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Outline

• Quick recap
• Back propagation through a CNN
• Modifications:  Transposition, scaling, rotation and 

deformation invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity
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Story so far

• Shift-invariant pattern classification tasks such 
as “does this picture contain a cat”, or “does 
this recording include HELLO”  are best 
performed by scanning for the target pattern 
using CNNs (or TDNNs)

• These are “shared parameter” models that 
can be trained with variations of backprop
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Backpropagation: Convolutional and 
Pooling layers

• For each training instance: First, a forward pass through the net
• Then the backpropagate the derivative of the divergence
• Regular backprop until the first “flat” layer
• Subsequent backpropagation from the flat MLP requires special 

consideration of 
– The shared computation in the convolution layers
– The pooling layers
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Backpropagation: Convolutional and 
Pooling layers

• Required:
– For convolutional layers:

• Given the derivatives for the output activation maps 
, how to compute the derivatives w.r.t. the affine  
maps

• Given the derivatives for the affine maps How to 
compute the derivative w.r.t. and 

– For pooling layers:
• How to compute the derivative w.r.t. input layer 

given derivatives w.r.t. pooled output 
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Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of 
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 8
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The derivatives for 

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters
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Computing the derivative for 

• This is just a convolution of the zero-padded  
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side
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The filter derivative

• The derivative of the th affine map convolves with 
every output map of the th layer, to get 
the derivative for , the th “channel” of the th filter

12

Filter(n)
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Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination 

maps from the derivatives for activation output maps 

• How to compute the derivative w.r.t. and given 
derivatives w.r.t.
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Max

15

Pooling

• Pooling “pools” groups of values to reduce 
jitter-sensitivity
– Scanning with a “pooling” filter

• The most common pooling is “Max” pooling



Max
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Max Pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ , 

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ

1 3
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Max
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Max pooling

Max
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Max pooling

Max
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Max pooling

Max
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Max pooling

Max
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• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜, ௜ା௄೗೛೚೚೗ିଵ , 

௡∈ ௝,௝ା௄೗೛೚೚೗ିଵ



Derivative of Max pooling

• Max pooling selects the largest from a pool of elements
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Max Pooling layer at layer 

Max pooling

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

pidx(l,j,x,y) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,x,y) = y(l-1,j,pidx(l,j,x,y))
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a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Derivative of max pooling layer at 
layer 

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)
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a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent  overlapping windows 



Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input
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Derivative of mean pooling

• The derivative of mean pooling is distributed over the 
pool

Mean
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Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl  #Over the maps

for x = 1:Wl-1-Kl+1 #Kl = pooling kernel size

for y = 1:Hl-1-Kl+1

y(l,j,x,y) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))
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Derivative of mean pooling layer at 
layer 

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl

for y = 1:Hl
for i = 1:Klpool

for j = 1:Klpool
dy(l-1,j,p,x+i,x+j) += (1/K2lpool)dy(l,j,x,y)

27

“+=“ because adjacent windows may overlap



Derivative of mean pooling

• This is  actually the channel-wise convolution of by 
a “uniform” filter
– After zero-padding on every side by (N-1) rows/columns for an 

mean pooling filter

– All values in the filter are మ
28



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination maps from 
the activation output maps 

• How to compute the derivative w.r.t. and given derivatives w.r.t.

– For pooling layers:
• How to compute the derivative w.r.t. given derivatives w.r.t.
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Poll 1

• @770, @771

30

When backpropagating through a MAXpooling layer, derivatives from the pooling 
output backpropagate only to the position of the largest input within the input 
pooling window for that output

 True
 False

When backpropagating through a meanpooling layer, derivatives from the pooling 
output are distributed uniformly over the input pooling window for that output

 True
 False



Poll 1

31

When backpropagating through a MAXpooling layer, derivatives from the pooling output backpropagate 
only to the position of the largest input within the input pooling window for that output 

 True 
 False 

 

When backpropagating through a meanpooling layer, derivatives from the pooling output are 
distributed uniformly over the input pooling window for that output 

 True 
 False 



Recap
• Upsampling and downsampling layers can increase or 

decrease the size of the map

• Upsampling followed by convolution can be viewed as 
convolution with a fractional stride

• Convolution followed by downsamping can be viewed 
as convolution with a stride greater than 1

• How do we backpropagate through upsampling and 
downsampling layers?
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Recap: The Downsampling Layer

• A downsampling layer simply “drops” of rows and columns 
for every map in the layer
– Effectively reducing the size of the map by factor S in every direction

33

D/S



The derivative size rule

• Important note: the gradient of the divergence with respect 
to any variable will be the same size as the variable
– For the input maps of a D/S layer, they will be the same size as 

the original input maps, regardless of the size of the output

34

Gradient of Div w.r.t input map

D/S
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Backprop through D/S layer

• Backpropagation: Given the derivative of the divergence 
with respect to the elements of the output of the 
downsampling,  compute derivatives with respect to every 
element of the input to the down sampling

35

Gradient of Div w.r.t input map
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Backprop through D/S layer

• Step 1: Allocate a map of the size of the input that was 
downsampled
– This information must be retained, or derived from the known size of 

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0 36

D/S
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Backprop through the D/S layer

37

D/S

• Step 1: Allocate a map of the size of the input that was 
downsampled
– This information must be retained, or derived from the known size of 

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0

௜௝
஽ௌ



Backprop through the D/S layer
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D/S

• Step 1: Allocate a map of the size of the input that was 
downsampled
– This information must be retained, or derived from the known size of 

the outcome of the computation of previous layers

• Step 2: The “deleted” values (blackened) do not affect the output
– The derivative with respect to these elements is 0
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Backprop through the D/S layer

39

D/S

• Step 3: The remaining values are identical in the 
original and downsampled maps in the forward pass
– The divergence derivatives too will be identical

• Simply copy the derivatives for the output over to the 
appropriate location of the input
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Backprop through the D/S layer

40

D/S

• Step 3: The remaining values are identical in the 
original and downsampled maps in the forward pass
– Their derivatives too will be identical

• Simply copy the derivatives for the output over to the 
appropriate location of the input
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Backprop through D/S pseudocode
# H and W are the height and width of the input

# to the downsampling layer in the forward pass

# S is the stride in the forward pass

# dz contains the divergence derivative for the D/S

#    output z in the forward pass

function dy = backprop_through_DS(dz, S, H, W)

#c = number of channels in dz

dy = zeros(c,H,W)  # preallocate to right size and set to 0

for i = 1:width(z)

for j = 1:height(z)

dy(:,(i-1)S+1, (j-1)S+1) = dz(:,i,j)

return dy
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Recap: The Upsampling Layer

• An upsampling (or dilation) layer simply introduces 
rows and columns for every map in the layer
– Effectively increasing the size of the map by factor in every 

direction

• Used explicitly to increase the map size by a uniform factor
42

U/S



Backprop through the upsampling layer

• Backpropagation: Given the derivative of the divergence 
with respect to the elements of the output of the 
upsampling,  compute derivatives with respect to every 
element of the input to the upsampling
– The “map” of these derivatives will be the same size as the 

input
43
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Backprop through the upsampling
layer

• The zero elements introduced during the forward pass in 
upsampling are not functions of the input
– They are always introduced as 0, regardless of the input

• During backpropagation, they do not influence the 
derivatives going backward

44
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Backprop through the upsampling
layer

• The remaining elements are identical
– The derivatives are identical

• Simply copy the derivatives for the “valid” 
locations over into the derivative for the input

45
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Backprop through U/S pseudocode
# S is the stride in the forward pass

# dz contains the divergence derivative for the U/S

#    output z in the forward pass

function dy = backprop_through_Upsampling (dz, S)

#c = number of channels in dz

k = 0

for i = 1:S:width(z)

l = 0

for j = 1:S:height(z)

dy(:,k, l) = dz(:,i,j)

l++

k++

return dy
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Convolutional layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a 
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed 
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then 

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in 

convolution 47

Conv
with

Stride 2
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Convolutional layer with fractional 
stride

• Convolution is also sometimes performed with a fractional stride to 
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer, 

and then the upsampling layer 50

Conv
with

Stride 0.5



Convolutional layer with fractional 
stride

• Convolution is also sometimes performed with a fractional stride to 
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer, 

and then the upsampling layer 51
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Convolutional layer with fractional 
stride

• Convolution is also sometimes performed with a fractional stride to 
result in a larger output map

• For purposes of backprop, it is easiest to view this as upsampling
followed by convolution.
– Backprop will first propagate derivatives through convolution layer, 

and then the upsampling layer 52
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Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max
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Pooling layer with stride > 1

• Convolution is often performed with a stride larger than 1 to result in a 
smaller output map

• For purposes of backprop, it is easiest to view this as Convolution followed 
by down sampling
– Backprop will first propagate derivatives through the D/S layer, and then 

through the Convolution layer
– Simpler than trying to modify backprop rules to account for stride in 

convolution 59
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Through the eyes of code

• As always, the code is simpler

60



Convolution: Forward layer 
Y(0,:,:,:) = Image

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1 

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

61

Switching to 1-based
indexing with appropriate 
adjustments



Conv Backward layer 

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = Wl-1-Kl+1:downto:1 

for y = Hl-1-Kl+1:downto:1

for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = Dl-1:downto:1

for x’ = Kl:downto:1

for y’ = Kl:downto:1

dY(l-1,i,x+x’-1,y+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)
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Convolution forward with stride layer 

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming square 
receptive fields)

m = 1
for x = 1:stride:Wl-1-Kl+1

n = 1
for y = 1:stride:Hl-1-Kl+1

for j = 1:Dl
z(l,j,m,n) = 0
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

z(l,j,m,n) += w(l,j,i,x’,y’)
Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,m,n) = activation(z(l,j,m,n))
n++

m++
Y = softmax( {Y(L,:,:,:)} )
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Conv Backward (with strides) at layer 
dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = Wl:downto:1

m = (x-1)stride
for y = Hl:downto:1

n = (y-1)stride
for j = Dl:downto:1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = Dl-1:downto:1

for x’ = Kl:downto:1
for y’ = Kl:downto:1

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

64



Max Pooling layer at layer with a 
stride

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
65

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Derivative of max pooling layer at 
layer 

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

66

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent  overlapping windows 



Mean Pooling layer at layer with a 
stride

Mean pooling

for j = 1:Dl  #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

67

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.



Derivative of mean pooling layer at 
layer with a stride

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride     

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

68

“+=“ because adjacent windows may overlap



Poll 2

• @772, @773, @774

69

The backward pass of an upsampling layer is downsampling?

 True
 False

The backward pass of a downsampling layer is upsampling?

 True
 False

We can simply use an upsampling layer as the backward pass of downsampling
and vice versa

 True
 False



Poll 2
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The backward pass of an upsampling layer is downsampling?

 True
 False

The backward pass of a downsampling layer is upsampling?

 True
 False

We can simply use an upsampling layer as the backward pass of downsampling and 
vice versa

 True
 False



Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network
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ଶ
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ெ
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ெ
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2
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Downsampling layers that operate over groups of outputs from the 
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back 
propagation
– Maxpooling layers must propagate derivatives only over the maximum 

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for 
the fact that the network is, in fact, a shared parameter network 72



Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance
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• We can rewrite this as so (tensor inner product)

Shift-invariance – a different 
perspective
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• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance
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• More generally each 
filter produces a set of 
transformed (and 
shifted) maps
– Set of transforms 

must be enumerated 
and discrete

– E.g. discrete set of 
rotations and scaling, 
reflections etc.

• The network becomes 
invariant to all the 
transforms considered

Transform invariance

೟ 76



Regular CNN : single layer 
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))
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Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1
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• Derivatives flow
back through the 
transforms to update 
individual filters
– Need point 

correspondences 
between original and 
transformed filters

– Left as an exercise

BP with transform invariance
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Story so far
• CNNs are shift-invariant neural-network models for shift-invariant 

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with 

distributed representations

• The parameters of the network can be learned through regular back 
propagation

• Like a regular MLP, individual layers may either increase or decrease 
the span of the representation learned

• The models can be easily modified to include invariance to other 
transforms
– Although these tend to be computationally painful
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But what about the exact location?

• We began with the desire to identify the picture as 
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?
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Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates) 

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier 

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of 
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)
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Pose estimation

• Can use the same mechanism to predict the 
joints of a stick model
– For pose estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints

83



Poll 3

• @775, @776, @777

84

To find the position of an object using a CNN, we need multiple output layers after the final 
convolution, one to identify the class and another to predict the position of the object

 True
 False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

 True
 False

To make them invariant to a transform, transformed versions of every filter must be included 
in the model, for every transform considered

 True
 False



Poll 3

85

To find the position of an object using a CNN, we need multiple output layers after the 
final convolution, one to identify the class and another to predict the position of the 
object

 True
 False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

 True
 False

To make them invariant to a transform, transformed versions of every filter must be 
included in the model, for every transform considered

 True
 False



Model variations
• Very deep networks

– 100 or more layers in MLP

– Formalism called “Resnet”
• You will encounter this in your HWs

• “Depth-wise” convolutions
– Instead of multiple independent filters with 

independent parameters, use common layer-wise 
weights and combine the layers differently for 
each filter
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Conventional convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that 

filter

Conventional

convolve collapse
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Conventional convolutions

• This is done separately for each of the M filters 
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve
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Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2
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Conventional vs. depth-wise 
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters, 
which span all M input channels

• Each filter produces one output channel

• Total  NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M  independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N   Mx1x1  1D filters
• Each applies to one 2D location across all M input 

channels
• Total  NM +  MK2 parameters 90



Poll 4

• @778, @779

91

Filters in depth-wise convolutions convolve all the input channels 
simultaneously and sum the result

 True
 False

Depthwise convolutions require far fewer parameters and computation than 
regular convolutions

 True
 Flase



Poll 4

92

Filters in depth-wise convolutions convolve all the input channels simultaneously 
and sum the result

 True
 False

Depthwise convolutions require far fewer parameters and computation than 
regular convolutions

 True
 Flase



Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern 

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of 

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object 
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency, 
better ability to compute derivatives, etc.
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What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious 

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by 

backpropagation
94
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Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style 

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly 
become very large

• Insufficient training data to train well
– Solution: Data augmentation
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Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data
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Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

– Used in text processing

98



Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html
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Digit classification
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Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result:  6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps  (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 101



The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset:  Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories
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AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest 
• 1000 different classes (softmax layer)
• NN configuration 

• NN contains 60 million parameters and 650,000 neurons, 
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1:  96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer  [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3,  stride 2
• Normalization layer  [Unnecessary]
• Conv3: 384 3x3,  stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC:  3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons 
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Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over 

the lot! 

10 patches
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Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01,  decreased by 10 every time validation accuracy 

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7 
networks
– Lowest prior error using conventional classifiers:  > 25%
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ImageNet

Figure 3: 96 convolutional 
kernels of size 11×11×3 learned 
by the first convolutional layer 
on the 224×224×3 input images. 
The top 48 kernels were learned 
on GPU 1 while the bottom 48 
kernels were learned on GPU 2. 
See Section 6.1 for details. 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five labels 
considered most probable by our model. The correct 
label is written under each image, and the 
probability assigned to the correct label is also 
shown with a red bar (if it happens to be in the top 
5). 

Five ILSVRC-2010 test images in the first column. The 
remaining columns show the six training images that 
produce feature vectors in the last hidden layer with 
the smallest Euclidean distance from the feature 
vector for the test image. 



ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512
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VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error 

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to 

6.8% using only two classifiers
• Final arch:  64 conv, 64 conv, 

64 pool, 
128 conv, 128 conv, 
128 pool,
256 conv, 256 conv, 256 conv, 
256 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 110



Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant;  error  6.7%

– Using only 5 million parameters, thanks to average pooling111



Resnet

• Resnet: 2015
– Current top-5 error:  < 3.5%
– Over 150 layers, with “skip” connections..
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Resnet details for the curious..

• Last layer before addition must have the same number of filters as 
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger 

learning rate)
• Mini batch 256
• Weight decay 1e-5 
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Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 114



Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..
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CNN for Automatic 
Speech Recognition

• Convolution over frequencies
• Convolution over time



• Neural network with  specialized connectivity 
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time 

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap


