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Credit where due

Probably influenced by:

● Louis-Philippe Morency, 11777

● Graham Neubig, 11711

● (obviously) Bhiksha Raj, 11-you-know-your-course-number

● Bunch of youtube videos

● Medium Articles
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Recall

1. Queries, Keys, and Values

2. Self Attention

a. Energy Function

b. Attention Function

3. RNNs are slow and sequential

a. Attention-based models can 

be parallelized!



Why Transformers

● We want representations that are “dynamic” to context

“I like this movie” vs. “I do not like this movie” 

like should have different representations in both cases

● Vanilla RNNs are Slow and have terrible memory

● LSTMs and GRUs fix the memory problem, but are still slow and sequential

● CNNs can be parallelized but the kernels are static.

● We want parallelizability, good memory, and dynamic computation



Q,K,V in Attention

Query: This is what pays the attention

Values: These are paid attention to

Keys: These help queries figure out how much attention to pay to each of the values

Attention Weights: How much attention to pay.



This is a great example

How do I adapt to 
my context?

This is 
me!

This is 
me!

This is 
me!

This is 
me!

This is 
me!

Q,K,V in Attention



This is a great example

How do I adapt to 
my context?

This is 
me!

This is 
me!

This is 
me!

This is 
me!

This is 
me!

Q,K,V in Attention
othis

Contextualized Representation

Maybe a weighted sum?



This is a great example

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

Q,K,V in Attention
othis

Black Box calculator

I need a set of 
weights for that



This is a great example

This is a great example

This

Calculate how important each token is to ‘This’
I.e. How much ‘attention’ to pay [0-1]

Q,K,V in Attention



This is a great example

This is a great example

This Energy Function

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

SOFTMAX

Q,K,V in Attention



This is a great example

This is a great example

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

x

∑

x xxx

othis

Q,K,V in Attention

Yay!



Q,K,V in Attention

This is a great example

How do I adapt to 
my context?

This is 
me!

This is 
me!

This is 
me!

This is 
me!

This is 
me!

Query

Keys



This is a great example

This is a great example

This

Query

Keys

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

SOFTMAX

Q,K,V in Attention

Energy Function



This is a great example

This is a great example

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

x

∑

x xxx

othis

Contextualized Representation

Values

⍺1Attention Weights

☉

Q,K,V in Attention



This is a great example

Input Representations

h1 h2 h3 h4 h5

Self Attention



This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

Projection: gives q,k,v of dimensions dq, dk, dv
(often the same)

qi = WQTxi

ki = WKTxi

vi = WVTxi

Self Attention



This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

e1,1 e1,2

☉

e1,3

☉

e1,4

☉

e1,5

⍺m,n = How important is token n to token m’s contextual meaning?

SOFTMAX

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5



This is a great example

h1 h2 h3 h4 h5
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q3 k3 v3
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q5 k5 v5

☉ ☉
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☉
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☉

⍺1,4

☉

⍺1,5

SOFTMAX



Multiply each ⍺1,i with vi

This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxxx

SOFTMAX



∑

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxxx

Sum all those multiples up

h1 h2 h3 h4 h5

SOFTMAX



This is a great example

xxxxx

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

∑

Extract o1

o1

h1 h2 h3 h4 h5

SOFTMAX



This

WQ WK WV

q1 k1 v1

☉

is a great example
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xxxx

∑

Extract o1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot( i, v1…5)
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● q,k,v1 = [1, 2, 3, 4] 

q,k,v2 = [4, 5, 9, 1] 

q,k,v3 = [6, 2, 1, 4]

● e1 =  q1k1T / √4 =  15.0

e2 =  q1k2T / √4 =  22.5

e3 =  q1k3T / √4 =  14.5

● ⍺1 = softmax(e) = [0.00055, 0.99911, 0.00033]
● o1 = ⍺1TV = [3.99, 4.99, 8.99, 1.00]

V is the 3x4 matrix of all values

Example



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

⍺1 of shape 
(5,)

Implied softmax

h1 h2 h3 h4 h5

Self Attention



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

⍺1 of shape 
(5,)

☉

v: of shape 
(5,dv)

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

☉

o1
h of shape 

(dv,)

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

Weighted sum of everything in the sequence



This is a great example
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*Implied softmaxSelf Attention
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*Implied softmaxSelf Attention
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q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV
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☉
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h1 h2 h3 h4 h5

*Implied softmaxSelf Attention
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*Implied softmaxSelf Attention



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

☉

⍺4

☉

o4

☉

⍺3

☉

o3

☉

⍺2

☉

o2

☉

⍺1

☉

o1

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

☉
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h1 h2 h3 h4 h5

Self Attention Module

*Implied softmax



This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉
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☉
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⍺3
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☉

⍺2

☉
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☉

⍺1

☉

o1

h1 h2 h3 h4 h5

Self Attention Module

*Implied softmax



o1 o2 o3 o4 o5

h1 h2 h3 h4 h5

Self Attention Module

Single Headed Self Attention



Which of the following are true about self attention? (Select all that apply)

a. To calculate attention weights for input h_i, you would use key k_i, and all queries

b. To calculate attention weights for input h_i, you would use query q_i, and all keys

c. The energy function is scaled to bring attention weights in the range of [0,1]

d. The energy function is scaled to allow for numerical stability 

Poll 1 (@1442)



Poll 1 (@1442)

Which of the following are true about self attention? (Select all that apply)

a. To calculate attention weights for input h_i, you would use key k_i, and all queries

b. To calculate attention weights for input h_i, you would use query q_i, and all keys

c. The energy function is scaled to bring attention weights in the range of [0,1]

d. The energy function is scaled to allow for numerical stability 



h1 h2 h3 h4 h5

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?



h1 h2 h3 h4 h5

Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

And pass each sub-input into a Self-Attention Module?



h1 h2 h3 h4 h5

Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

Woat if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

o11 o12 o13 o14 o15o21 o22 o23 o24 o25
ok1 ok2 ok3 ok4 ok5

o1 o2 o3 o4 o5

And combine 
the outputs?
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Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

o11 o12 o13 o14 o15o21 o22 o23 o24 o25
ok1 ok2 ok3 ok4 ok5

o1 o2 o3 o4 o5

Multi-headed Attention



Multi Headed Self Attention

● Split input into k parts

● Pass the jth part of each input into the jth attention head

● Concatenate each of the k outputs

Why go through the trouble?

● Each head could find a different kind of relation between the tokens
○ Subject-verb, subject-object, verb-modifier, dependency, etc.



Attention is all you need

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information 
processing systems 30 (2017).



Encoder Self 
Attention

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Masked Attention

Decoders can be parallelized during 
training (only)

Feed the whole output sequence 
(outputs) in at once

Need to ensure model doesn’t cheat

Alter the attention weights to be 0
(set input to softmax to -inf) for all 
times t’ > t 

Ensure autoregressive property

Decoder Self 
Attention

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Cross Attention

During decoding, the query comes 
from the outputs, keys and values
come from the encoder.

Decoder input “pays” attention to 
the encoder outputs.

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Feed Forward Layers Feed Forward layers allow for high 
dimensional computations

Simply there to allow the model to 
capture more information

Breaking down the transformer



Residual 
Connections

Add & Norm:

out = LayerNorm(x + Sublayer(x)),

Sublayer(x) is whatever layer is below the Add & Norm

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
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z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Multi Headed Attention Module

WO

+

o1

Transformers are residual 
machines

“How much do I SHIFT my 
meaning given my context?”

o2

Residual Connection



Positional Encoding

Transformers have no inherent 
notion of order in a sequence.

This notion has to be externally 
enforced.

Positional Encodings are added to 
transformer inputs to add 
information about order.

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Positional encodings as discussed 
in the last lecture.

Recall
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Positional Encoding
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simplified



Which of the following are true about transformers?

a. The attention module tries to calculate the “shift” in meaning of a token given all other tokens in the batch

b. Transformers can always be run in parallel

c. Transformer decoders can only be parallelized during training

d. Positional encodings help parallelize the transformer encoder

e. Queries, keys, and values are obtained by splitting the input into 3 equal segments

f. Multiheaded attention helps transformers find different kinds of relations between the tokens

g. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1436)



Which of the following are true about transformers?

a. The attention module tries to calculate the “shift” in meaning of a token given all other tokens in the batch

b. Transformers can always be run in parallel

c. Transformer decoders can only be parallelized during training

d. Positional encodings help parallelize the transformer encoder

e. Queries, keys, and values are obtained by splitting the input into 3 equal segments

f. Multiheaded attention helps transformers find different kinds of relations between the tokens

g. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1436)



● Roles of Queries, Keys, and Values

Q pay attention to V according to computation with K

“Computation” is the attention function.

● Self versus Cross attention

● Transformers are Residual Machines

● Positional Encodings: Transformers have no notion of order - this needs to 

be explicitly inserted.

Summary (1)



● Transformers’ biggest advantage lies in parallelizability and ‘omni-

directionality’

● On smaller sequence lengths, RNN-based models might perform better with 

fewer parameters.

Summary (2)



Extra Slides



● MLP

e(q,k) = W2T(tanh(W1T[q;k]))

● Bilinear

e(q,k) = (qT)(W)(k)

● Scaled-Dot Product

e(q,k) = (q)(kT) / (s) # s = scaling factor (√dk)

Few types of energy functions

Graham Neubig, CS 11-711



The attention function takes in:

q : (B, T, dq)

k : (B, T, dk)

v : (B, T, dv)

Energy / attention scores: 

e : (B, T, T) # Score between each pair of tokens if e = qkT/s

Output vector:

o : (B, T, dv) # calculated as softmax(e)Tv

Batching and shapes



Part 2
Permutation Invariance & Graph Neural Networks

1



Revisiting data structure we have met
Sequence data: text/speech Grid data: image

2



Revisiting data structure we have met
Sequence data: text/speech Grid data: image

3

Recurrent Neural Networks

Convolution Neural Networks



Revisiting data structure we have met
Sequence data: text/speech Grid data: image Unstructured data: Molecule, Social Networks

,3D Mesh

4

Molecule

Social network 3D Mesh



Revisiting data structure we have met
Sequence data: text/speech Grid data: image

？

Unstructured data: Molecule, Social Networks
,3D Mesh

5

Molecule

Social network 3D Mesh



Revisiting data structure we have met
Sequence data: text/speech Grid data: image Unstructured data: Molecule, Social Networks

,3D Mesh

6？



Problem Setup: ionic liquid for CO2 capturing

Ionic liquid molecules

Carbon dioxide (CO2)

dataset

IL molecule 
structure

Solubility(volume 
percentage)

data label

0.56,
0.119……

We want to use deep learning model 
to predict the solubility of ionic liquid 
based on these molecule data!

Can we use MLP, CNN or RNN to do 
this job?

7



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 1 (Multi-layer Perceptron + Sequence Data):
f(): MLP
g():permutation of input order

Is f() invariant to g()?

8

permutation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 1 (Multi-layer Perceptron + Sequence Data):
f(): MLP
g():permutation of input order

Is f() invariant to g()?

No!

9



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 2 (MLP + image data):
f(): MLP
g():translation

Is f() invariant to g()?？

result

result

10

translation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 2 (MLP + image data):
f(): MLP
g():translation

Is f() invariant to g()?？

result

result

No!

11

translation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 3 (CNN + image data):
f(): CNN
g():translation

Is f() invariant to g()?

Output_1

Output_2

？

12

translation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 3 (CNN + image data):
f(): CNN
g():translation

Is f() invariant to g()?

Output_1

Output_2

？

Yes！

13

translation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 4 (CNN + image data):
f(): CNN
g():rotation

Is f() invariant to g()?

Output_1

Output_2

？

14

rotation



Invariance

Let’s define a mapping from X to Y : Y = f(X)
• If there exist a mapping function of g(), such that f(g(X)) = f(X) = Y
• we say f() is invariant to g()

Example 4 (CNN + image data):
f(): CNN
g():rotation

Is f() invariant to g()?

Output_1

Output_2

？

No！

15
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Problem Setup: ionic liquid for CO2 capturing

Ionic liquid molecules

Carbon dioxide (CO2)

dataset

IL molecule 
structure

Solubility(volume 
percentage)

data label

0.56,
0.119……

We want to use deep learning model to predict 
the solubility of ionic liquid based on these data!
(1) How many ways can you come up with?
(2) Can we use MLP, CNN or RNN to do this job?
(3) What are the desired properties of the model 
we used for molecule?
• permutation invariant?
• translation invariant?
• rotation invariant? 16



Possible solution for molecule properties prediction

Ionic liquid molecules

C8H15F6N2P+BF4

Use MLP to solve the problem

C8H15F6N2P+BF4

Sequence data: Empirical Formula 

C
H
N
P
F
B

8
15

2

6
1

4
1

Feed sequence to MLP

Result

17



Possible solution for molecule properties prediction

Ionic liquid molecules

C8H15F6N2P+BF4

Use MLP to solve the problem

Feed sequence to MLP

Result

Sequence data: Empirical Formula 

18

C8H15F6N2P+BF4
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Possible solution for molecule properties prediction

Ionic liquid molecules

C8H15N2F6P+BF4

Use MLP to solve the problem

C8H15N2F6P+BF4
C
H
N
P
F
B

8
15

6

2

1
4

1

Feed sequence to MLP

Result?

MLP is not permutation invariant!
Not good for molecule with unstructured data

Sequence data: Empirical Formula 

19



Possible solution for molecule properties prediction

Ionic liquid molecules

Another possible solution

Feed image to CNN

Result?

Image data: image for molecule structure

20



Possible solution for molecule properties prediction

Ionic liquid molecules

Another possible solution

Feed image to CNN

Result?

Image data: image for molecule structure

Rotate image

21



Possible solution for molecule properties prediction

Ionic liquid molecules

Another possible solution

Feed image to CNN

Result?

CNN is not rotational invariant!
Not good for molecule with unstructured data

Image data: image for molecule structure

Rotate image

22



Story so far

• We want to use deep learning to do prediction for unstructured graph 
like data such as molecule
• MLP is not permutation nor translation invariant
• CNN is not permutation invariant nor rotation invariant

• Those draw backs make MLP and CNN not a good candidates for 
processing molecule data

• We want a model with a strong invariant property

23



Graph: Definition

A E F

B

C

D

A graph is defined as a pair G = (V, E), 
• where V is a set whose elements are called nodes(vertices), 
• and E is a set of paired vertices, whose elements are called edges. 

Undirected Graph

Example:

G = (V,E)

V = {A,B,C,D,E,F}

E = {(A,B),(B,C),(C,D),(B,D),(C,D),(D,E),(D,F),(E,F)}

24



Graph: Matrix representation for graph

A E F

B

C

D

A
B

C

D

E

F

A B C D E F

A graph is defined as a pair G = (V, E), 
• where V is a set whose elements are called nodes(vertices), 
• and E is a set of paired vertices, whose elements are called edges. 

Undirected Graph

Adjacency Matrix (N×N) 

A
B

C

D

E

F

Node information Matrix (N×F) 

Node information Connectivity information
25
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Graph: No canonical order of nodes

A E F

B

C

D

A
B
C
D
E
F

A B C D E F

Graph do not have canonical order of the nodes!

A
B
C
D
E
F

F C A

E

D

B

A
B
C
D
E
F

A B C D E F
A
B
C
D
E
F

Order plan 1

Order plan 2

26



A E F

B

C

D

A
B
C
D
E
F

A B C D E F

Graph do not have canonical order of the nodes!

A
B
C
D
E
F

F C A

E

D

B

A
B
C
D
E
F

A B C D E F
A
B
C
D
E
F

Order plan 1

Order plan 2

• Graph representation for order plan 1 and order plan 2 are 
same

• Or to say, we can construct a same graph according to 
node matrix and adjacent matrix from order plan 1 and 
order plan 2, even if we permute the order in two matrices. 

27

Graph: No canonical order of nodes



Graph: Permutation invariance

A E F

B

C

D

Desired properties for GNN

F C A

E

D

B

Order plan 1

Order plan 2

¾ Consider we use deep learning model to learn a function 
that map a graph G = (V,E) to a vector 𝒅

¾ We can write 𝒅 (V is node feature matrix, E 
is represent by adjacency matrix)

¾ What we want? 𝟏 𝟏 = 𝟐 𝟐

28



Graph: Permutation invariance

A E F

B

C

D

F C A

E

D

B

Order plan i

Order plan j

¾ Consider we use deep learning model to learn a function 
that map a graph G = (V,E) to a vector 𝒅

¾ We can write 𝒅 (V is node feature matrix, E 
is represent by adjacency matrix)

¾ For a graph with m node , there are order plans

¾ Then if 𝒊 𝒊 = 𝒋 𝒋 works for every pair of order 
plans i,j

¾ We formally define that function is permutation 
invariant for the graph represented with matrix29

Desired properties for GNN



Graph: Permutation invariance

GNN consist of a series of permutation invariant layers!

30



Graph: Revisit MLP

We have discussed that MLP is not permutation invariant

31



Graph: Revisit MLP

We have discussed that MLP is not permutation invariant

This also hold when we use graph data as input

Change the order plan will change the sequence order 
and thus produce a different result!

32



Graph: Revisit MLP

We have discussed that MLP is not permutation invariant

This also hold when we use graph data as input

Change the order plan will change the sequence order 
and thus produce a different result!

33



Story so far

• Graph can be represented by jointly use a feature matrix and a adjaceny
matrix

• Graph representation does not have canonical order of node

• Permutation invariant is what we want to design a GNN

34



A single layer of GNN: Graph Convolution

Key idea: Node’s neighborhood defines a computation graph

¾ Learning a node feature by propagating and aggregating neighbor information!

CNN: pixel convolution CNN: pixel convolution GNN: graph convolution

¾ Node embedding can be defined by local network neighborhoods!
35



A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

A

C

D

Considering 1 step of feature aggregation 
of the nearest neighbor

Processing information from A,C,D

36



A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

A

C

D

Considering 1 step of feature aggregation 
of the nearest neighbor

Processing information from A,C,D

Now B have the information from it’s first nearest neighbors
37



A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

A

C

D

Considering 1 step of feature aggregation 
of the nearest neighbor

Processing information from A,B,C,D

Also we don’t want to lose information from B itself

B T= t -1

T= t 

T= t -1

T= t -1

T= t -1Self loop

38



A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

E
F

Target node

B
C

D

Considering 2 steps of feature aggregation 
of the nearest neighbor

B
T= t 

T= t + 1 

T= t 

T= t 

T= t 

Self loop
A

A

B

B

C

D
B

C
D

B
C

D

T= t-1 

T= t-1 

T= t-1 

T= t-1 

T= t-1 

T= t-1 

T= t-1 

T= t-1 

T= t-1 

Now B have the information from its first and second 
nearest neighbors 39



A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

How to process and mix the information 
from neighbor?

?

40

A

C

D
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A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

How to process and mix the information 
from neighbor?

(2) (1)

Apply Neural Networks
sum, product, mean, 
max, min etc.

41
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C

D
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A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

How to process and mix the information 
from neighbor?

(2) (1)

Apply Neural Networks
Mean (Traditional Graph 
Convolutional Neural 
Networks(GCN)) [Kipf and Welling, ICLR 2017] 42
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A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network 
neighborhoods 

A E F

B

C

D

Target node

B

During a single Graph Convolution layer, we apply the feature 
aggregation to every node in the graph at the same time (T)

(2) (1)

Apply Neural Networks
Mean (Traditional Graph 
Convolutional Neural 
Networks(GCN)) [Kipf and Welling, ICLR 2017] 43

A

C

D

B



A single layer of GNN: Graph Convolution-Forward

Math for a single layer of graph convolution

B (2) (1)

Neural Networks
Mean

௩


௩

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) 

(𝟏 × 𝑭) (𝟏 × 𝑭) (𝟏 × 𝑭) 

Node v feature at 
time(layer) t+1

Non-linear 
activation 
(i.e. relu())

Learnable 
weight

Average the neighbor 
node feature at 
time(layer) t

Learnable 
weight

Node v feature 
at time(layer) t

Number of time(layers)

0th layer embedding = node v initial feature

44
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

A
B

C

D

E

F

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D
N

F

We stack multiple 𝒗
𝒕 together into 𝒕

(𝟏 × 𝑭) 
(𝟏 × 𝑭) 
(𝟏 × 𝑭) 
(𝟏 × 𝑭) 
(𝟏 × 𝑭) 
(𝟏 × 𝑭) 

(𝑵 × 𝑭) 

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

A single layer of GNN: Graph Convolution-Forward
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)| N

N
N

N

𝑫ି𝟏(𝑵 × 𝑵)

A single layer of GNN: Graph Convolution-Forward
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)| N

N
N

N

𝑫ି𝟏(𝑵 × 𝑵)

ଵଵ ଵ

ଵ 
F

F

𝑾𝑻(𝑭 × 𝑭)

A single layer of GNN: Graph Convolution-Forward

Noted that 𝑻 is a 
learnable weight 
matrix 
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

ଵଵ ଵ

ଵ 
F

F

𝑾𝑻(𝑭 × 𝑭)

A single layer of GNN: Graph Convolution-Forward

Why put 𝑻 on the right hand site of 𝒕? 

Why not left? With a shape of 



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

𝑾𝑻(𝑵 × 𝑵)

A single layer of GNN: Graph Convolution-Forward

49What happen if we still put W on the left hand site?

N

N

N

Like this? 

Seems like nothing goes 
wrong, the result matrix 
shape is still ?



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

𝑾𝑻(𝑵 × 𝑵)

A single layer of GNN: Graph Convolution-Forward

50

N

N

N

Seems like nothing goes 
wrong, the result matrix 
shape is still ?

No, it’s wrong, because we 
are still mixing information 
among different nodes, 
which has the same 
function with adjacent 
matrix, feature within node 
does not receive any 
mixing



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

ଵଵ ଵ

ଵ 
F

F

𝑾𝑻(𝑭 × 𝑭)

A single layer of GNN: Graph Convolution-Forward
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F

Learnable weight is used to mix information along the 
feature within a single node 

1

1
F

W term should be on the right hand site!



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒕(𝑵 × 𝑭)

(𝟏 × 𝑭) 

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)| N

N
N

N

𝑫ି𝟏(𝑵 × 𝑵)

ଵଵ ଵ

ଵ 
F

F

𝑾𝑻(𝑭 × 𝑭)

N

F

A
B

C

D

E

F

𝑯𝒕ା𝟏(𝑵 × 𝑭)

A single layer of GNN: Graph Convolution-Forward
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D

N

F

A
B

C

D

E

F

𝑯𝒗
𝒕  (𝑵 × 𝑭)

(𝟏 × 𝑭) 

A
B
C
D
E
F

A B C D E F
𝑨ᇱ(𝑵 × 𝑵) Indentity matrix

N

N

ଵଵ ଵ

ଵ 
F

F

𝑩𝑻(𝑭 × 𝑭)

N

F

A
B

C

D

E

F

𝑯𝒗
𝒕ା𝟏(𝑵 × 𝑭)

A single layer of GNN: Graph Convolution-Forward

Self loop adjacent matrix is a diagonal matrix! 53

Noted that 𝑻 is a 
learnable weight 
matrix 



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D(𝟏 × 𝑭) 

Now let’s rewrite the scalar form above into matrix form

(𝑭 × 𝑭) (𝑵 × 𝑭) 

Aggregating neighbor 
node feature

Aggregating self 
node feature

Non-Linear 
Activation

A single layer of GNN: Graph Convolution-Forward
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Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D(𝟏 × 𝑭) 

(𝑭 × 𝑭) (𝑵 × 𝑭) 

A single layer of GNN: Graph Convolution-Forward
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(𝑵 × 𝑵) (𝑵 × 𝑵) (𝑵 × 𝑵) 

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)

A
B
C
D
E
F

A B C D E F
𝑨ᇱ(𝑵 × 𝑵)

+ =

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)



Matrix form for a single layer of graph convolution

௩
௧ାଵ


௨
௧

௨∈ே ௩
 ௩

௧

(𝟏 × 𝑭) (𝟏 × 𝑭) 

A E F

B

C

D(𝟏 × 𝑭) 

(𝑭 × 𝑭) (𝑵 × 𝑭) 

A single layer of GNN: Graph Convolution-Forward
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(𝑵 × 𝑵) (𝑵 × 𝑵) (𝑵 × 𝑵) 

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)

A
B
C
D
E
F

A B C D E F
𝑨ᇱ(𝑵 × 𝑵)

+ =

A
B
C
D
E
F

A B C D E F
𝑨(𝑵 × 𝑵)



Story so far

• Node’s neighborhood defines a computation graph 

• Graph Convolution layer forward
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Graph: Revisit MLP

Actually, if we include spatial information into GNN node feature

But the permutation invariance for GNN still hold

GNN will become neither translation invariant nor rotation 
invariant 

This problem leads to another topic on GNN which is Equivariant Graph Neural 
Network, but we don’t have time to discuss on that in the lecture
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