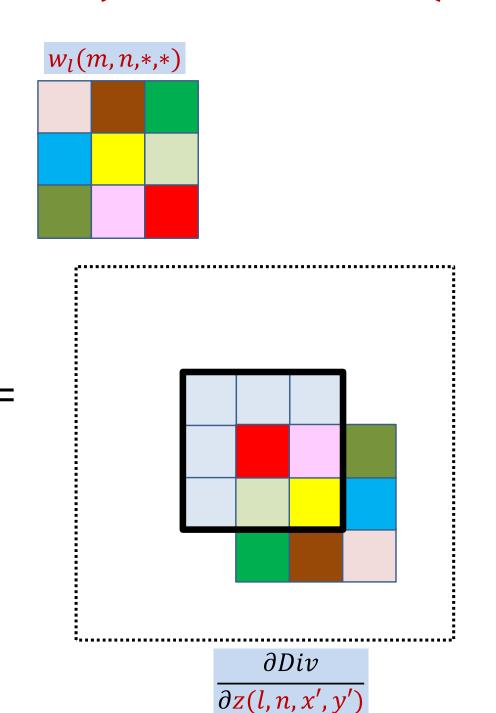


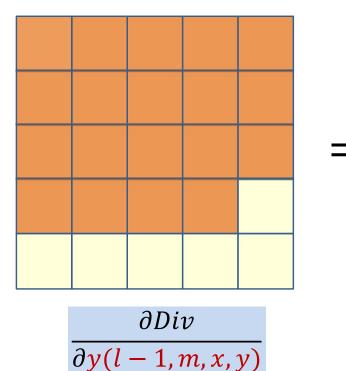
 $\partial y(l-1,m,x,y)$

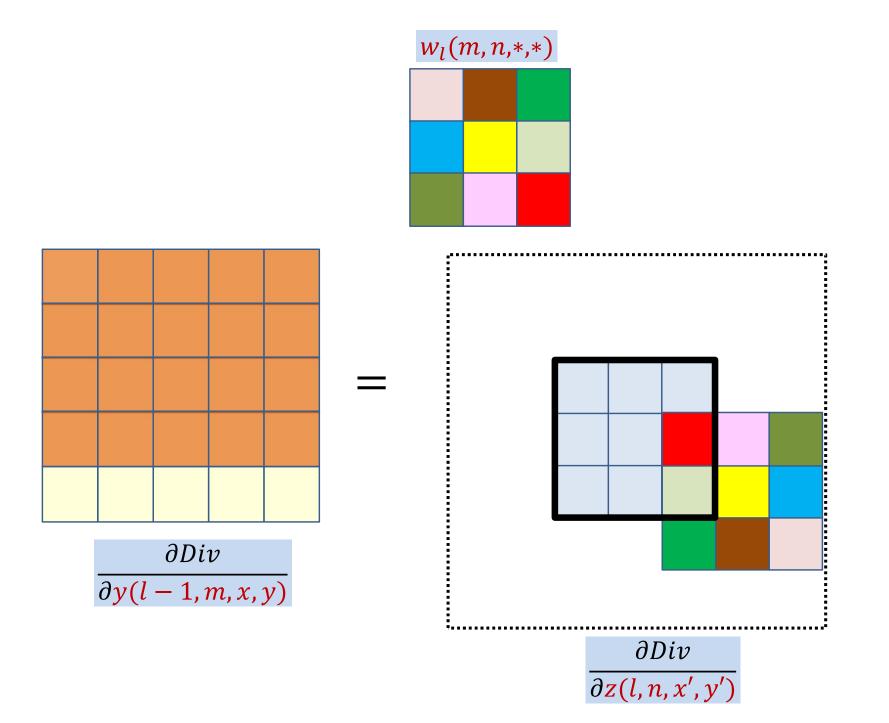


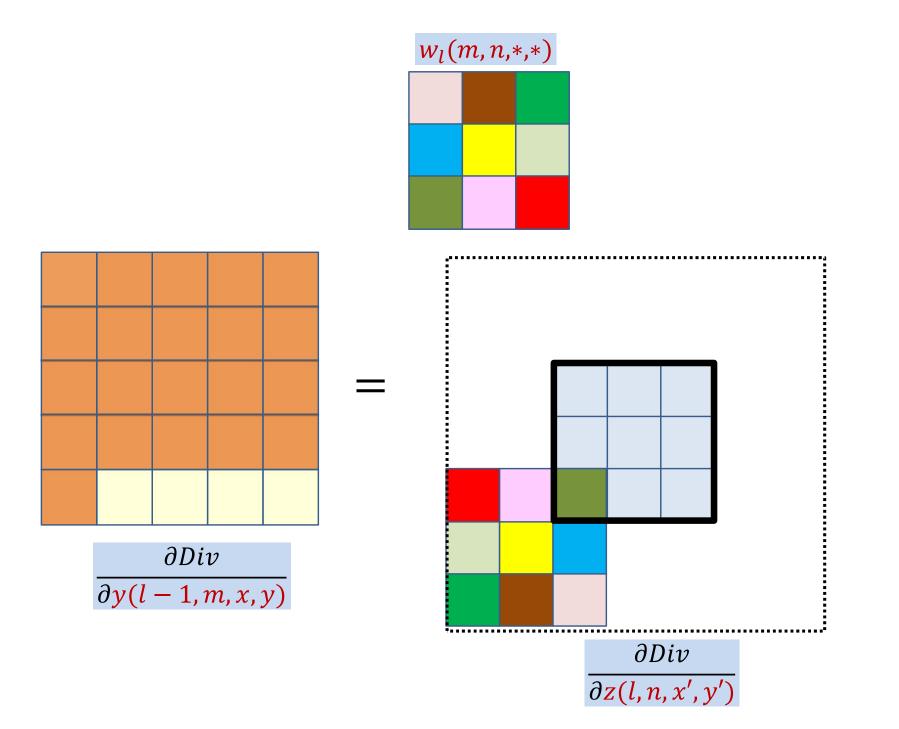


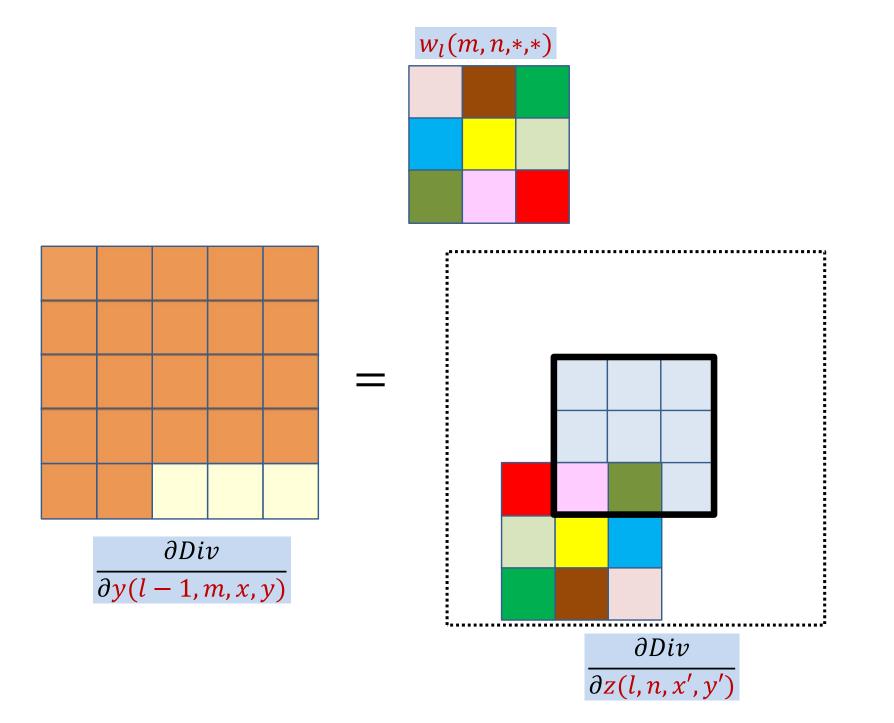


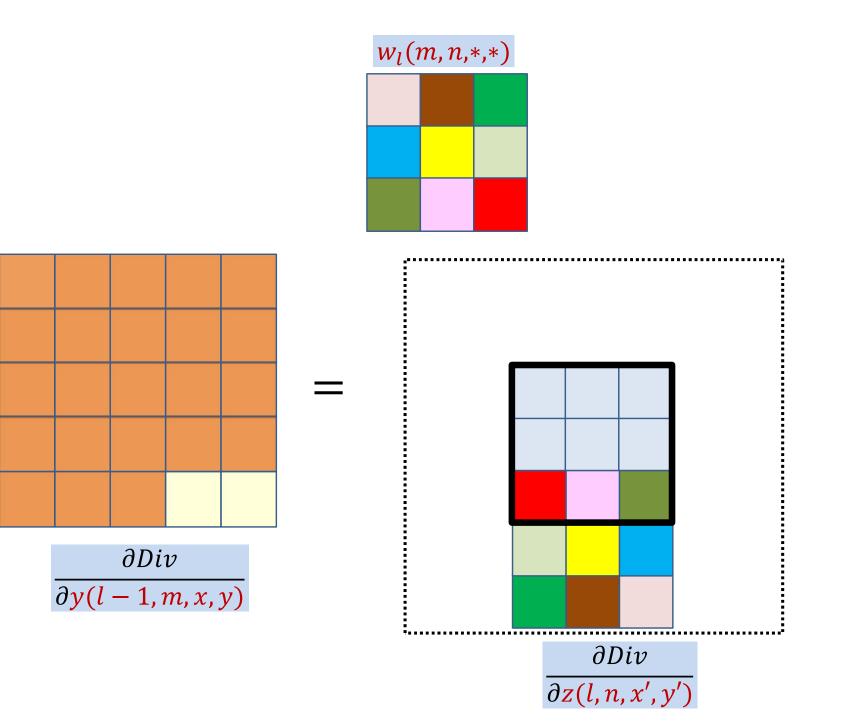


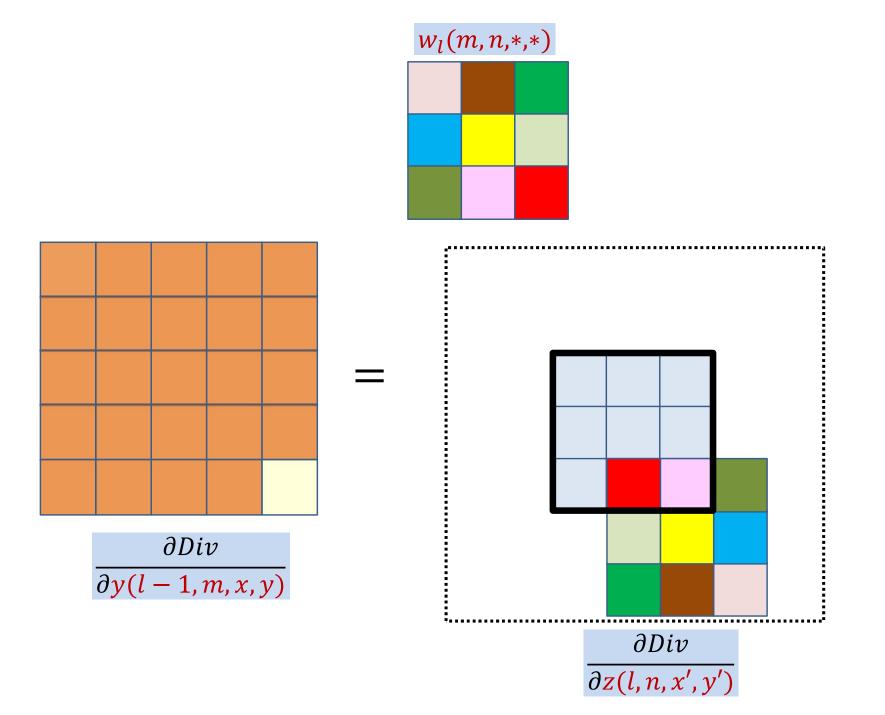


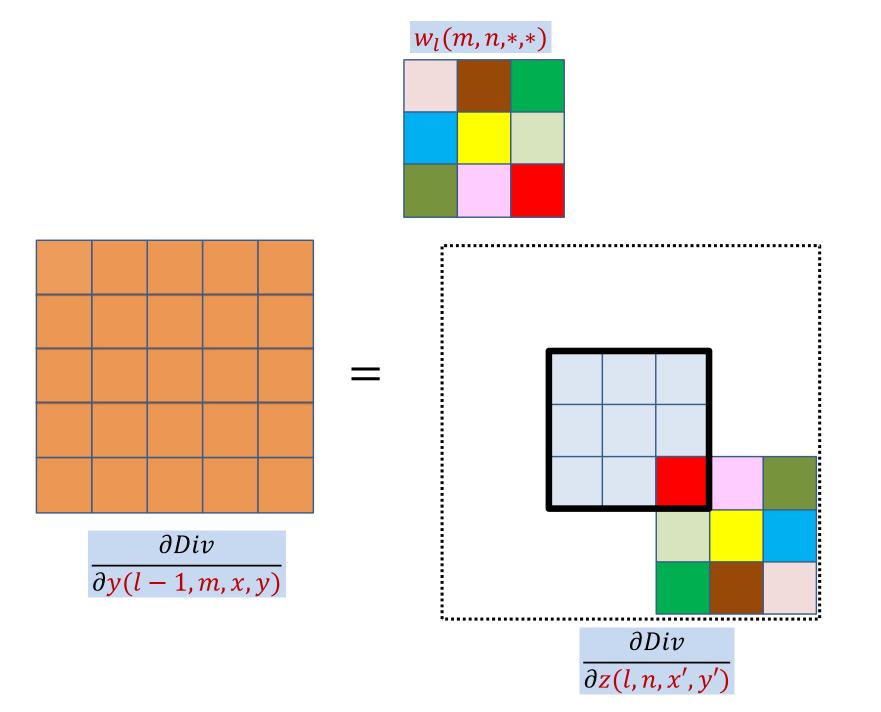




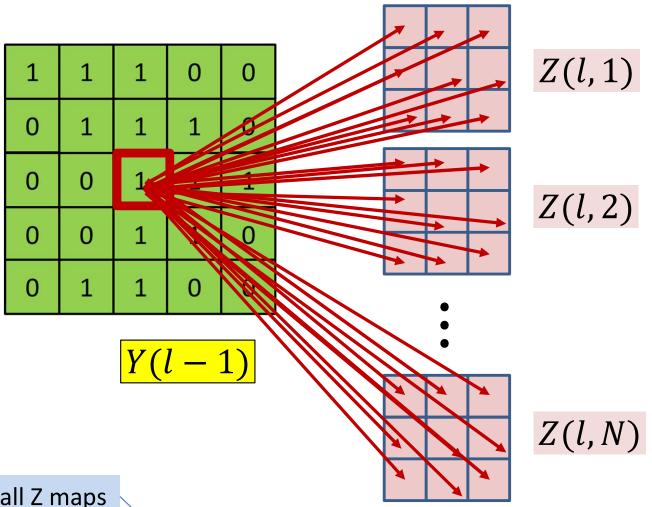








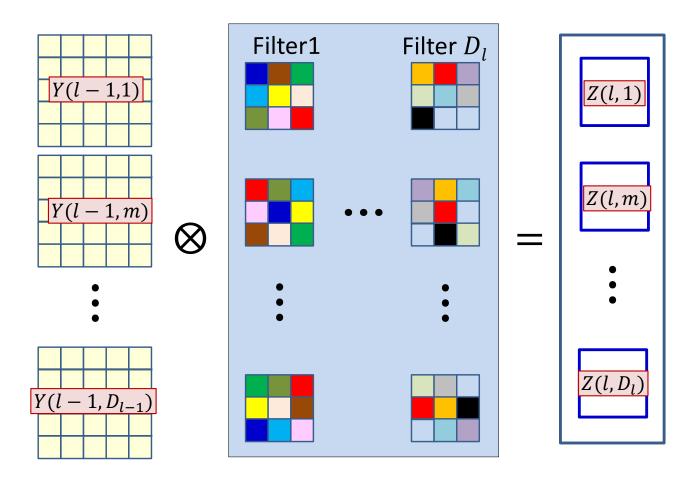
BP: Convolutional layer



Summing over all Z maps

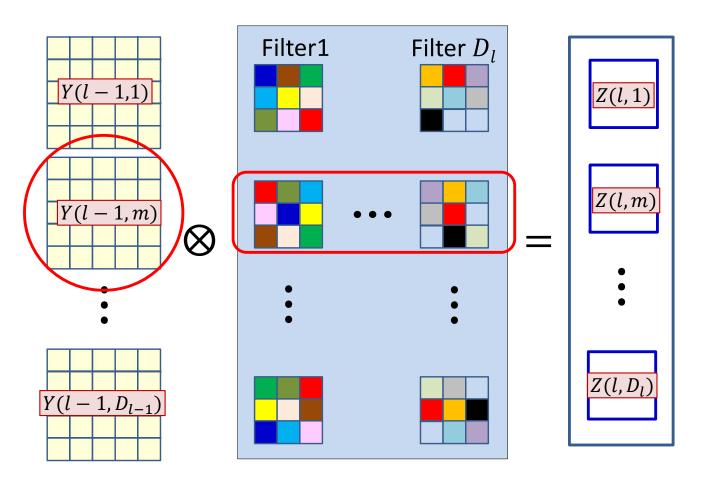
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

The actual convolutions



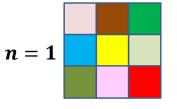
• The D_l affine maps are produced by convolving with D_l filters

The actual convolutions



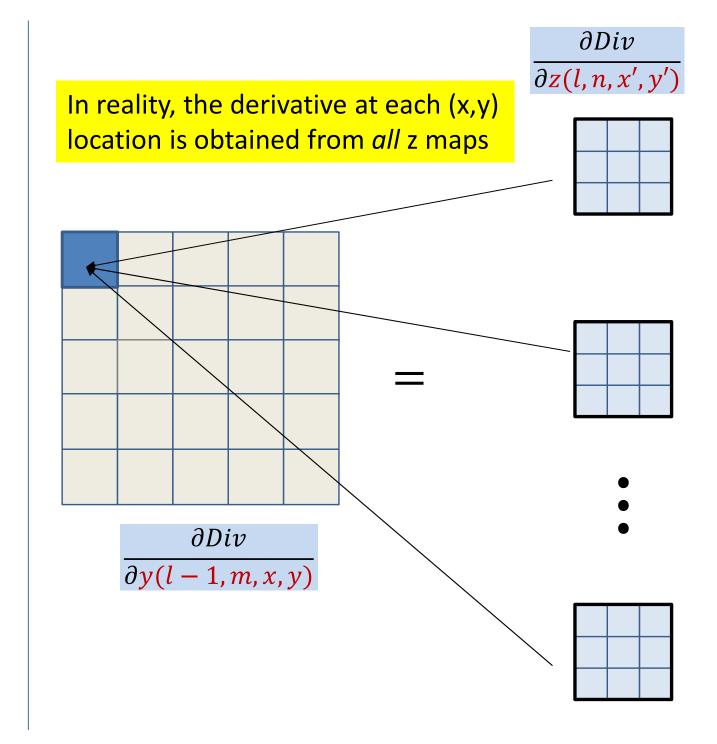
- The D_l affine maps are produced by convolving with D_l filters
- The $m^{\rm th}$ Y map always convolves the $m^{\rm th}$ plane of the filters
- The derivative for the $m^{\rm th}$ Y map will invoke the $m^{\rm th}$ plane of all the filters

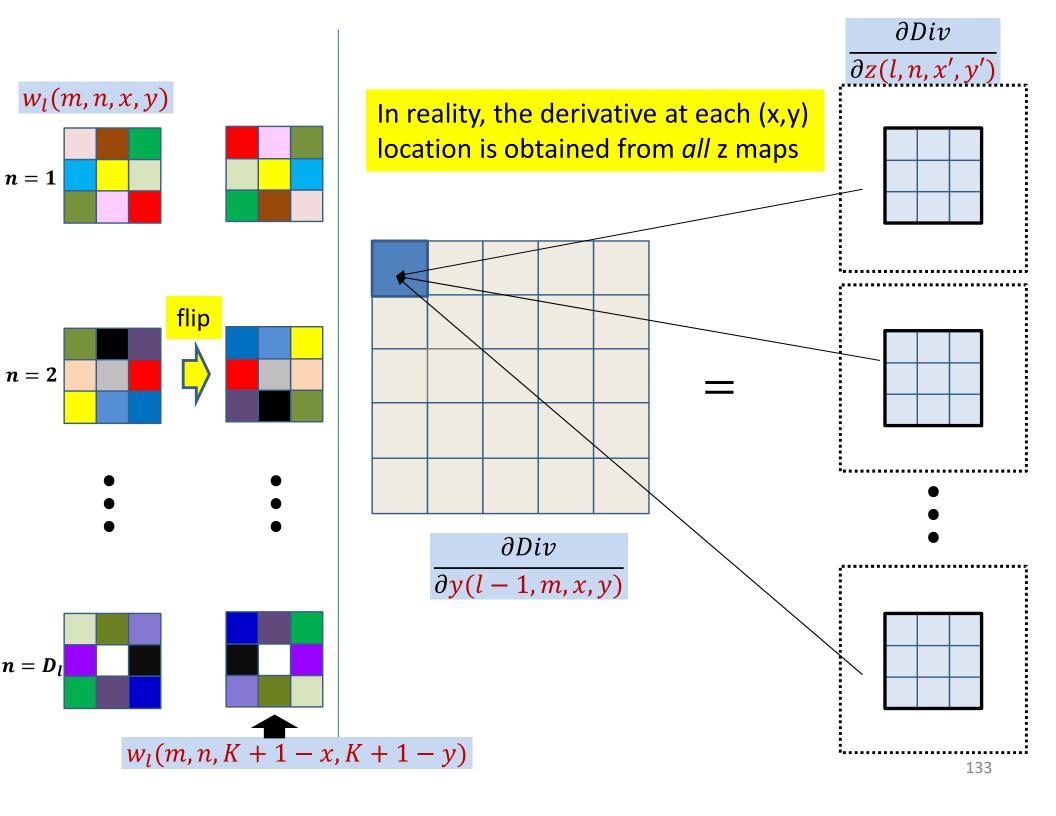


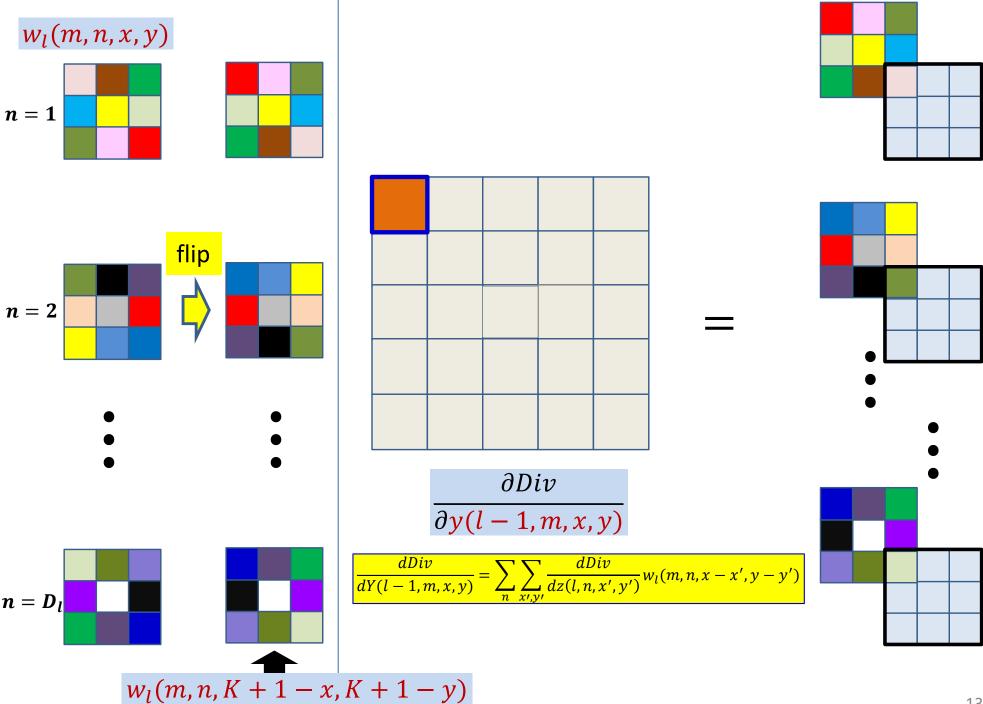


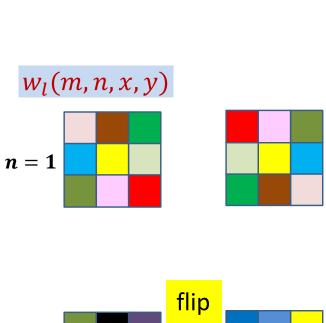
$$n=2$$

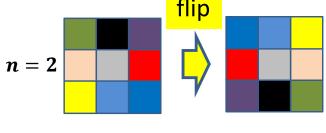
$$n = D_l$$



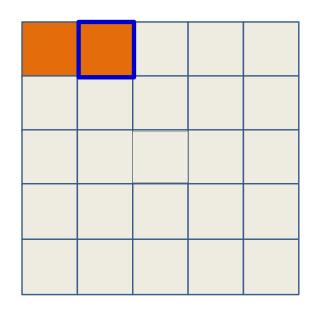


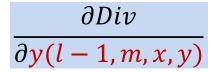




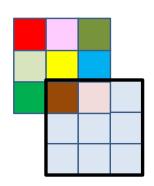


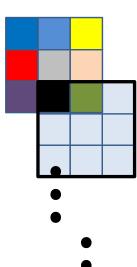
$$n = D_l$$

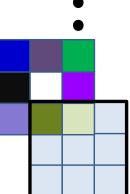


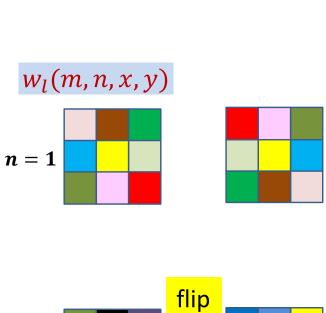


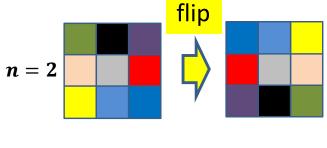
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

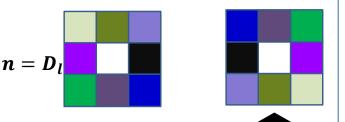


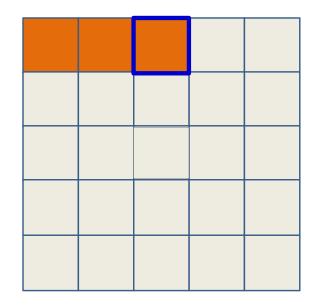


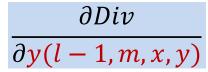




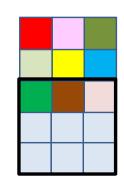


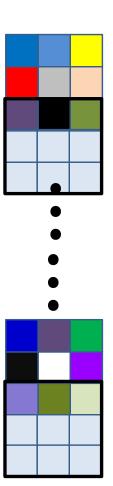


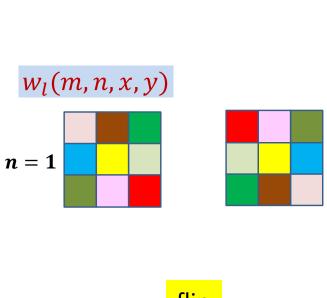


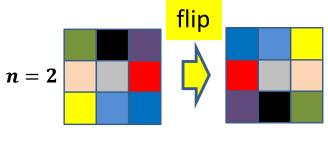


$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

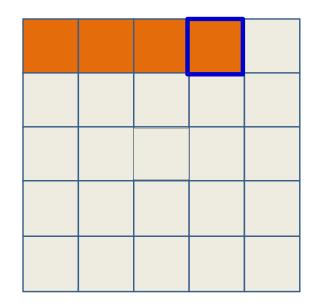






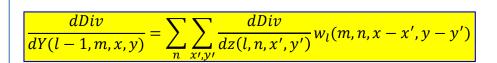


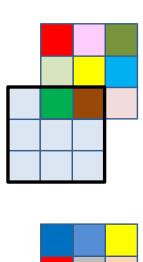
$$n = D_l$$

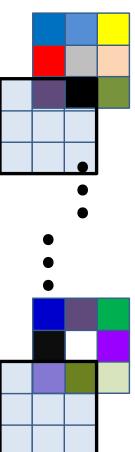


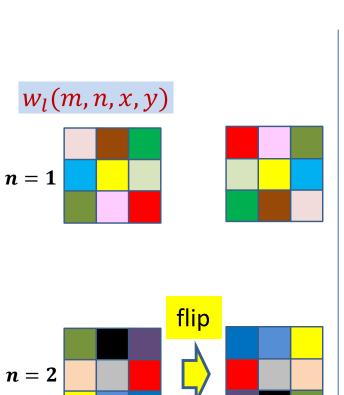
 ∂Div

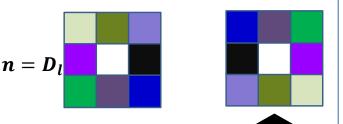
 $\overline{\partial y(l-1,m,x,y)}$

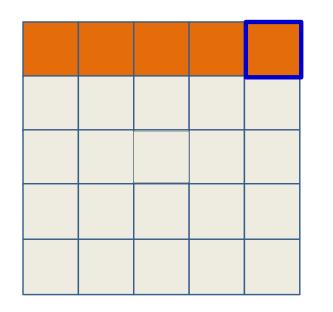






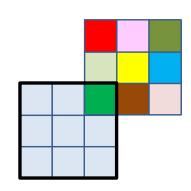


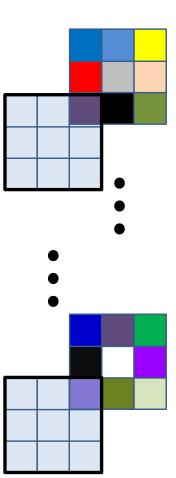


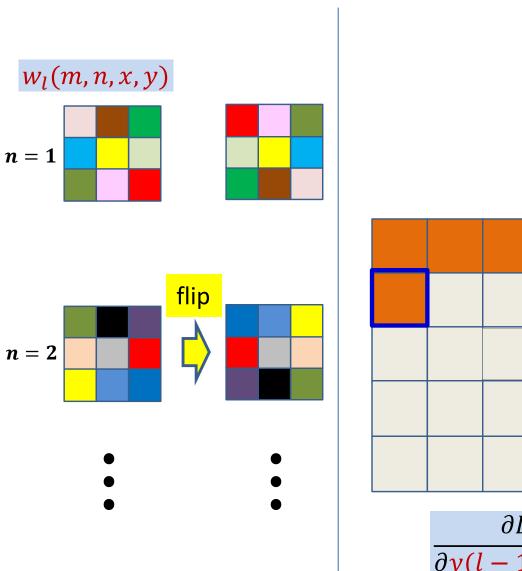


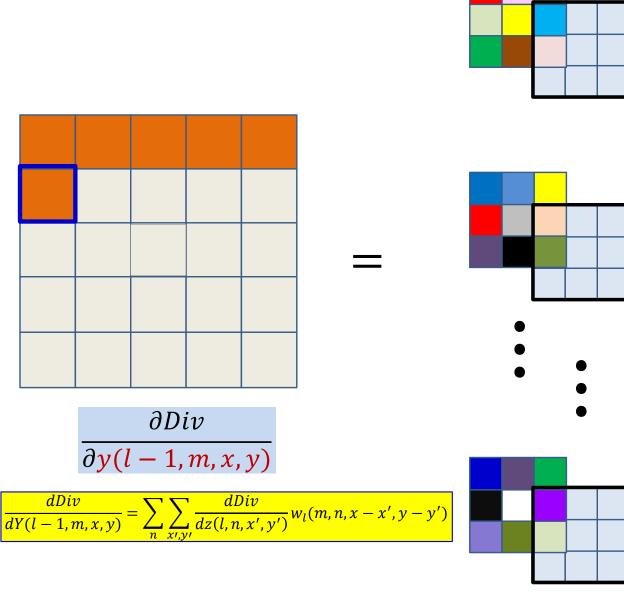
 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$





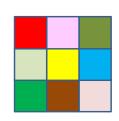


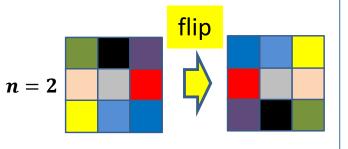


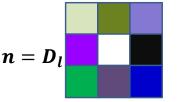
 $w_l(m, n, K + 1 - x, K + 1 - y)$

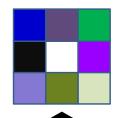
 $n = D_l$

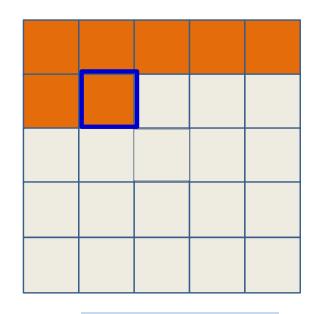
$$n = 1$$

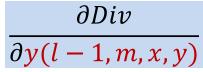




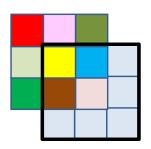


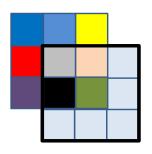


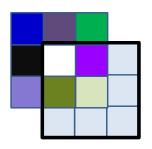


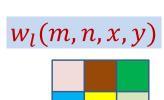


$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

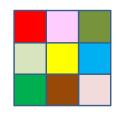


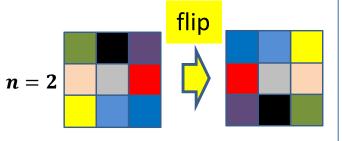


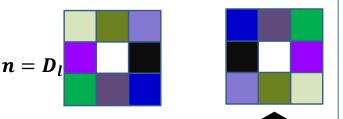


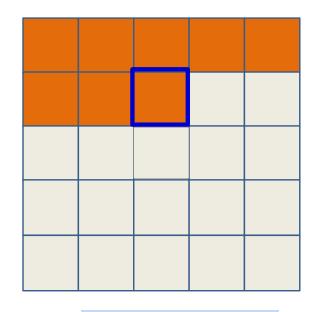


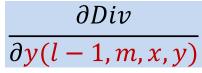
n = 1



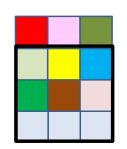


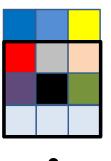


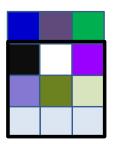


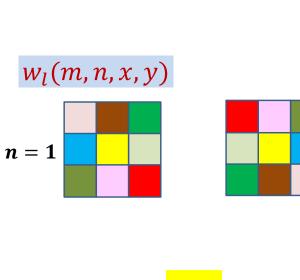


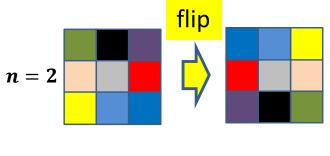
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

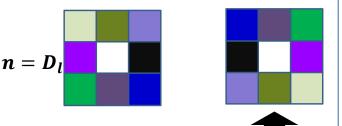


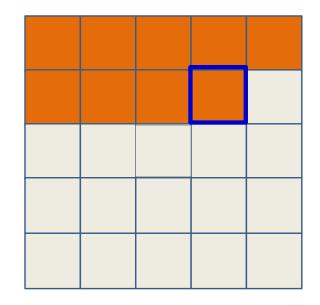


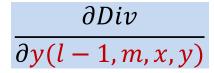




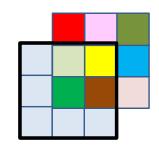


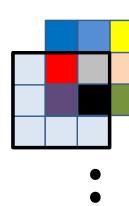


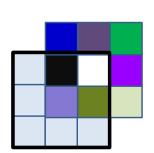


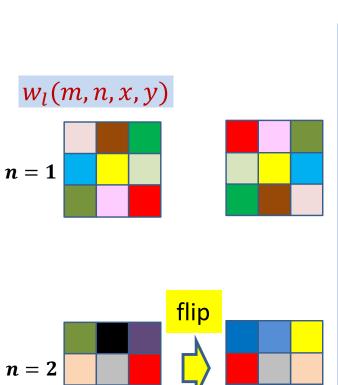


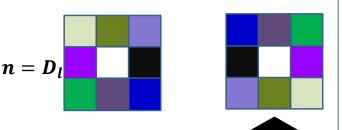
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

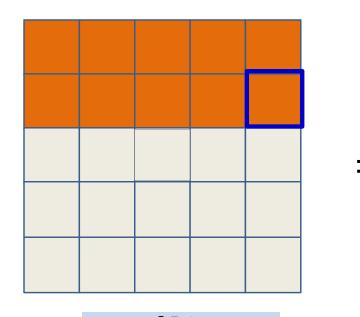


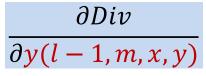




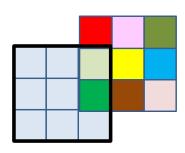


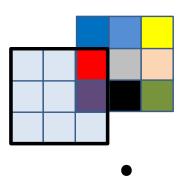


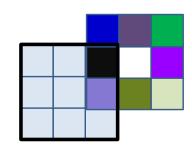




$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

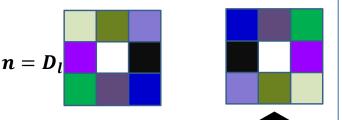


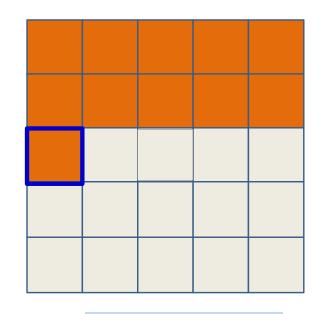


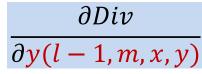


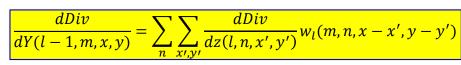
$w_l(m, n, x, y)$ n = 1flip

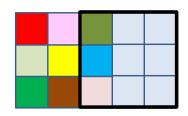
n = 2

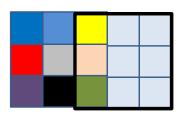


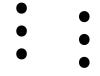


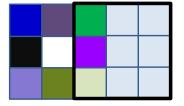








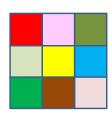


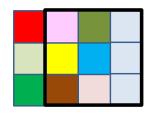


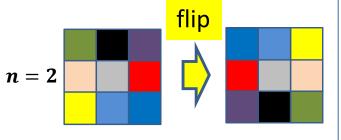
 $w_l(m, n, K + 1 - x, K + 1 - y)$

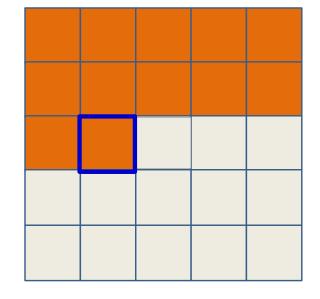
$w_l(m, n, x, y)$

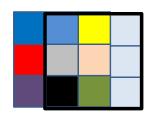
$$n = 1$$



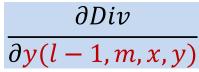




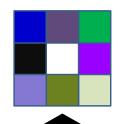




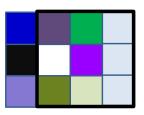




$$n = D_l$$

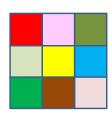


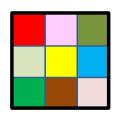
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

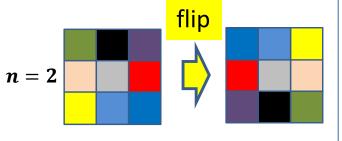


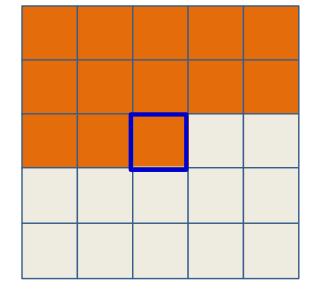
 $w_l(m, n, K + 1 - x, K + 1 - y)$

$$n = 1$$



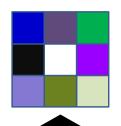




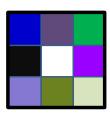


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

$$n = D_l$$



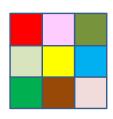
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

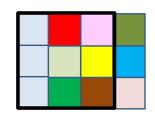


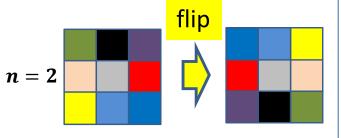
$$w_l(m,n,K+\overline{1}-x,K+1-y)$$

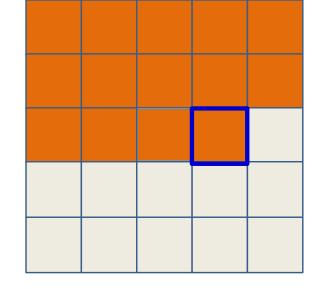
$w_l(m, n, x, y)$

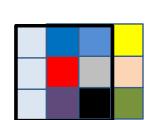
$$n = 1$$

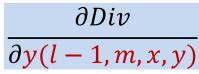




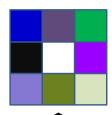




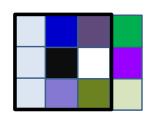




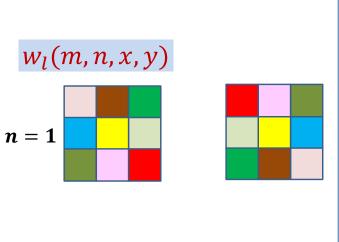


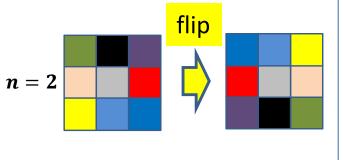


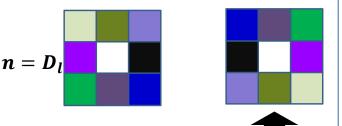
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

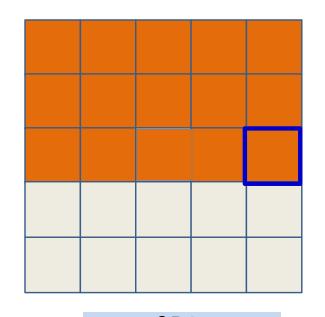


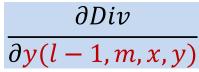
 $w_l(m, n, K + 1 - x, K + 1 - y)$



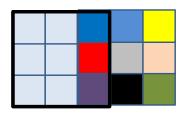


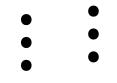


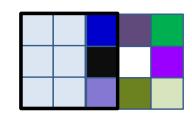




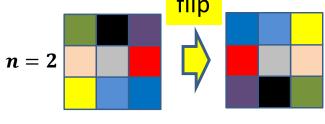
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

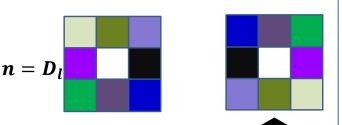


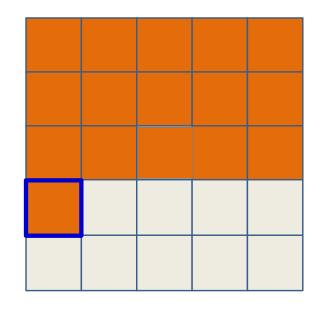


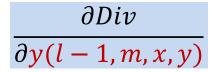


$w_l(m, n, x, y)$ n = 1flip

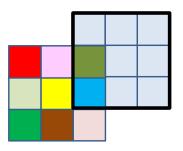


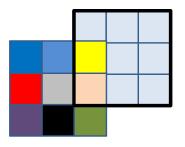


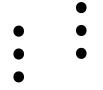


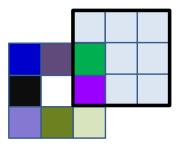


$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

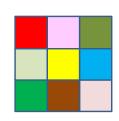


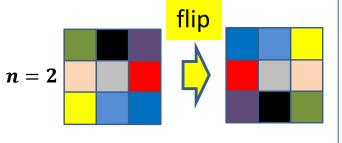


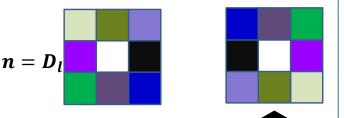


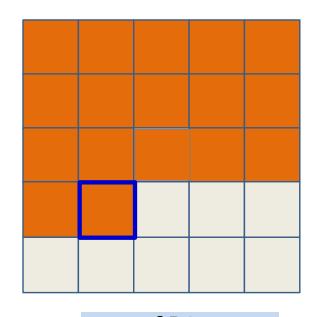


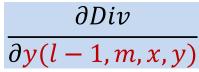
$$n = 1$$



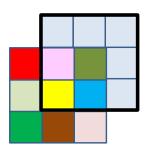


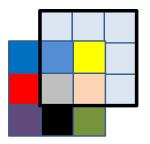


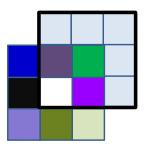




$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$



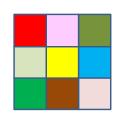


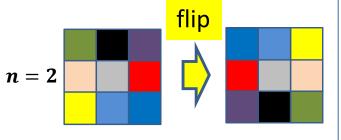


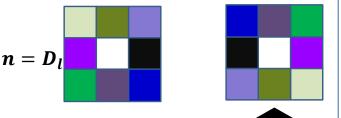
 $w_l(m, n, K + 1 - x, K + 1 - y)$

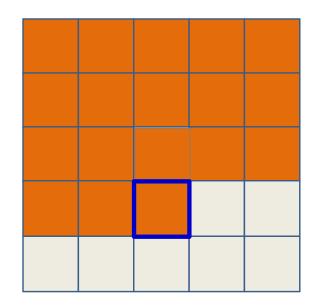
$w_l(m, n, x, y)$

$$n = 1$$



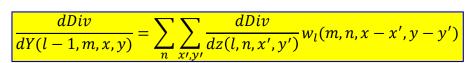


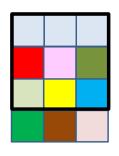


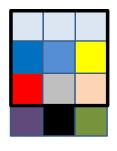


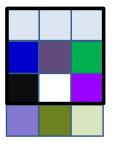
 ∂Div

 $\overline{\partial y(l-1,m,x,y)}$





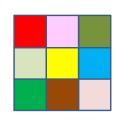


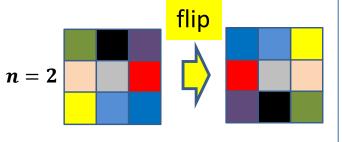


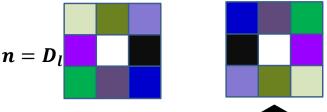
 $w_l(m, n, K + 1 - x, K + 1 - y)$

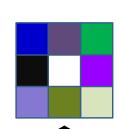


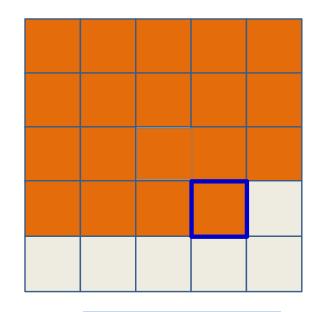
$$n = 1$$

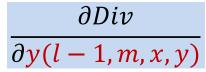




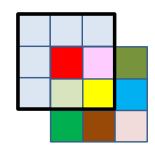


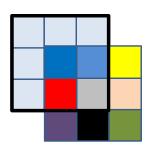


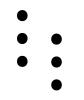


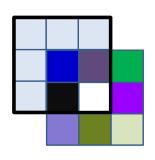


$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

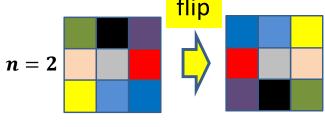






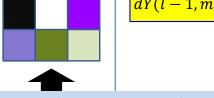


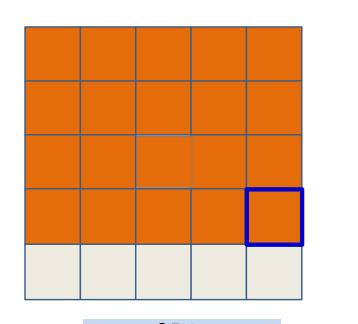
$w_l(m, n, x, y)$ n = 1flip

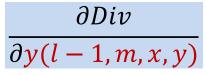




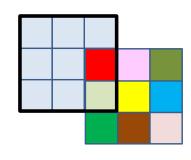
$$n = D_l$$

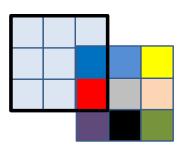


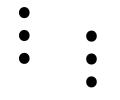


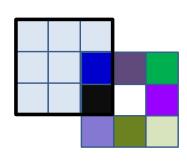


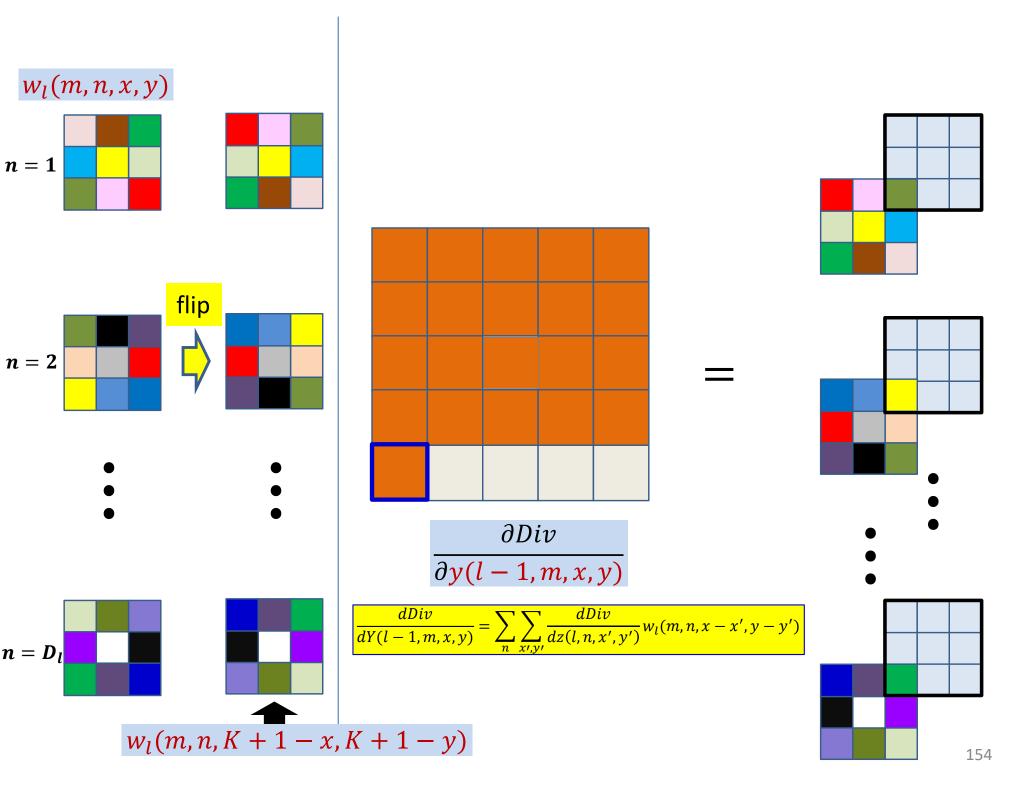
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

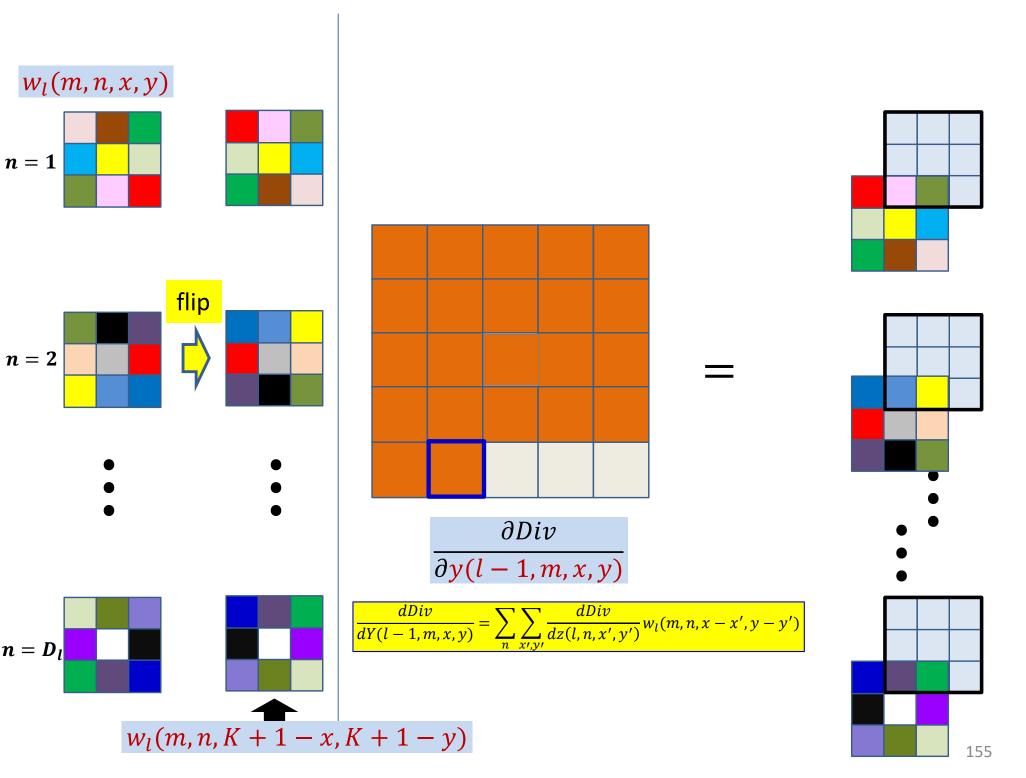


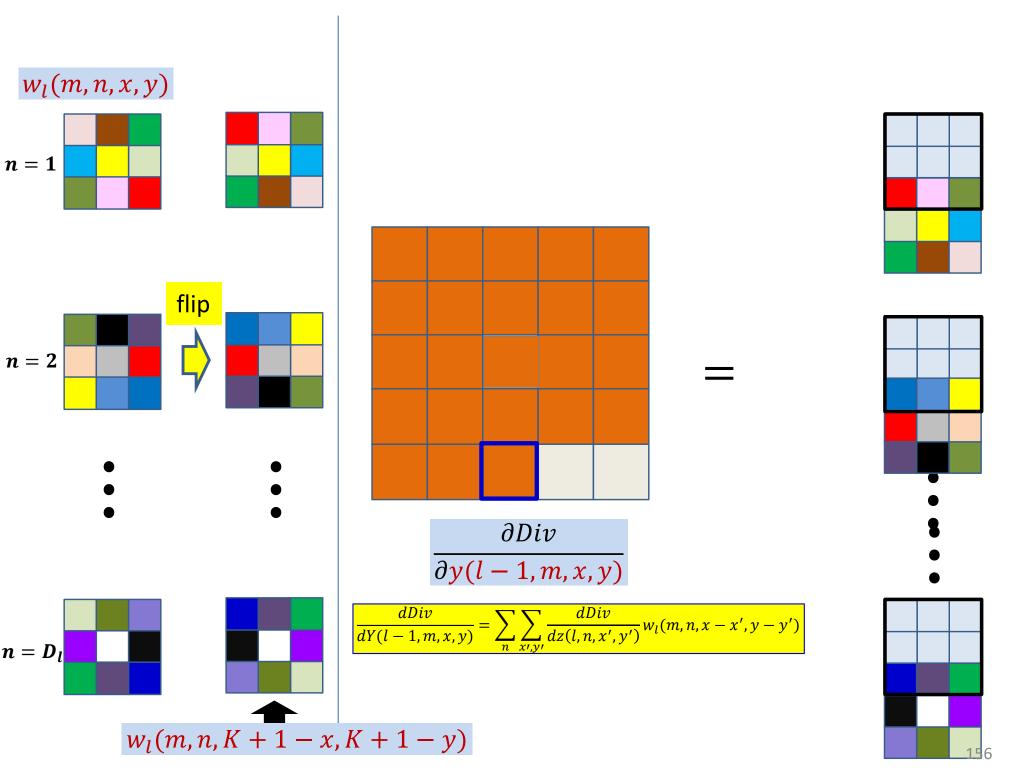




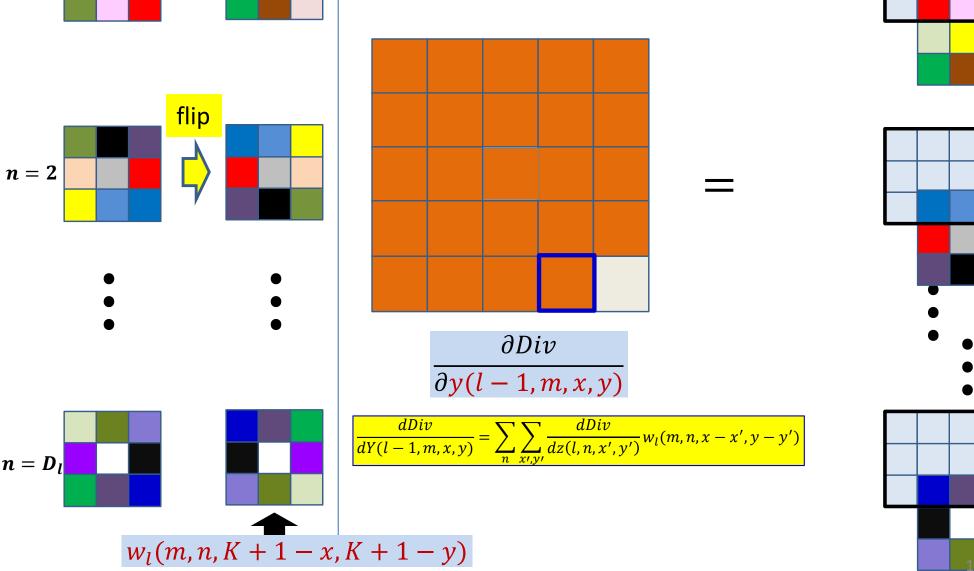


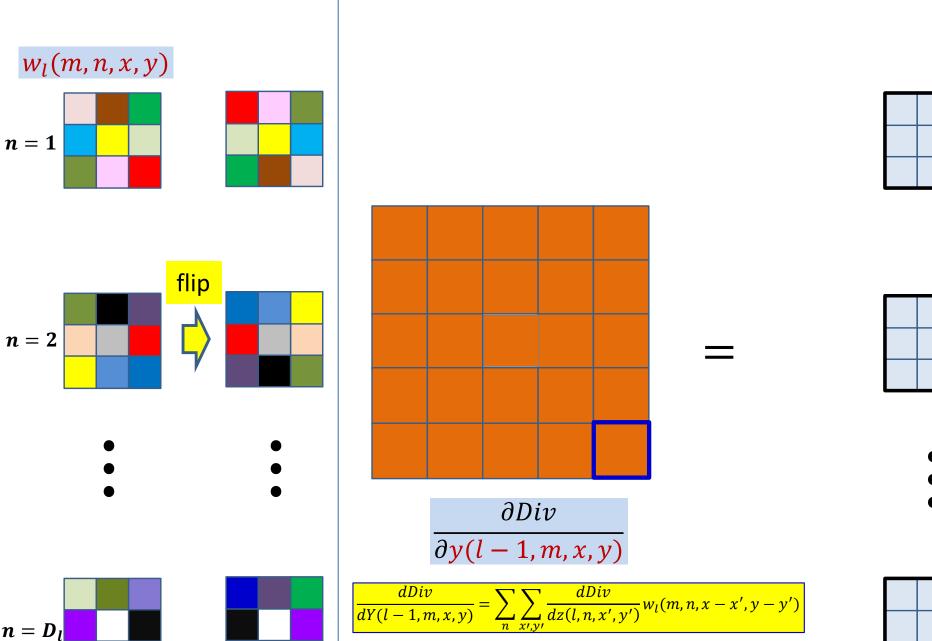




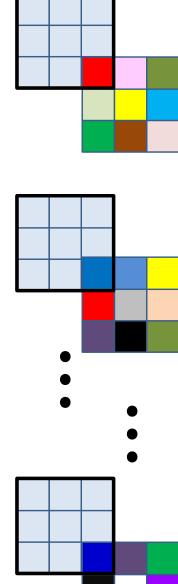


$w_l(m, n, x, y)$ n = 1flip n = 2 ∂Div

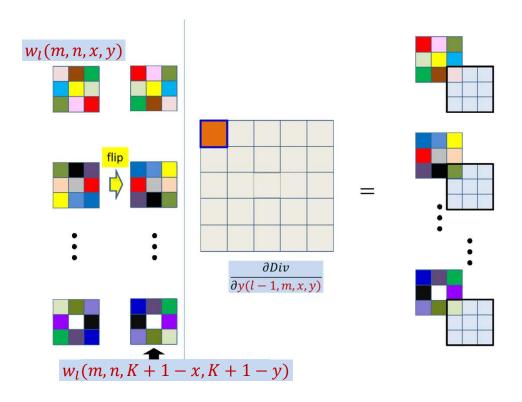




 $w_l(m, n, K + 1 - x, K + 1 - y)$

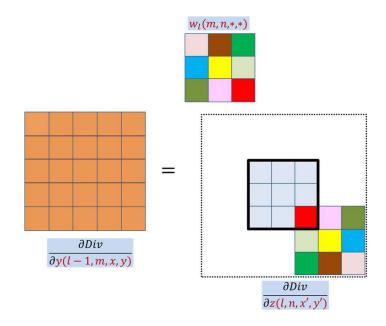


Computing the derivative for Y(l-1,m)



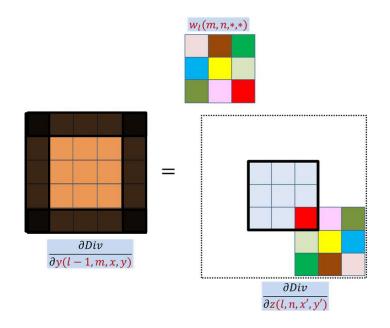
- This is just a convolution of the zero-padded $\frac{\partial Div}{\partial z(l,n,x,y)}$ maps by the transposed and flipped filter
 - After zero padding it first with K-1 zeros on every side

The size of the Y-derivative map



- We continue to compute elements for the derivative Y map as long as the (flipped) filter has at least one element in the (unpadded) derivative Zmap
 - I.e. so long as the Y derivative is non-zero
- The size of the Y derivative map will be $(H + K 1) \times (W + K 1)$
 - H and W are heidght and width of the Zmap
- This will be the size of the actual Y map that was originally convolved

The size of the Y-derivative map



- If the Y map was zero-padded in the forward pass, the derivative map will be the size of the zero-padded map
 - The zero padding regions must be deleted before further backprop

Poll 3

@730

Select all statements that are true about how to compute the derivative of the divergence w.r.t Ith layer activation maps by backpropagation

- To compute the derivative w.r.t. the mth activation map of the lth convolutional layer, we must select the mth "planes" of all the (l+1)th layer filters
- The selected filter planes must be flipped left-right and up-down
- They must convolve the derivative (maps) for the (l+1)th layer affine values
- The output of the convolution must be flipped back left-right and up-down

Poll 3

Select all statements that are true about how to compute the derivative of the divergence w.r.t Ith layer activation maps by backpropagation

- To compute the derivative w.r.t. the mth activation map of the lth convolutional layer, we must select the mth "planes" of all the (l+1)th layer filters
- The selected filter planes must be flipped left-right and up-down
- They must convolve the derivative (maps) for the (l+1)th layer affine values
- The output of the convolution must be flipped back left-right and up-down

Overall algorithm for computing derivatives w.r.t. Y(l-1)

• Given the derivatives $\frac{dDiv}{dz(l,n,x,y)}$

Compute derivatives using:

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

Can be computed by convolution with flipped filter

Derivatives for a single layer *l*: Vector notation

```
# The weight W(1,m) is a 3D D<sub>1-1</sub>×K<sub>1</sub>×K<sub>1</sub>
# Assuming dz has already been obtained via backprop

dzpad = zeros(D<sub>1</sub>x(H<sub>1</sub>+2(K<sub>1</sub>-1))x(W<sub>1</sub>+2(K<sub>1</sub>-1))) # zeropad

for j = 1:D<sub>1</sub>
    for i = 1:D<sub>1-1</sub> # Transpose and flip
        Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(1,i,j,:,:)))
    dzpad(j,K<sub>1</sub>:K<sub>1</sub>+H<sub>1</sub>-1,K<sub>1</sub>:K<sub>1</sub>+W<sub>1</sub>-1) = dz(1,j,:,:) #center map
end
```

```
for j = 1:D_{1-1}

for x = 1:W_{1-1}

for y = 1:H_{1-1}

segment = dzpad(:, x:x+K_1-1, y:y+K_1-1) #3D tensor

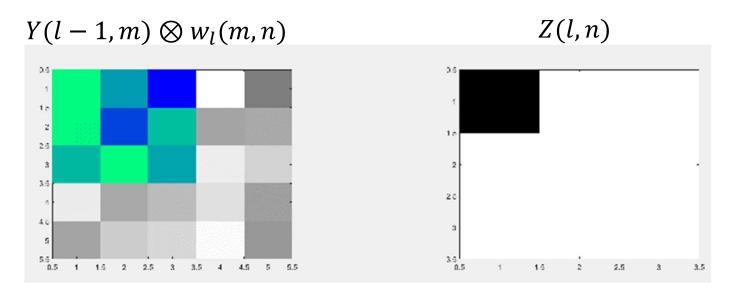
dy(1-1,j,x,y) = Wflip.segment #tensor inner prod.
```

Backpropagating through affine map

- Forward affine computation:
 - Compute affine maps z(l, n, x, y) from previous layer maps y(l-1, m, x, y) and filters $w_l(m, n, x, y)$

- Backpropagation: Given $\frac{dDiv}{dz(l,n,x,y)}$
- Compute derivative w.r.t. y(l-1, m, x, y)
 - Compute derivative w.r.t. $w_l(m, n, x, y)$

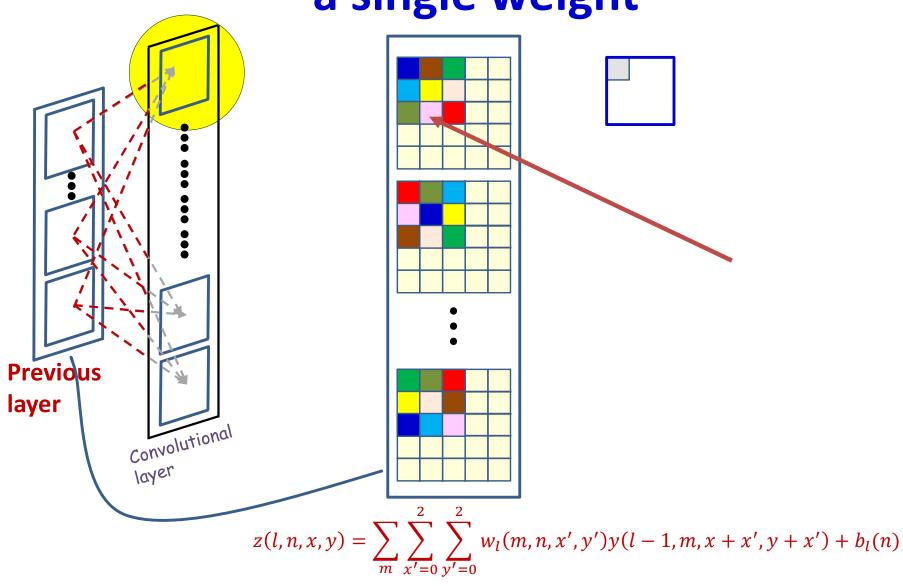
The derivatives for the weights



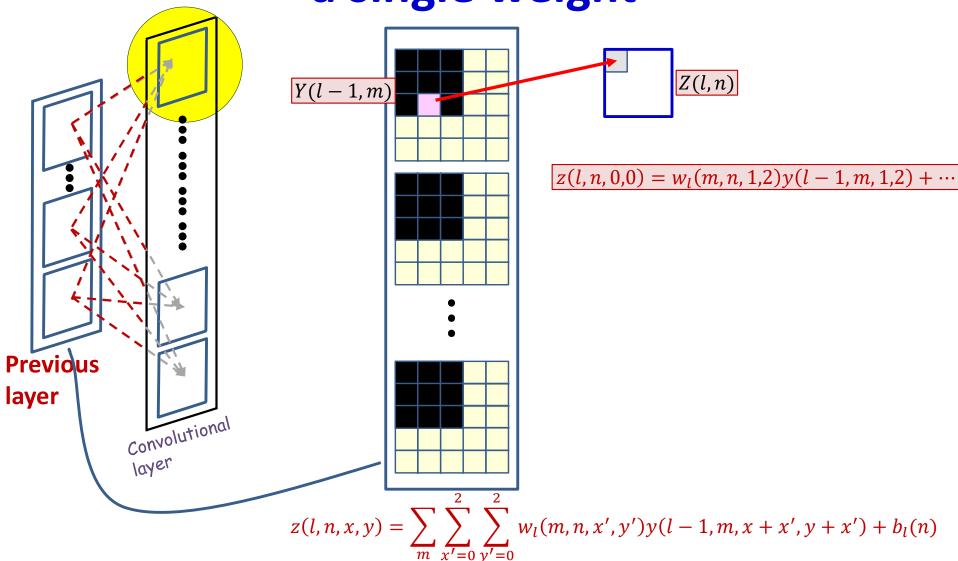
$$z(l,n,x,y) = \sum_{m} \sum_{x',y'} w_l(m,n,x',y') y(l-1,m,x+x',y+y') + b_l(n)$$

- Each weight $w_l(m, n, x', y')$ affects several z(l, n, x, y) but only within a single affine (z(l, n, *, *)) map/channel
 - And is also linked to several y(l-1,m,x,y) but only within a single previous-layer output map/channel y(l-1,m,*,*)
 - $w_l(m, n, *, *)$ connects y(l-1, m, *, *) to z(l, n, *, *)
 - Consider the contribution of one filter components: $w_l(m, n, i, j)$ (e.g. $w_l(m, n, 1, 2)$) in the above animation for illustration

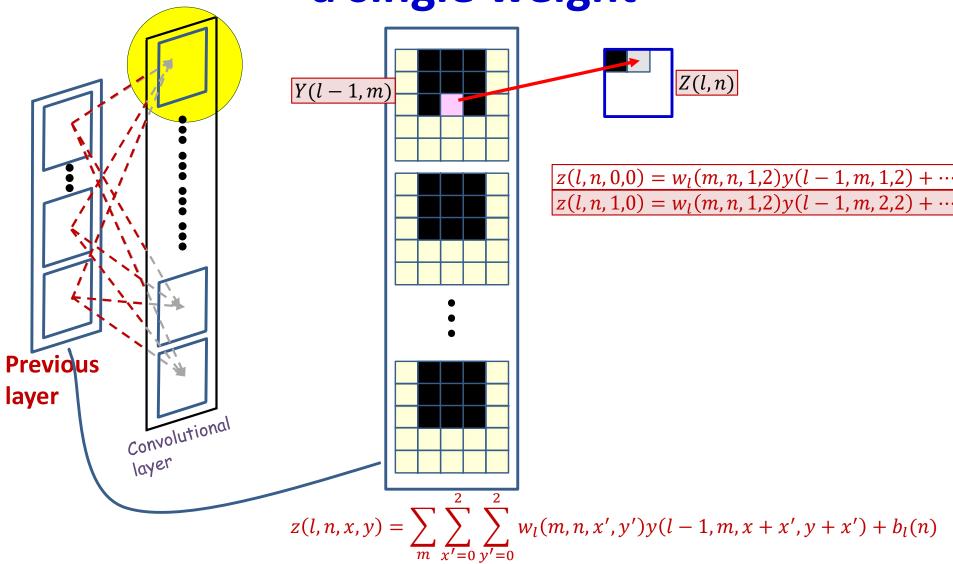
167



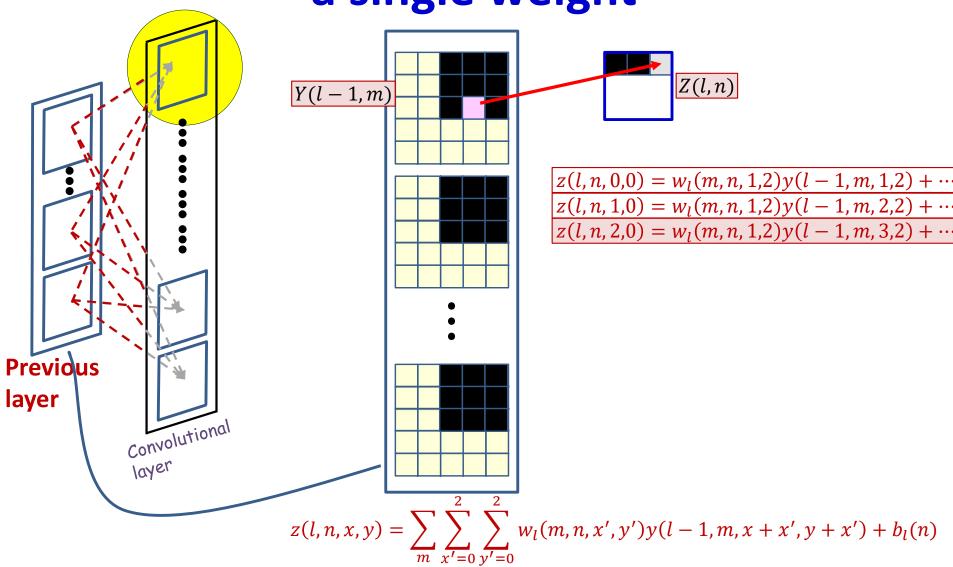
- Each affine output is computed from multiple input maps simultaneously
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) within the nth output affine map



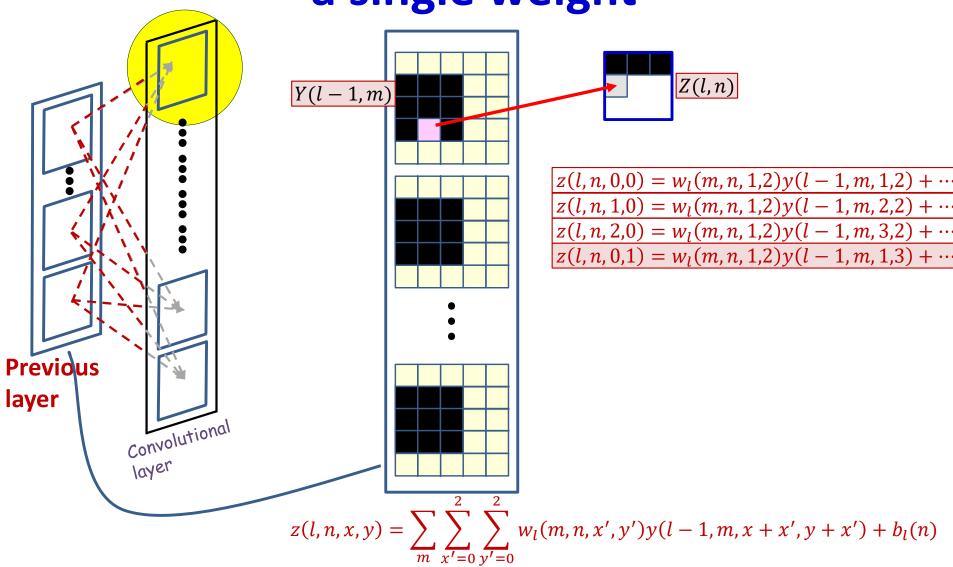
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



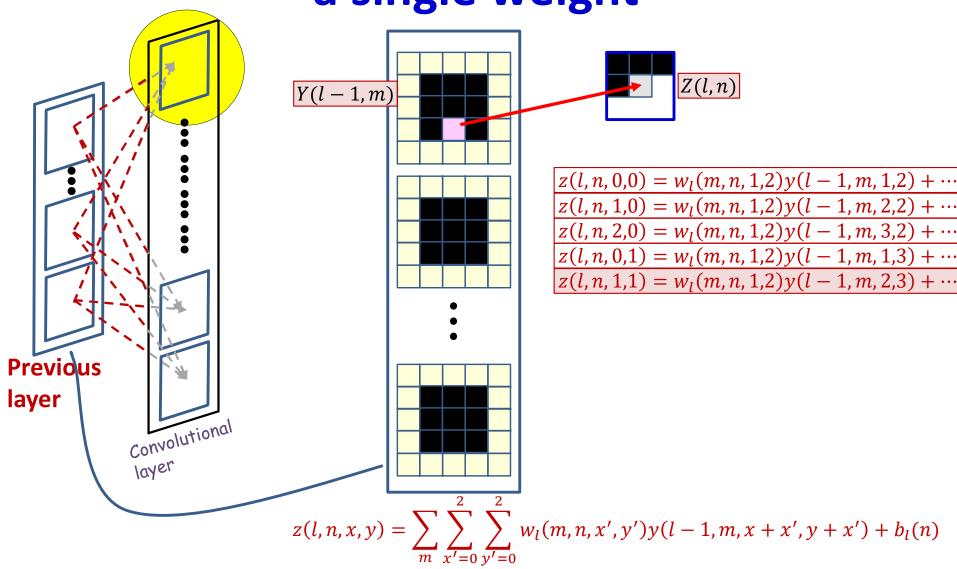
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



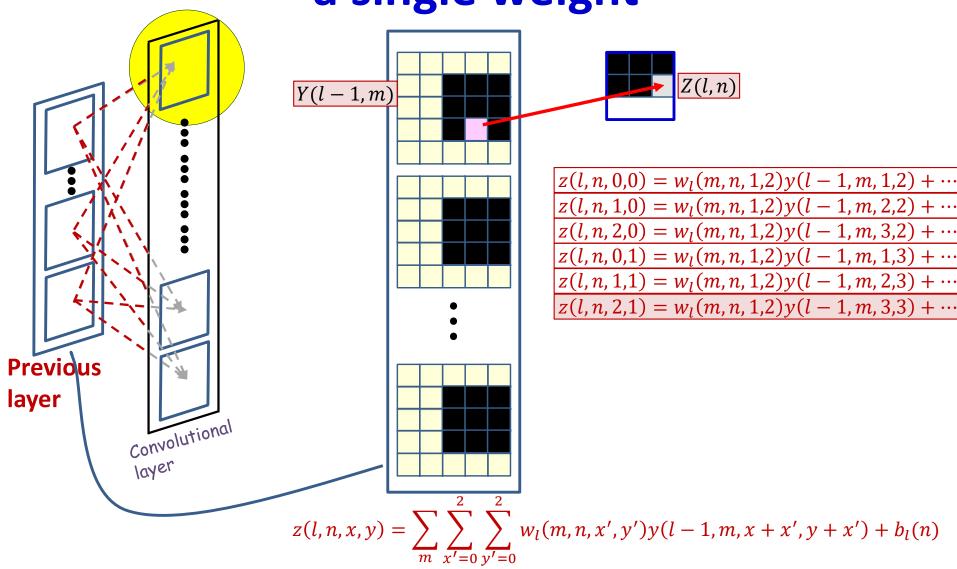
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



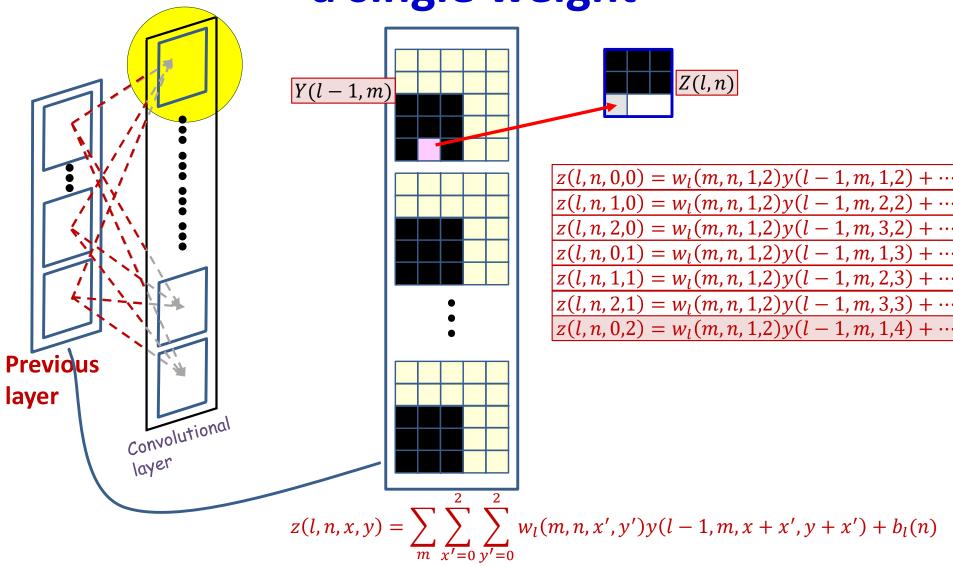
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



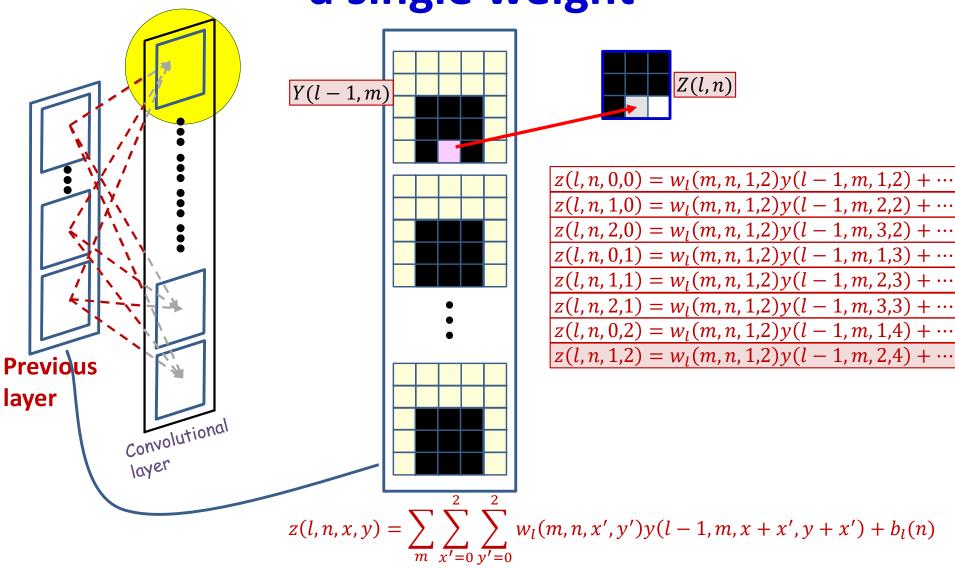
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



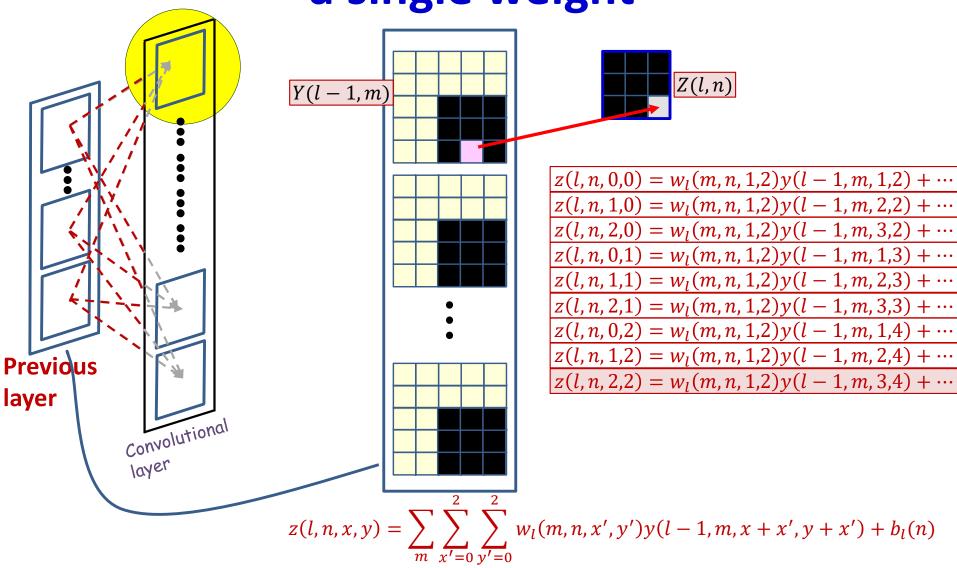
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



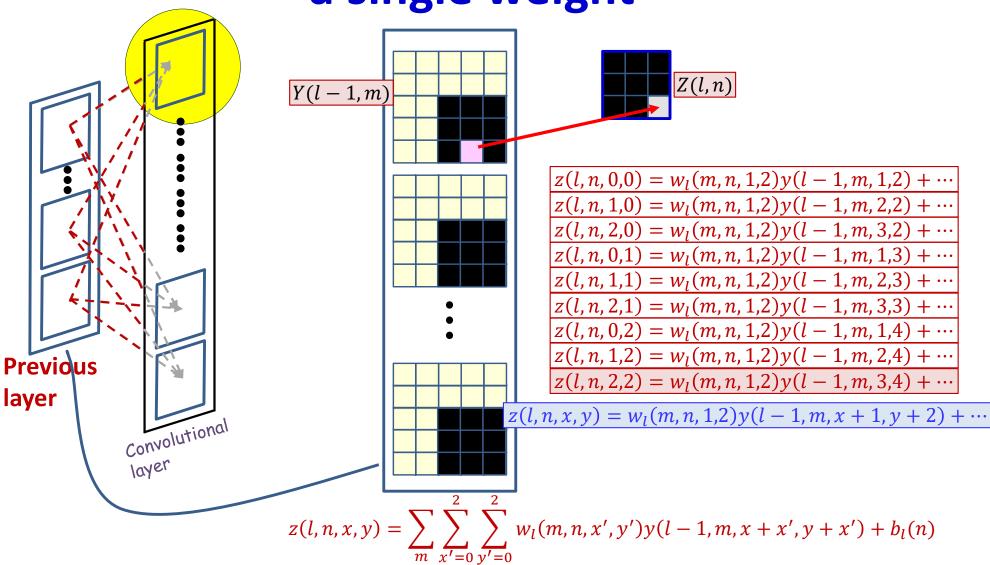
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



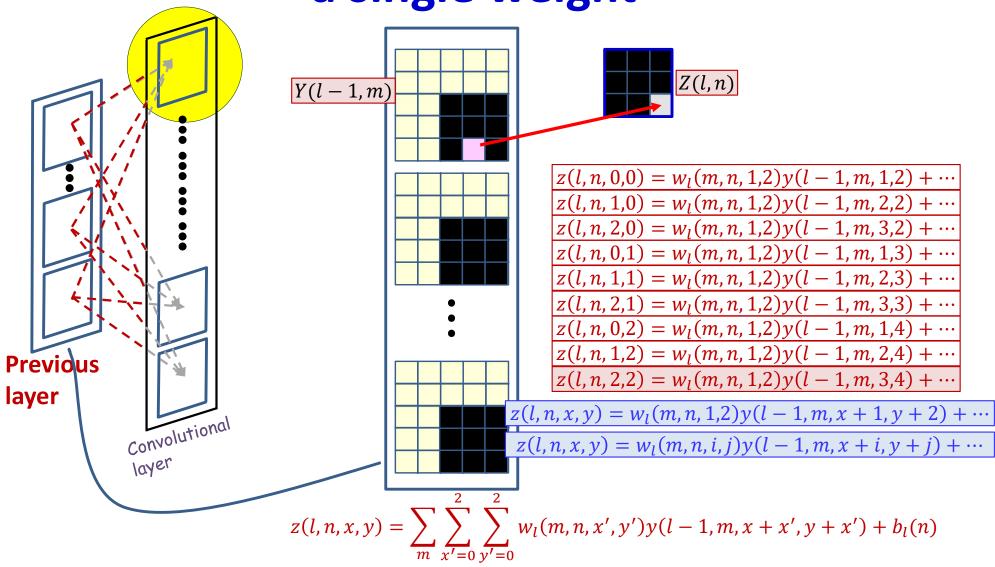
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



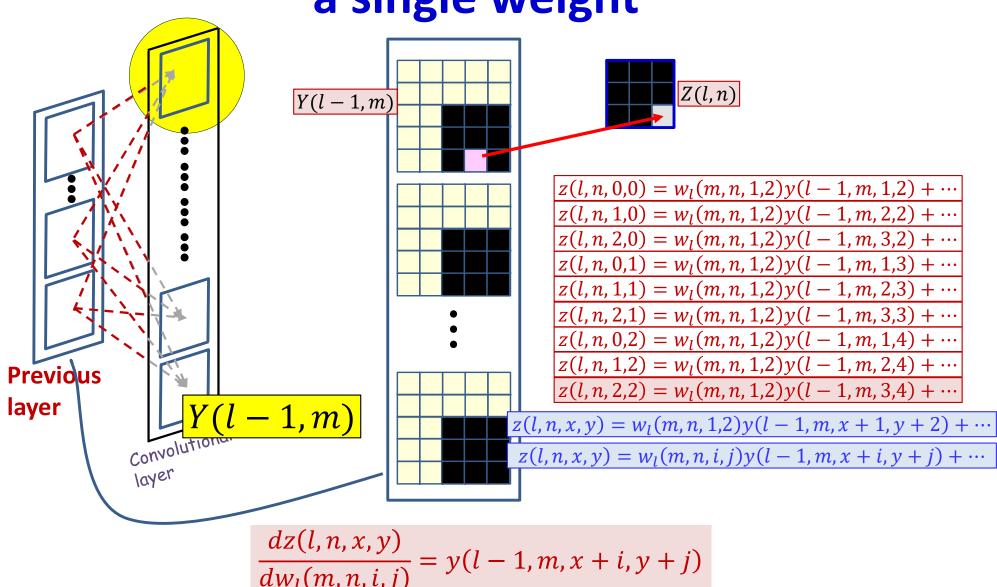
- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$

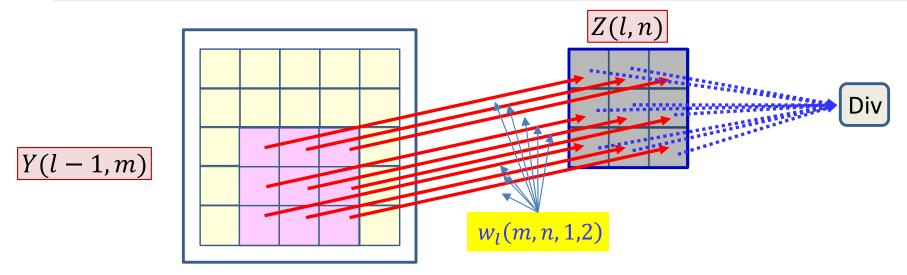


- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



- Each weight $w_l(m, n, i, j)$ affects several z(l, n, x, y) in the nth output affine map
 - Consider the contribution of one filter components: e.g. $w_l(m, n, 1, 2)$



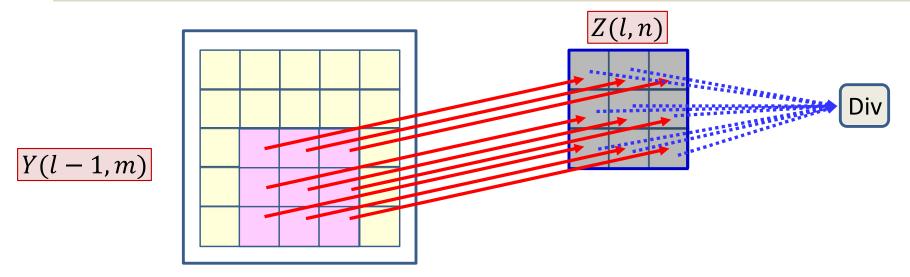


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$

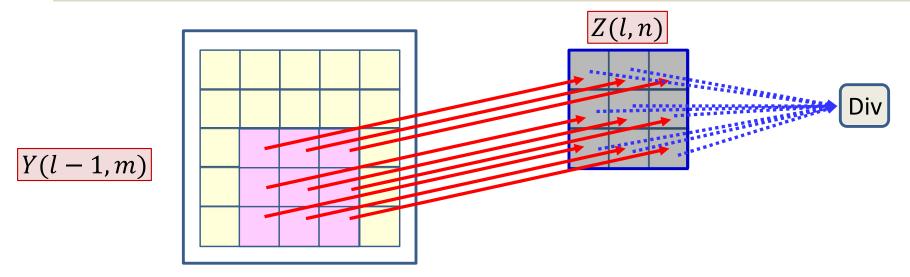


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influenced by every z(l, n, x, y)
- The derivati Already computed z r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$

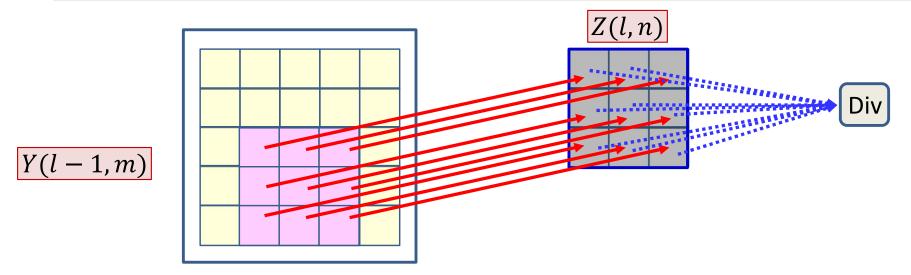


- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

- The final divergence is influented by every z(l, n, x, y)
- The derivati Already computed v r.t $w_l(m,n|i,j)$ must sum over all z(l,n,x,y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} \frac{dz(l,n,x,y)}{dw_l(m,n,i,j)}$$

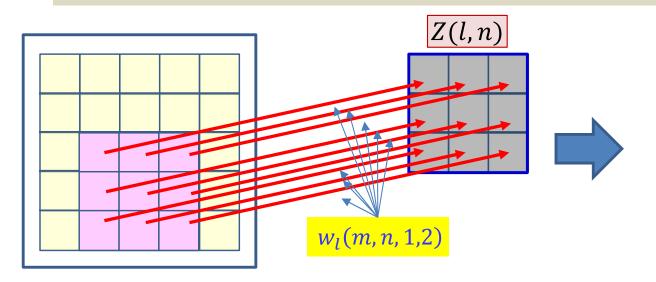


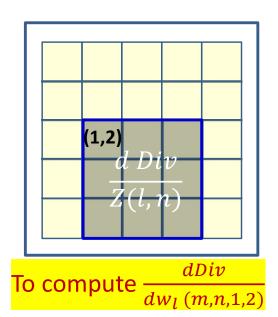
- Each filter component $w_l(m, n, i, j)$ affects several z(l, n, x, y)
 - The derivative of each z(l, n, x, y) w.r.t. $w_l(m, n, i, j)$ is given by

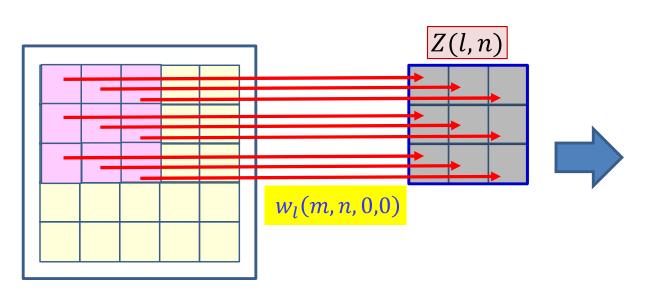
$$\frac{dz(l,n,x,y)}{dw_l(m,n,i,j)} = y(l-1,m,x+i,y+j)$$

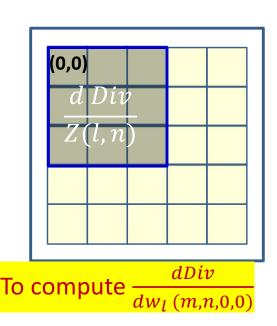
- The final divergence is influenced by every z(l, n, x, y)
- The derivative of the divergence w.r.t $w_l(m, n, i, j)$ must sum over all z(l, n, x, y) terms it influences

$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} y(l-1,m,x+i,y+j)$$









But this too is a convolution

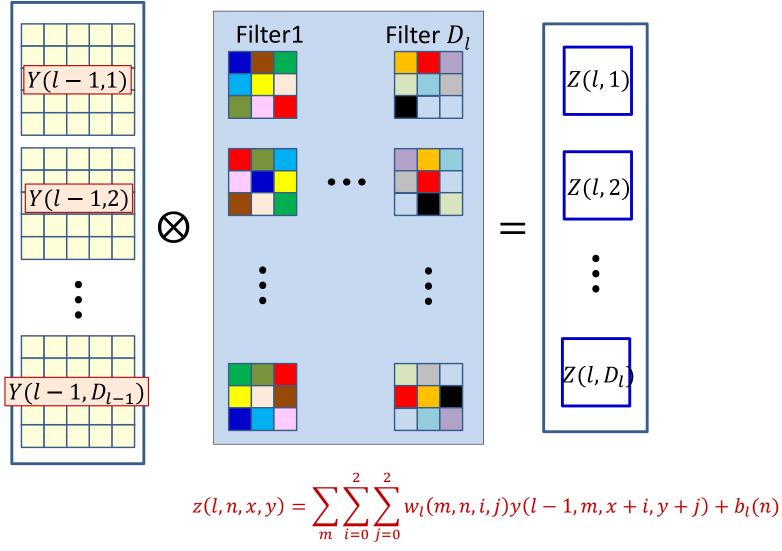
$$\frac{dDiv}{dw_l(m,n,i,j)} = \sum_{x,y} \frac{dDiv}{dz(l,n,x,y)} y(l-1,m,x+i,y+j)$$

- The derivatives for all components of all filters can be computed directly from the above formula
 - To compute the derivative for w_l (m,n,i,j), "place" the dDiv/dz(l,n) map on y(l-1,m) map positioned at (i,j) and compute the inner product
- In fact, it is just a convolution

$$\frac{dDiv}{dw_l(m,n,i,j)} = \frac{dDiv}{dz(l,n)} \otimes y(l-1,m)$$

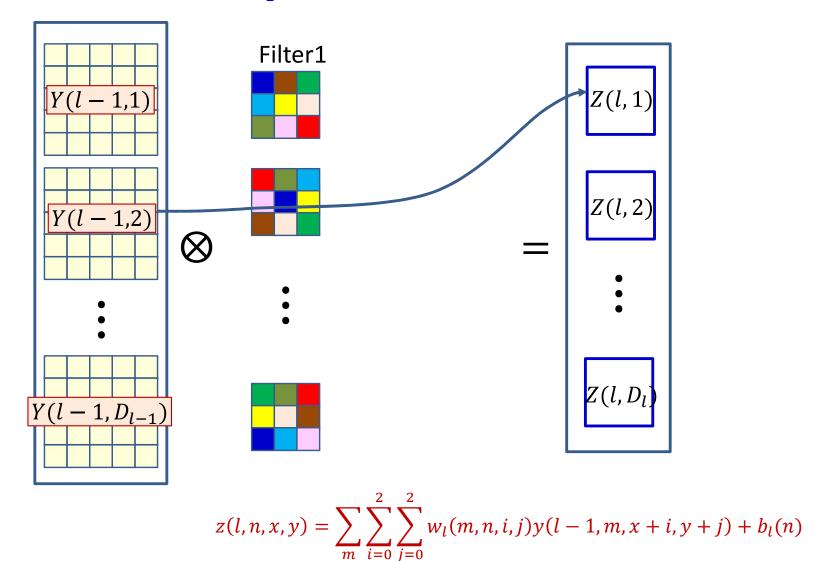
How?

Recap: Convolution

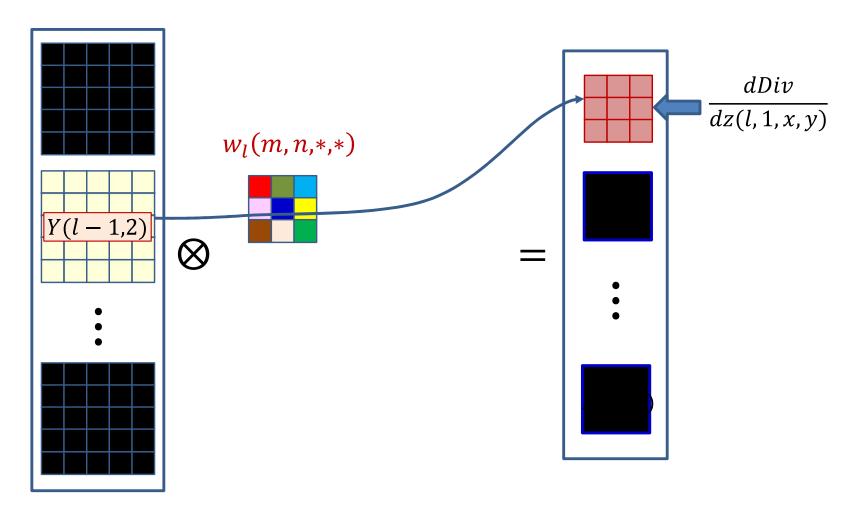


Forward computation: Each filter produces an affine map

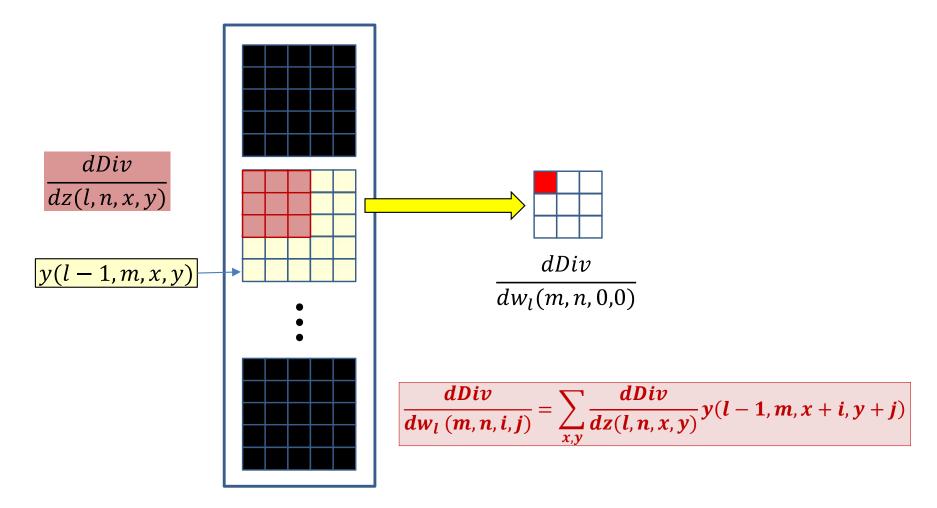
Recap: Convolution



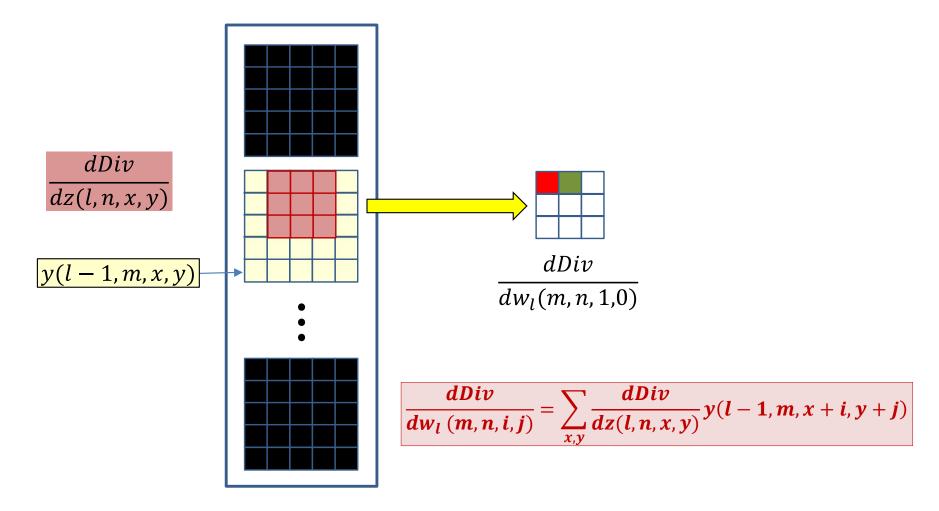
• Y(l-1,m) influences Z(l,n) through $w_l(m,n)$



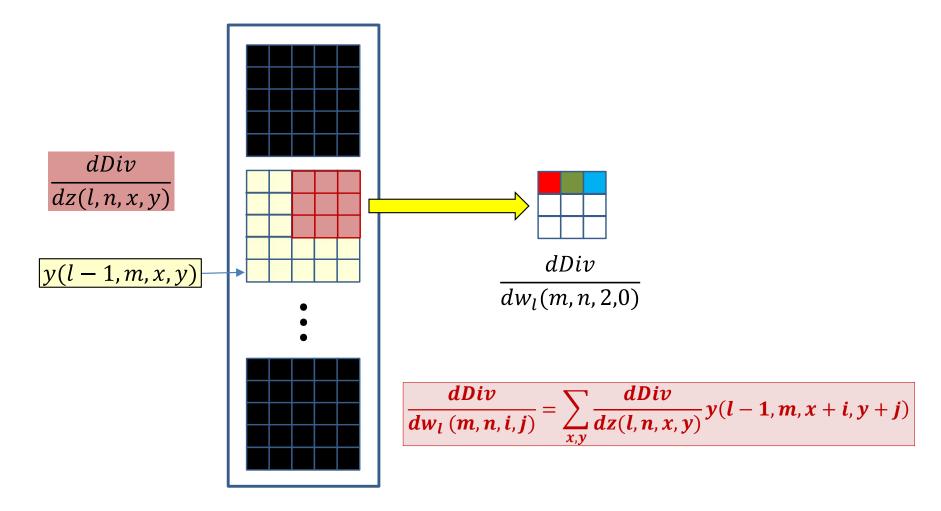
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{89}$



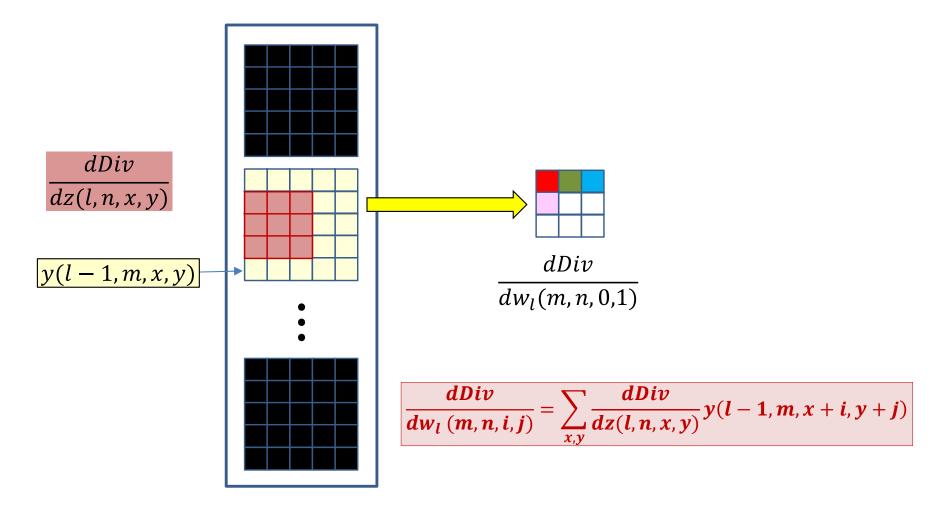
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{90}$



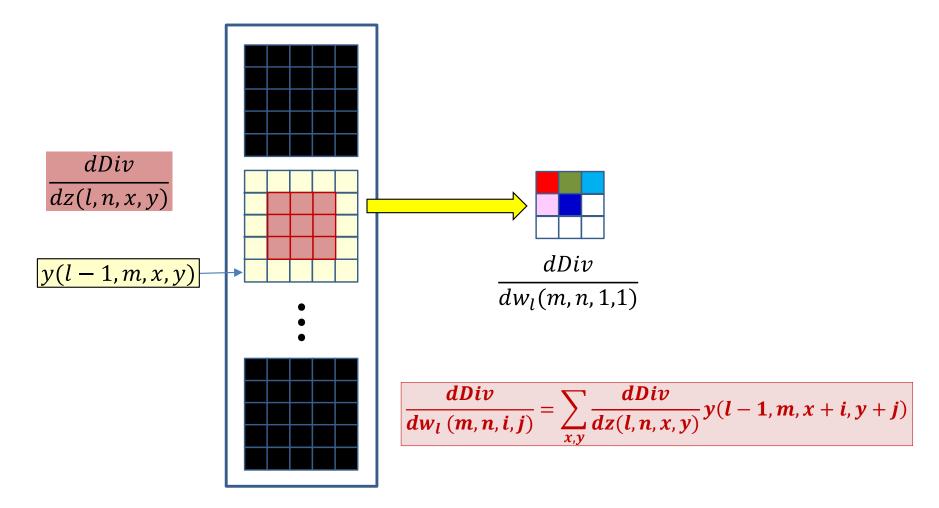
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{91}$



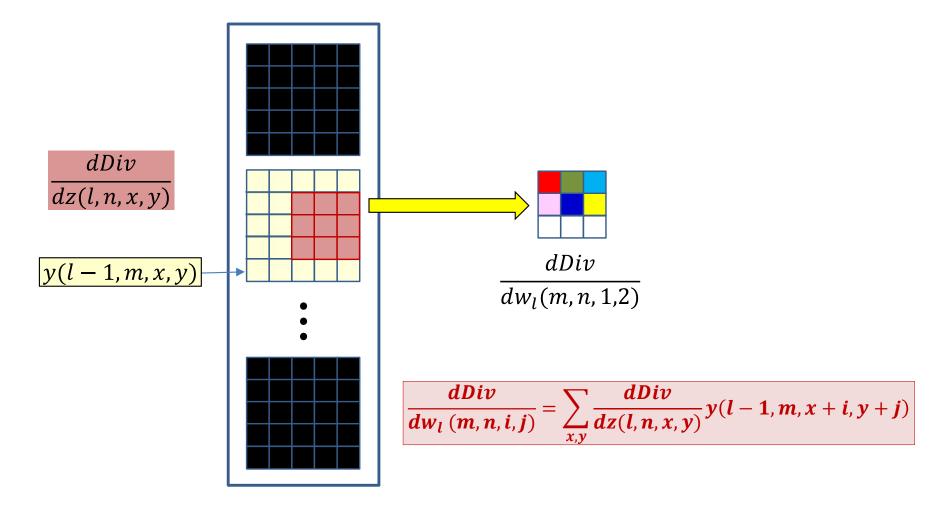
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{92}$



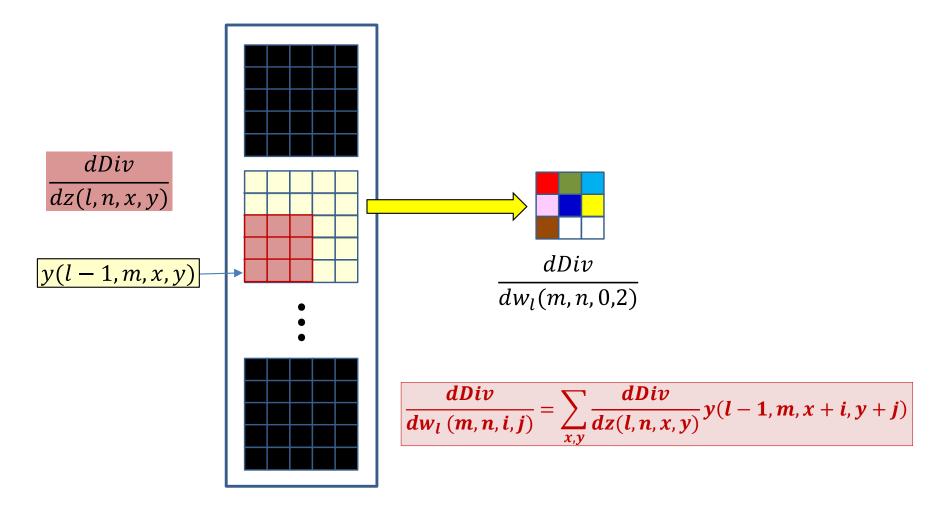
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{93}$



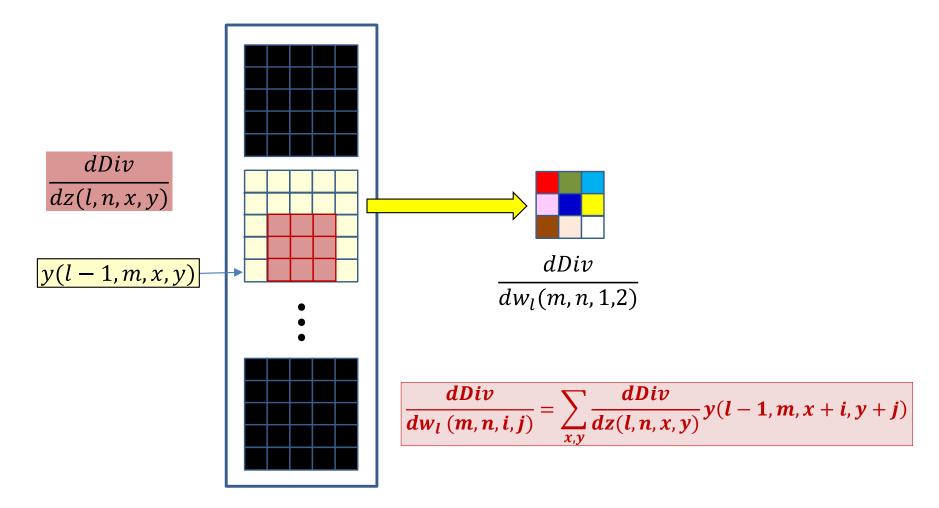
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{94}$



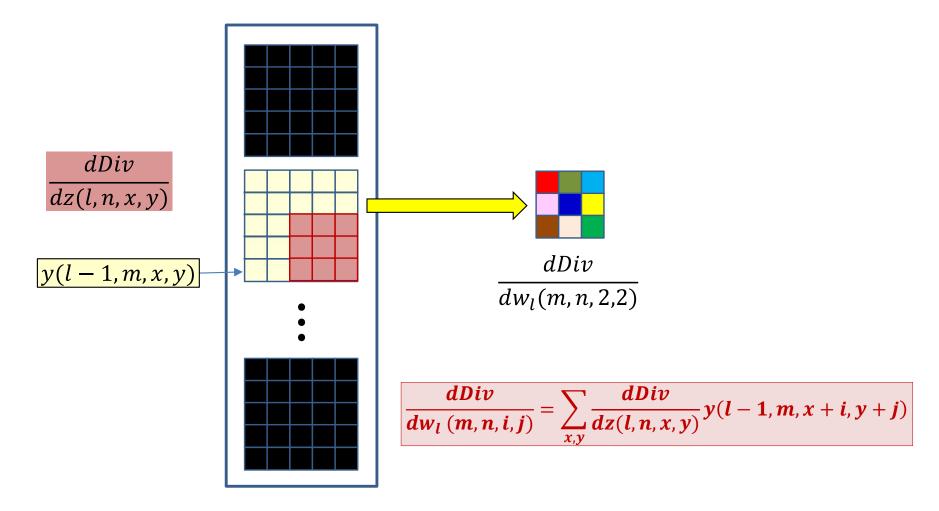
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{95}$



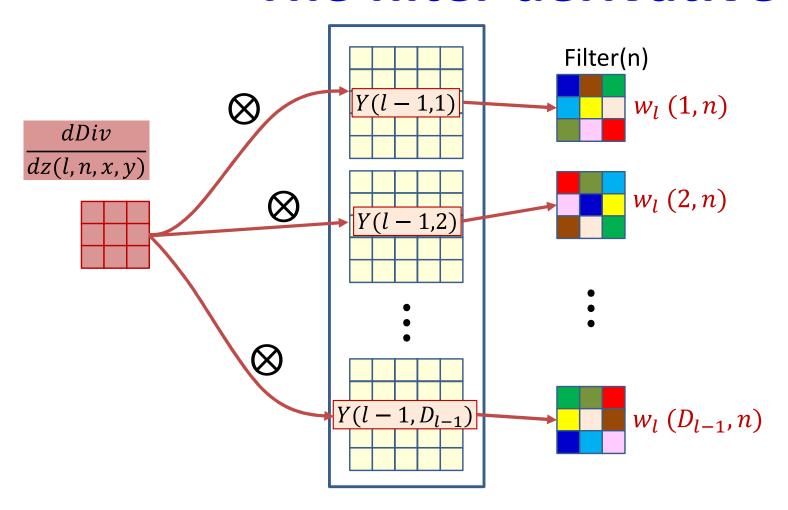
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{96}$



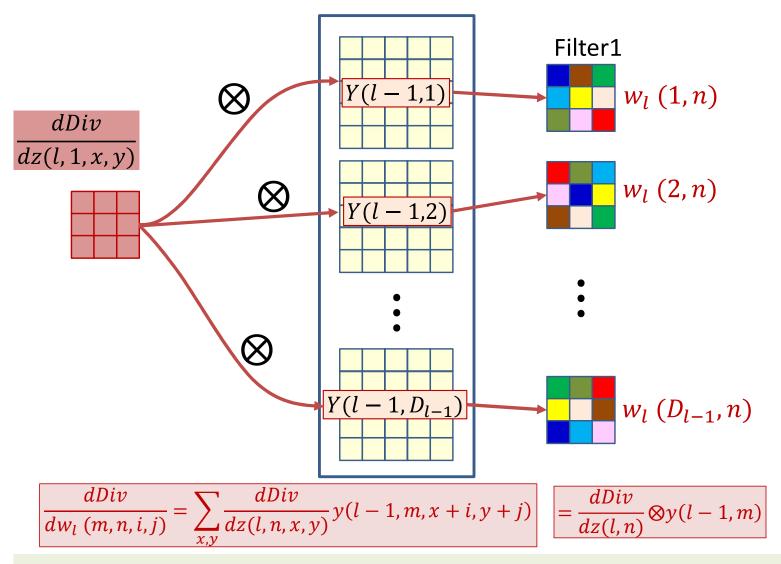
- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{97}$



- The derivatives of the divergence w.r.t. every element of Z(l,n) is known
 - Must use them to compute the derivative for $w_l(m, n, *, *)^{98}$



• The derivative of the n^{th} affine map Z(l,n) convolves with every output map Y(l-1,m) of the (l-1)th layer, to get the derivative for $w_l(m, n)$, the m^{th} "channel" of the n^{th} filter



If Y(l-1,m) was zero padded in the forward pass, it must be zero padded for backprop

Poll 4

@731

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer filters using backpropagation

- The derivative for the mth plane of the nth filter is computed by convolving the mth input (I-1th) layer map with the nth output (Ith) layer affine derivative map
- The output map must be flipped left-right/up-down before convolution

Poll 4

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer filters using backpropagation

- The derivative for the mth plane of the nth filter is computed by convolving the mth input (I-1th) layer map with the nth output (Ith) layer affine derivative map
- The output map must be flipped left-right/up-down before convolution

Derivatives for the filters at layer *l*: Vector notation

```
# The weight W(1,j) is a 3D D<sub>1-1</sub>×K<sub>1</sub>×K<sub>1</sub>
# Assuming that derivative maps have been upsampled
# if stride > 1
# Also assuming y map has been zero-padded if this was
# also done in the forward pass
# The width and height of the dz map are W and H
```

```
for n = 1:D_1

for x = 1:K_1

for y = 1:K_1

for m = 1:D_{1-1}

dw(1, m, n, x, y) = dz(1, n, :, :). #dot product

y(1-1, m, x: x+H-1, y: y+W-1)
```

Derivatives through a convolutional layer

- The entire process is simpler if we simply look at it through code
 - Through the reapplication of two simple rules:
- For any computation of the form

$$y = \sigma(z)$$

The loss derivative for z given the loss derivative of y is

$$\frac{dL}{dz} = \frac{dL}{dy}\sigma'^{(z)}$$

For any computation in the forward pass

$$z = wy$$

 The backward computation to compute loss derivatives for the terms on the right, given loss derivatives to the left is

$$dL/dy += wdL/dz$$
; $dL/dw += ydL/dz$

Since this is "backpropgation", all computations are reversed

CNN: Forward

```
Y(0,:,:,:) = Image
for 1 = 1:L # layers operate on vector at (x,y)
   for x = 1:W_{1-1}-K_1+1
                                          Switching to 1-based
      for y = 1:H_{1-1}-K_1+1
                                          indexing with appropriate
          for j = 1:D_1
                                          adjustments
             z(1,j,x,y) = 0
             for i = 1:D_{1-1}
                  for x' = 1:K_1
                       for y' = 1:K_1
                           z(1,j,x,y) += w(1,j,i,x',y')
                                    Y(1-1, i, x+x'-1, y+y'-1)
             Y(l,j,x,y) = activation(z(l,j,x,y))
Y = softmax(Y(L,:,1,1)...Y(L,:,W-K+1,H-K+1))
                                                            205
```

Backward layer *l*

```
dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
for x = W_{1-1}-K_1+1:downto:1
  for y = H_{1-1} - K_1 + 1 : downto: 1
      for j = D_1:downto:1
         dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
         for i = D_{1-1}:downto:1
            for x' = K_1:downto:1
              for y' = K_1:downto:1
                dY(1-1, i, x+x'-1, y+y'-1) +=
                              w(1,j,i,x',y') dz(1,j,x,y)
                dw(1,j,i,x',y') +=
                       dz(1,j,x,y) Y(1-1,i,x+x'-1,y+y'-1)
```

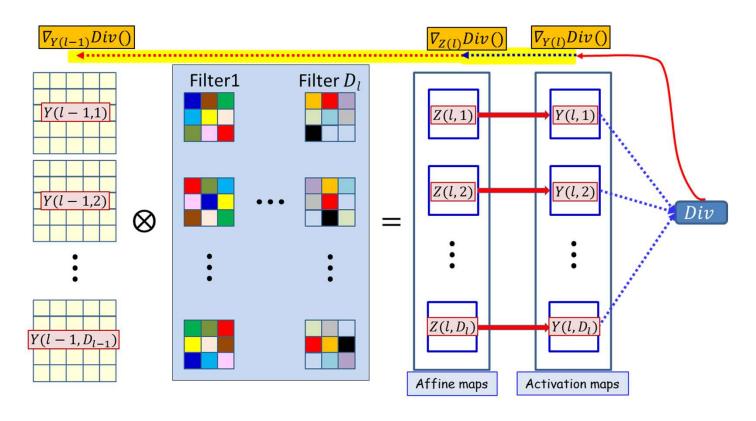
Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for 1 = L:downto:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
   for x = W_{1-1}-K_1+1:downto:1
       for y = H_{1-1} - K_1 + 1 : downto: 1
          for j = D_1:downto:1
             dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
             for i = D_{1-1}:downto:1
                  for x' = K_1:downto:1
                       for y' = K_1:downto:1
                            dY(1-1, i, x+x'-1, y+y'-1) +=
                               w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1,j,i,x',y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1)
                                                                207
```

Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for 1 = L:downto:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
                                         Multiple ways of recasting this
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
                                         as tensor/vector operations.
   for x = W_{1-1}-K_1+1:downto:1
                                         Will not discuss here
       for y = H_{1-1}-K_1+1:downto:1
          for j = D_1:downto:1
             dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
              for i = D_{1-1}:downto:1
                  for x' = K_1:downto:1
                       for y' = K_1:downto:1
                            dY(1-1,i,x+x'-1,y+y'-1) +=
                               w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1,j,i,x',y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1)
```

Backpropagation: Convolutional layers



For convolutional layers:

How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)

How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)

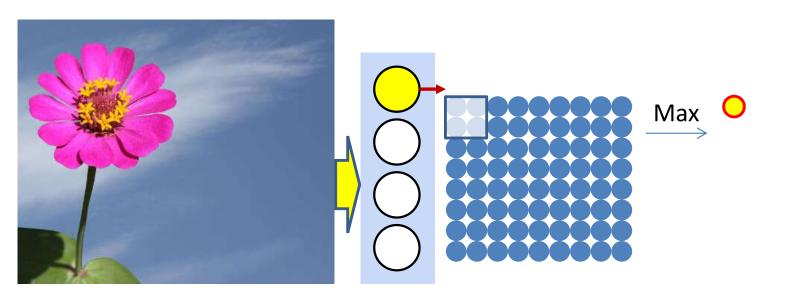
Backpropagation: Convolutional and Pooling layers

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
 - Obtained as a result of backpropagating through the flat MLP

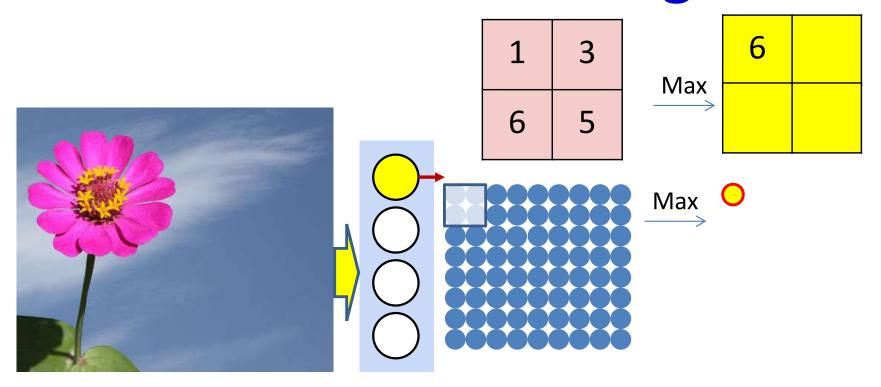
Required:

- For convolutional layers:
 - How to compute the derivatives w.r.t. the affine combination Z(l) maps from the activation output maps Y(l)
 - How to compute the derivative w.r.t. Y(l-1) and w(l) given derivatives w.r.t. Z(l)
- For pooling layers:
 - How to compute the derivative w.r.t. Y(l-1) given derivatives w.r.t. Y(l)

Pooling



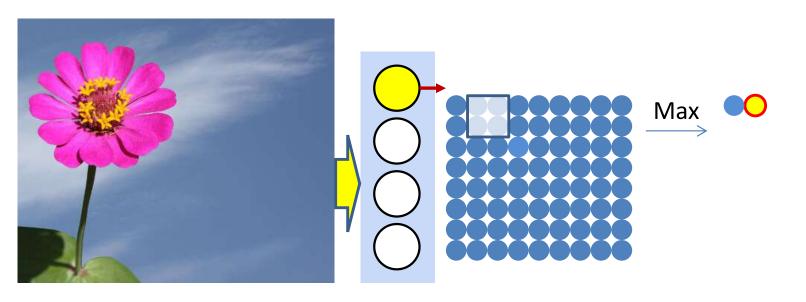
- Pooling "pools" groups of values to reduce jitter-sensitivity
 - Scanning with a "pooling" filter
- The most common pooling is "Max" pooling



- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},}{\operatorname{argmax}} Y(l-1, m, k, n)$$
$$n \in \{j, j+K_{lpool}-1\}$$

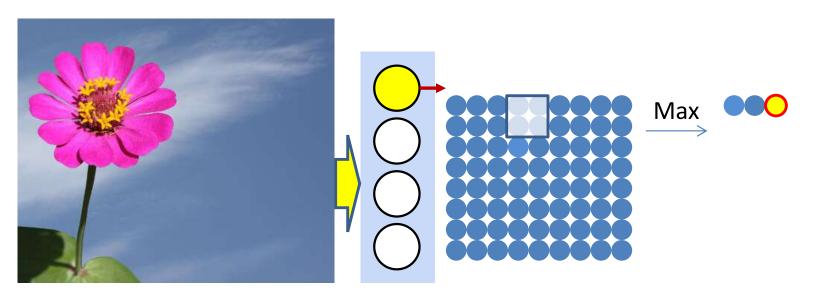
$$Y(l, m, i, j) = Y(l - 1, m, P(l, m, i, j))$$



- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},}{\operatorname{argmax}} Y(l-1, m, k, n)$$
$$n \in \{j, j+K_{lpool}-1\}$$

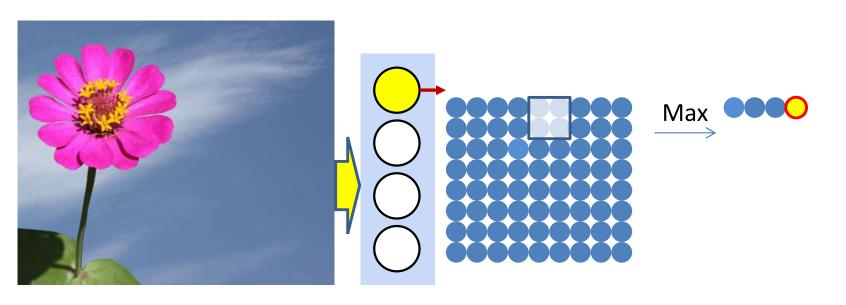
$$Y(l, m, i, j) = Y(l - 1, m, P(l, m, i, j))$$



- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

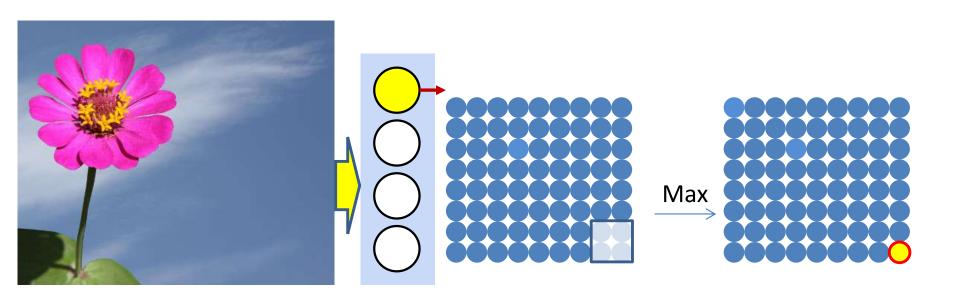
$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},\\ n \in \{j, j+K_{lpool}-1\}\}}{\operatorname{argmax}} Y(l-1, m, k, n)$$

$$Y(l, m, i, j) = Y(l-1, m, P(l, m, i, j))$$



- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},\\ n \in \{j, j+K_{lpool}-1\}}{\operatorname{argmax}} Y(l-1, m, k, n)$$

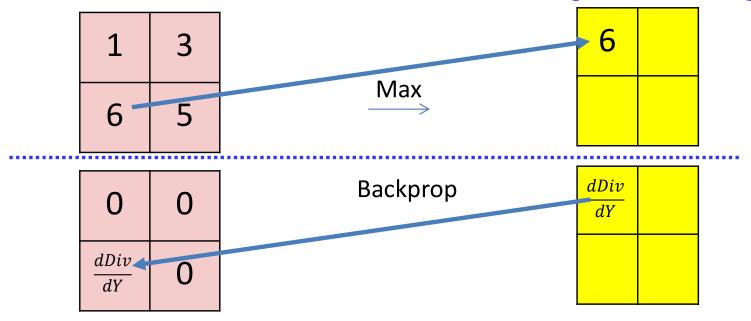


- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},}{\operatorname{argmax}} Y(l-1, m, k, n)$$
$$n \in \{j, j+K_{lpool}-1\}$$

$$Y(l, m, i, j) = Y(l - 1, m, P(l, m, i, j))$$

Derivative of Max pooling



$$\frac{dDiv}{dy(l-1,m,k,l)} = \begin{cases} \frac{dDiv}{dy(l,m,i,j)} & \text{if } (k,l) = P(l,m,i,j) \\ 0 & \text{otherwise} \end{cases}$$

Max pooling selects the largest from a pool of elements

$$P(l, m, i, j) = \underset{k \in \{i, i+K_{lpool}-1\},\\ n \in \{j, j+K_{lpool}-1\}\}}{\operatorname{argmax}} Y(l-1, m, k, n)$$

$$y(l, m, i, j) = y(l-1, m, P(l, m, i, j))$$

Max Pooling layer at layer *l*

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

```
for j = 1:D_1

for x = 1:W_{1-1}-K_1+1

for y = 1:H_{1-1}-K_1+1

pidx(l,j,x,y) = maxidx(y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))

y(l,j,x,y) = y(l-1,j,pidx(l,j,x,y))
```

Derivative of max pooling layer at layer *l*

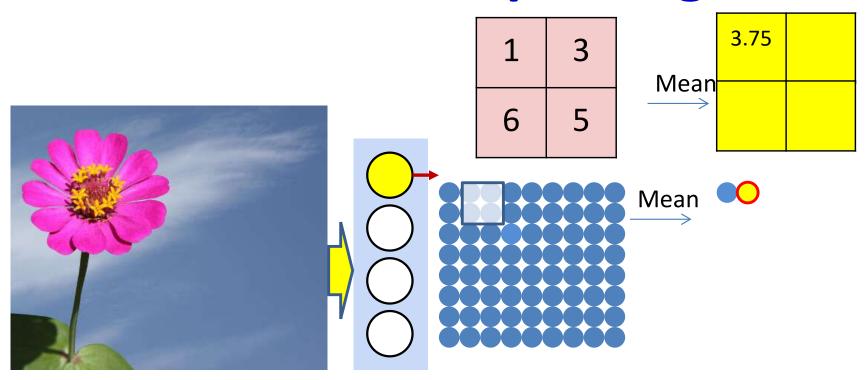
a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling

```
\begin{array}{l} dy(:,:,:) = zeros(D_1 \times W_1 \times H_1) \\ \\ for \ j = 1:D_1 \\ \\ for \ x = 1:W_1 \\ \\ for \ y = 1:H_1 \\ \\ dy(l-1,j,pidx(l,j,x,y)) \ += \ dy(l,j,x,y) \end{array}
```

"+=" because this entry may be selected in multiple adjacent overlapping windows

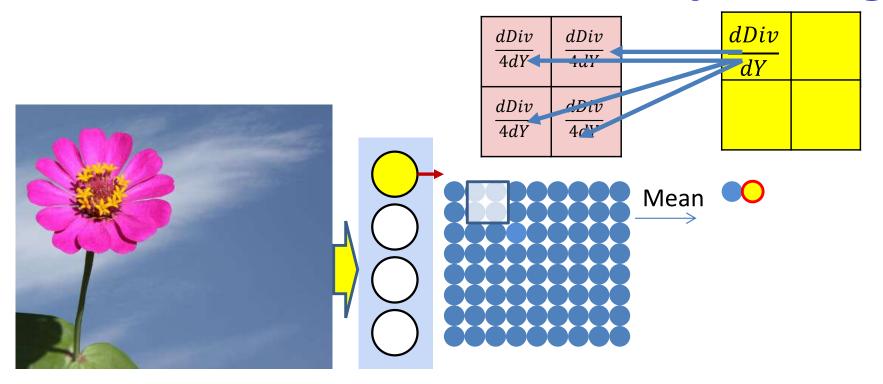
Mean pooling



- Mean pooling compute the mean of a pool of elements
- Pooling is performed by "scanning" the input

$$y(l, m, i, j) = \frac{1}{K_{lpool}^{2}} \sum_{k \in \{i, i+K_{lpool}-1\}, \\ n \in \{j, j+K_{lpool}-1\}} y(l-1, m, k, n)$$

Derivative of mean pooling



The derivative of mean pooling is distributed over the pool

$$k \in \{i, i + K_{lpool} - 1\}, n \in \{j, j + K_{lpool} - 1\} dy(l - 1, m, k, n) + = \frac{1}{K_{lpool}^2} dy(l, m, k, n)$$

Mean Pooling layer at layer *l*

Mean pooling

```
for j = 1:D_1 #Over the maps
for x = 1:W_{1-1}-K_1+1 #K<sub>1</sub> = pooling kernel size
for y = 1:H_{1-1}-K_1+1
y(1,j,x,y) = mean(y(1-1,j,x:x+K_1-1,y:y+K_1-1))
```

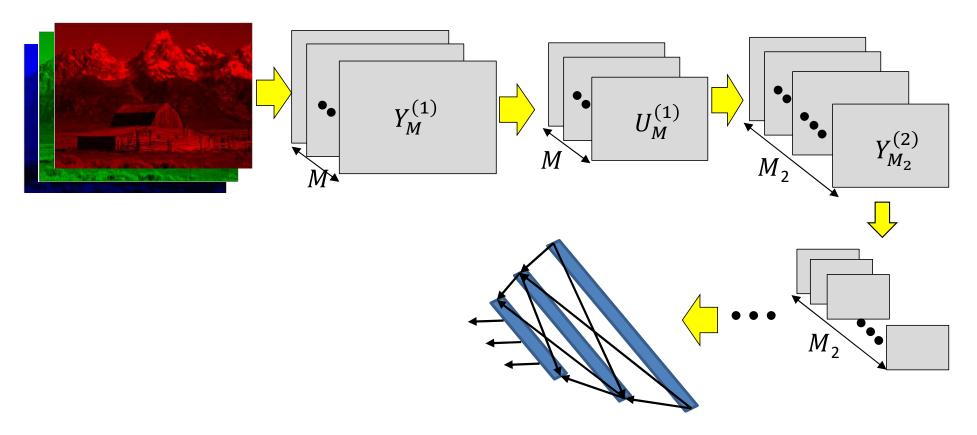
Derivative of mean pooling layer at layer *l*

Mean pooling

```
\begin{array}{l} dy(:,:,:) = zeros\,(D_1 \times W_1 \times H_1) \\ \\ for \ k = 1:D_1 \\ \\ for \ x = 1:W_1 \\ \\ for \ y = 1:H_1 \\ \\ for \ i = 1:K_{lpool} \\ \\ \\ for \ j = 1:K_{lpool} \\ \\ \\ dy(l-1,k,p,x+i,y+j) \ += \ (1/K^2_{lpool})\,dy(l,k,x,y) \end{array}
```

"+=" because adjacent windows may overlap

Learning the network



- Have shown the derivative of divergence w.r.t every intermediate output, and every free parameter (filter weights)
- Can now be embedded in gradient descent framework to learn the network
- Still missing one component... resampling
 - Next class

Story so far

- The convolutional neural network is a supervised version of a computational model of mammalian vision
- It includes
 - Convolutional layers comprising learned filters that scan the outputs of the previous layer
 - Pooling layers that operate over groups of outputs from the convolutional layer to reduce network size
- The parameters of the network can be learned through regular back propagation
 - Maxpooling layers must propagate derivatives only over the maximum element in each pool
 - Other pooling operators can use regular gradients or subgradients
 - Derivatives must sum over appropriate sets of elements to account for the fact that the network is, in fact, a shared parameter network