
Deep Neural Networks
Convolutional Networks IV

Bhiksha Raj
Fall 2022

1

Outline

• Quick recap
• Back propagation through a CNN
• Modifications: Transposition, scaling, rotation and

deformation invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity

2

Story so far

• Shift-invariant pattern classification tasks such
as “does this picture contain a cat”, or “does
this recording include HELLO” are best
performed by scanning for the target pattern
using CNNs (or TDNNs)

• These are “shared parameter” models that
can be trained with variations of backprop

3

Backpropagation: Convolutional and
Pooling layers

• For each training instance: First, a forward pass through the net
• Then the backpropagate the derivative of the divergence
• Regular backprop until the first “flat” layer
• Subsequent backpropagation from the flat MLP requires special

consideration of
– The shared computation in the convolution layers
– The pooling layers

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)

4

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps
, how to compute the derivatives w.r.t. the affine
maps

• Given the derivatives for the affine maps How to
compute the derivative w.r.t. and

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
5

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps
, how to compute the derivatives w.r.t. the affine
maps

• Given the derivatives for the affine maps How to
compute the derivative w.r.t. and

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
6

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps
, how to compute the derivatives w.r.t. the affine
maps

• Given the derivatives for the affine maps How to
compute the derivative w.r.t. and

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
7

Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 8

௒(௟)௓(௟)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps
, how to compute the derivatives w.r.t. the affine
maps

• Given the derivatives for the affine maps How to
compute the derivative w.r.t. and

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
9

The derivatives for

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

10

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)

Computing the derivative for

• This is just a convolution of the zero-padded
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side

11

𝑤௟(𝑚, 𝑛, 𝑥, 𝑦)

𝑤௟(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)

The filter derivative

• The derivative of the th affine map convolves with
every output map of the th layer, to get
the derivative for , the th “channel” of the th filter

12

Filter(n)

௟ିଵ

௟

௟

௟ ௟ିଵ

Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination

maps from the derivatives for activation output maps

• How to compute the derivative w.r.t. and given
derivatives w.r.t.

13

Backpropagation: Convolutional and
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps
, how to compute the derivatives w.r.t. the affine
maps

• Given the derivatives for the affine maps How to
compute the derivative w.r.t. and

– For pooling layers:
• How to compute the derivative w.r.t. input layer

given derivatives w.r.t. pooled output
14

Max

15

Pooling

• Pooling “pools” groups of values to reduce
jitter-sensitivity
– Scanning with a “pooling” filter

• The most common pooling is “Max” pooling

Max

16

Max Pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

1 3

6 5
Max

6

Max pooling

Max

17

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Max pooling

Max

18

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Max pooling

Max

19

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Max pooling

Max

20

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

21

1 3

6 5
Max

6

0 0
𝑑𝐷𝑖𝑣

𝑑𝑌 0

𝑑𝐷𝑖𝑣

𝑑𝑌
Backprop

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Max Pooling layer at layer

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,x,y) = y(l-1,j,pidx(l,j,x,y))

22

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

23

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ ,

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

Mean

1 3

6 5
Mean

3.75

24

Derivative of mean pooling

• The derivative of mean pooling is distributed over the
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ

25

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl #Over the maps

for x = 1:Wl-1-Kl+1 #Kl = pooling kernel size

for y = 1:Hl-1-Kl+1

y(l,j,x,y) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

26

Derivative of mean pooling layer at
layer

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
for i = 1:Klpool

for j = 1:Klpool
dy(l-1,j,p,x+i,x+j) += (1/K2lpool)dy(l,j,x,y)

27

“+=“ because adjacent windows may overlap

Derivative of mean pooling

• This is actually the channel-wise convolution of by
a “uniform” filter
– After zero-padding on every side by (N-1) rows/columns for an

mean pooling filter

– All values in the filter are మ
28

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination maps from
the activation output maps

• How to compute the derivative w.r.t. and given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. given derivatives w.r.t.

29

Poll 1

• @770, @771

30

When backpropagating through a MAXpooling layer, derivatives from the pooling
output backpropagate only to the position of the largest input within the input
pooling window for that output

 True
 False

When backpropagating through a meanpooling layer, derivatives from the pooling
output are distributed uniformly over the input pooling window for that output

 True
 False

Poll 1

31

When backpropagating through a MAXpooling layer, derivatives from the pooling output backpropagate
only to the position of the largest input within the input pooling window for that output

 True
 False

When backpropagating through a meanpooling layer, derivatives from the pooling output are
distributed uniformly over the input pooling window for that output

 True
 False

Recap
• Upsampling and downsampling layers can increase or

decrease the size of the map

• Upsampling followed by convolution can be viewed as
convolution with a fractional stride

• Convolution followed by downsamping can be viewed
as convolution with a stride greater than 1

• How do we backpropagate through upsampling and
downsampling layers?

32

Recap: The Downsampling Layer

• A downsampling layer simply “drops” of rows and columns
for every map in the layer
– Effectively reducing the size of the map by factor S in every direction

33

D/S

The derivative size rule

• Important note: the gradient of the divergence with respect
to any variable will be the same size as the variable
– For the input maps of a D/S layer, they will be the same size as

the original input maps, regardless of the size of the output

34

Gradient of Div w.r.t input map

D/S

௜௝
஽ௌ

Backprop through D/S layer

• Backpropagation: Given the derivative of the divergence
with respect to the elements of the output of the
downsampling, compute derivatives with respect to every
element of the input to the down sampling

35

Gradient of Div w.r.t input map

D/S

௜௝
஽ௌ

Backprop through D/S layer

• Step 1: Allocate a map of the size of the input that was
downsampled
– This information must be retained, or derived from the known size of

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0 36

D/S

௜௝
஽ௌ

Backprop through the D/S layer

37

D/S

• Step 1: Allocate a map of the size of the input that was
downsampled
– This information must be retained, or derived from the known size of

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0

௜௝
஽ௌ

Backprop through the D/S layer

38

D/S

• Step 1: Allocate a map of the size of the input that was
downsampled
– This information must be retained, or derived from the known size of

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0

0 0 0

௜௝
஽ௌ

Backprop through the D/S layer

39

D/S

• Step 3: The remaining values are identical in the
original and downsampled maps in the forward pass
– The divergence derivatives too will be identical

• Simply copy the derivatives for the output over to the
appropriate location of the input

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0

0 0 0

௜௝
஽ௌ

Backprop through the D/S layer

40

D/S

• Step 3: The remaining values are identical in the
original and downsampled maps in the forward pass
– Their derivatives too will be identical

• Simply copy the derivatives for the output over to the
appropriate location of the input

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0

0 0 0

௜௝
஽ௌ

Backprop through D/S pseudocode
H and W are the height and width of the input

to the downsampling layer in the forward pass

S is the stride in the forward pass

dz contains the divergence derivative for the D/S

output z in the forward pass

function dy = backprop_through_DS(dz, S, H, W)

#c = number of channels in dz

dy = zeros(c,H,W) # preallocate to right size and set to 0

for i = 1:width(z)

for j = 1:height(z)

dy(:,(i-1)S+1, (j-1)S+1) = dz(:,i,j)

return dy

41

Recap: The Upsampling Layer

• An upsampling (or dilation) layer simply introduces
rows and columns for every map in the layer
– Effectively increasing the size of the map by factor in every

direction

• Used explicitly to increase the map size by a uniform factor
42

U/S

Backprop through the upsampling layer

• Backpropagation: Given the derivative of the divergence
with respect to the elements of the output of the
upsampling, compute derivatives with respect to every
element of the input to the upsampling
– The “map” of these derivatives will be the same size as the

input
43

௜௝
௎ௌU/S

Backprop through the upsampling
layer

• The zero elements introduced during the forward pass in
upsampling are not functions of the input
– They are always introduced as 0, regardless of the input

• During backpropagation, they do not influence the
derivatives going backward

44

௜௝
௎ௌU/S

Backprop through the upsampling
layer

• The remaining elements are identical
– The derivatives are identical

• Simply copy the derivatives for the “valid”
locations over into the derivative for the input

45

௜௝
௎ௌU/S

Backprop through U/S pseudocode
S is the stride in the forward pass

dz contains the divergence derivative for the U/S

output z in the forward pass

function dy = backprop_through_Upsampling (dz, S)

#c = number of channels in dz

k = 0

for i = 1:S:width(z)

l = 0

for j = 1:S:height(z)

dy(:,k, l) = dz(:,i,j)

l++

k++

return dy

46

Convolutional layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in

convolution 47

Conv
with

Stride 2

Convolutional layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in

convolution 48

Conv
with

Stride 2

Conv
with

Stride 1
D/S by 2

Convolutional layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in

convolution 49

Conv
with

Stride 2

Conv
with

Stride 1
D/S by 2

Convolutional layer with fractional
stride

• Convolution is also sometimes performed with a fractional stride to
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer,

and then the upsampling layer 50

Conv
with

Stride 0.5

Convolutional layer with fractional
stride

• Convolution is also sometimes performed with a fractional stride to
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer,

and then the upsampling layer 51

Conv
with

Stride 0.5

Conv
with

Stride 1

Upsample
by 2

Convolutional layer with fractional
stride

• Convolution is also sometimes performed with a fractional stride to
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer,

and then the upsampling layer 52

Conv
with

Stride 0.5

Conv
with

Stride 1

Upsample
by 2

Max

53

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

54

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

55

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

56

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

57

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

58

Pooling layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in

convolution 59

Pooling
with

Stride 2

Pooling
with

Stride 1
D/S by 2

Through the eyes of code

• As always, the code is simpler

60

Convolution: Forward layer
Y(0,:,:,:) = Image

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

61

Switching to 1-based
indexing with appropriate
adjustments

Conv Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

62

Convolution forward with stride layer

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming square
receptive fields)

m = 1
for x = 1:stride:Wl-1-Kl+1

n = 1
for y = 1:stride:Hl-1-Kl+1

for j = 1:Dl
z(l,j,m,n) = 0
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

z(l,j,m,n) += w(l,j,i,x’,y’)
Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,m,n) = activation(z(l,j,m,n))
n++

m++
Y = softmax({Y(L,:,:,:)})

63

Conv Backward (with strides) at layer
dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = Wl:downto:1

m = (x-1)stride
for y = Hl:downto:1

n = (y-1)stride
for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = Dl-1:downto:1

for x’ = Kl:downto:1
for y’ = Kl:downto:1

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

64

Max Pooling layer at layer with a
stride

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
65

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

66

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean Pooling layer at layer with a
stride

Mean pooling

for j = 1:Dl #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

67

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.

Derivative of mean pooling layer at
layer with a stride

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

68

“+=“ because adjacent windows may overlap

Poll 2

• @772, @773, @774

69

The backward pass of an upsampling layer is downsampling?

 True
 False

The backward pass of a downsampling layer is upsampling?

 True
 False

We can simply use an upsampling layer as the backward pass of downsampling
and vice versa

 True
 False

Poll 2

70

The backward pass of an upsampling layer is downsampling?

 True
 False

The backward pass of a downsampling layer is upsampling?

 True
 False

We can simply use an upsampling layer as the backward pass of downsampling and
vice versa

 True
 False

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

71

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back
propagation
– Maxpooling layers must propagate derivatives only over the maximum

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network 72

Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance

73

• We can rewrite this as so (tensor inner product)

Shift-invariance – a different
perspective

74

• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance

75

• More generally each
filter produces a set of
transformed (and
shifted) maps
– Set of transforms

must be enumerated
and discrete

– E.g. discrete set of
rotations and scaling,
reflections etc.

• The network becomes
invariant to all the
transforms considered

Transform invariance

೟ 76

Regular CNN : single layer
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

77

Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1

78

• Derivatives flow
back through the
transforms to update
individual filters
– Need point

correspondences
between original and
transformed filters

– Left as an exercise

BP with transform invariance

79

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with

distributed representations

• The parameters of the network can be learned through regular back
propagation

• Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

• The models can be easily modified to include invariance to other
transforms
– Although these tend to be computationally painful

80

But what about the exact location?

• We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?

81

Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates)

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)

82

Pose estimation

• Can use the same mechanism to predict the
joints of a stick model
– For pose estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints

83

Poll 3

• @775, @776, @777

84

To find the position of an object using a CNN, we need multiple output layers after the final
convolution, one to identify the class and another to predict the position of the object

 True
 False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

 True
 False

To make them invariant to a transform, transformed versions of every filter must be included
in the model, for every transform considered

 True
 False

Poll 3

85

To find the position of an object using a CNN, we need multiple output layers after the
final convolution, one to identify the class and another to predict the position of the
object

 True
 False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

 True
 False

To make them invariant to a transform, transformed versions of every filter must be
included in the model, for every transform considered

 True
 False

Model variations
• Very deep networks

– 100 or more layers in MLP

– Formalism called “Resnet”
• You will encounter this in your HWs

• “Depth-wise” convolutions
– Instead of multiple independent filters with

independent parameters, use common layer-wise
weights and combine the layers differently for
each filter

86

Conventional convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that

filter

Conventional

convolve collapse

87

Conventional convolutions

• This is done separately for each of the M filters
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve

88

Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2

89

Conventional vs. depth-wise
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters,
which span all M input channels

• Each filter produces one output channel

• Total NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N Mx1x1 1D filters
• Each applies to one 2D location across all M input

channels
• Total NM + MK2 parameters 90

Poll 4

• @778, @779

91

Filters in depth-wise convolutions convolve all the input channels
simultaneously and sum the result

 True
 False

Depthwise convolutions require far fewer parameters and computation than
regular convolutions

 True
 Flase

Poll 4

92

Filters in depth-wise convolutions convolve all the input channels simultaneously
and sum the result

 True
 False

Depthwise convolutions require far fewer parameters and computation than
regular convolutions

 True
 Flase

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.

93

What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by

backpropagation
94

95

Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly
become very large

• Insufficient training data to train well
– Solution: Data augmentation

96

Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data

97

Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

– Used in text processing

98

Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html

99

Digit classification

100

Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result: 6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 101

The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset: Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories

102

AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
• 1000 different classes (softmax layer)
• NN configuration

• NN contains 60 million parameters and 650,000 neurons,
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1: 96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3, stride 2
• Normalization layer [Unnecessary]
• Conv3: 384 3x3, stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC: 3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons

104

Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over

the lot!

10 patches

105

Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01, decreased by 10 every time validation accuracy

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks
– Lowest prior error using conventional classifiers: > 25%

106

ImageNet

Figure 3: 96 convolutional
kernels of size 11×11×3 learned
by the first convolutional layer
on the 224×224×3 input images.
The top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU 2.
See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five labels
considered most probable by our model. The correct
label is written under each image, and the
probability assigned to the correct label is also
shown with a red bar (if it happens to be in the top
5).

Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that
produce feature vectors in the last hidden layer with
the smallest Euclidean distance from the feature
vector for the test image.

ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512

109

VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to

6.8% using only two classifiers
• Final arch: 64 conv, 64 conv,

64 pool,
128 conv, 128 conv,
128 pool,
256 conv, 256 conv, 256 conv,
256 pool,
512 conv, 512 conv, 512 conv,
512 pool,
512 conv, 512 conv, 512 conv,
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 110

Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant; error  6.7%

– Using only 5 million parameters, thanks to average pooling111

Resnet

• Resnet: 2015
– Current top-5 error: < 3.5%
– Over 150 layers, with “skip” connections..

112

Resnet details for the curious..

• Last layer before addition must have the same number of filters as
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger

learning rate)
• Mini batch 256
• Weight decay 1e-5

113

Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 114

Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..

115

CNN for Automatic
Speech Recognition

• Convolution over frequencies
• Convolution over time

• Neural network with specialized connectivity
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap

