
Neural Networks

Hopfield Nets and Auto Associators
Fall 2022

1

Story so far

• Neural networks for computation
• All feedforward structures

• But what about..

2

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

The output of a neuron
affects the input to the
neuron

3

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

Consider this loopy network

4

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

5

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

6

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

7

if

Loopy network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

8

if

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

9

Example

10

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

11

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…
» And so on…

13

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

௜ ௝௜ ௝ ௜

௝ஷ௜

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

14

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

15

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field
– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
16

Loopy network

• Let ௜
ି be the output of the i-th neuron just before it responds to the current field

• Let ௜
ା be the output of the i-th neuron just after it responds to the current field

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ , then ௜
ା

௜
ି

– If the sign of the field matches its own sign, it does not flip

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜

௝ஷ௜

17

Loopy network

• If ௜
ି

௝௜ ௝ ௜௝ஷ௜ , then ௜
ା

௜
ି

௜
ା

௝௜ ௝ ௜

௝ஷ௜

௜
ି

௝௜ ௝ ௜

௝ஷ௜

௜
ା

௝௜ ௝ ௜

௝ஷ௜

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

௜ ௝௜ ௝ ௜

௝ஷ௜
18

Globally
• Consider the following sum across all nodes

– Assume ௜௜

• For any unit that “flips” because of the local field

• This is strictly positive

19

Upon flipping a single unit

• Expanding

– All other terms that do not include cancel out

• This is always positive!

• Every flip of a unit results in an increase in
20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

௜௝ ௜ ௝

௜,௝ஷ௜

௜ ௜

௜

• is bounded

௠௔௫ ௜௝

௜,௝ஷ௜

௜

௜

• The minimum increment of in a flip is

௠௜௡
௜, {௬೔, ௜ୀଵ..ே}

௝௜ ௝

௝ஷ௜

௜

• Any sequence of flips must converge in a finite number of steps 21

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of
• The 0.5 is only needed for convention

• The evolution of a Hopfield network
constantly decreases its energy

22

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1 @1794, @1795, @1796

24

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

Poll 1

25

Hopfield networks are loopy networks whose output activations
“evolve” over time

 True
 False

Hopfield networks will evolve continuously, forever

 True
 False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

 True
 False

The Energy of a Hopfield Net

• Define the Energy of the network as

– Just 0.5 times the negative of

• The evolution of a Hopfield network
constantly decreases its energy

• Where did this “energy” concept suddenly sprout
from?

26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• ௜ is vector position of -th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction
– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

௜ ௝௜ ௝

௝ஷ௜

௜

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

• Dipoles will keep flipping
– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole
• Which may flip

– Etc..

௜ ௝௜ ௝

௝ஷ௜

௜

30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

௜
௜ ௜ ௜

௜

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if any flips result in increase of energy

Total field at current dipole:

௜ ௝௜ ௝

௝ஷ௜

௜

Response of current dipole

௜
௜ ௜ ௜

௜

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

34

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35

Hopfield Network

• This is analogous to the potential energy of a spin glass
– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system 36

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

Image pilfered from
unknown source

39

Evolution

• The network will evolve until it arrives at a local minimum in the
energy contour

• We proved that every change in the network will result in decrease
in energy
– So path to energy minimum is monotonic 40

Evolution

• For threshold activations the energy contour is only
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 41

௜ ௝௜ ௝ ௜

௝ஷ௜

Evolution

• For threshold activations the energy contour is only
defined on a lattice
– Corners of a unit cube on [-1,1]N

• For tanh activations it will be a continuous function 42

௜ ௝௜ ௝ ௜

௝ஷ௜

Evolution

• For threshold activations the energy contour is only defined on a
lattice
– Corners of a unit cube

• For tanh activations it will be a continuous function
– With output in [-1 1] 43

௜ ௝௜ ௝ ௜

௝ஷ௜

“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for tanh activation

44

“Energy”contour for a 2-neuron net

• Two stable states (tanh activation)
– Symmetric, not at corners
– Blue arc shows a typical trajectory for sigmoid activation

Why symmetric?

Because

If is a local minimum, so is

45

3-neuron net

• 8 possible states
• 2 stable states (hard thresholded network)

46

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/47

Hopfield net examples

48

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜

49

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

2. Iterate until convergence

50

Writing ଵ ଶ ଷ ே
ୃ

and arranging the weights as a matrix

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections
– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum
– The evolution will be monotonic in total energy
– The dynamics of a Hopfield network mimic those of a spin glass
– The network is symmetric: if a pattern is a local minimum, so is

• The network acts as a content-addressable memory
– If you initialize the network with a somewhat damaged version of a local-

minimum pattern, it will evolve into that pattern
– Effectively “recalling” the correct pattern, from a damaged/incomplete

version 51

Poll 2, @1797

52

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a local
minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Poll 2

53

Mark all that are correct about Hopfield nets

 The network activations evolve until the energy of the net arrives at a
local minimum

 Hopfield networks are a form of content addressable memory
 It is possible to analytically determine the stored memories by inspecting

the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

54

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

55

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with pixels we need a network
with neurons

• Every neuron connects to every other neuron
• Weights are symmetric (not mandatory)

• weights in all
56

Storing patterns: Training a network

• A network that stores pattern also naturally stores
– Symmetry since is a function of yiyj

௝௜ ௝ ௜

௝ழ௜௜

-1

1

1

1 -1

1

-1

-1

-1 1

57

A network can store multiple patterns

• Every stable point is a stored pattern
• So we could design the net to store multiple patterns

– Remember that every stored pattern is actually two stored patterns,
and

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

58

Storing a pattern

• Design such that the energy is a local
minimum at the desired

1

-1

-1

-1 1

1

1

-1

1 -1

59

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

1

-1

-1

-1 1

60

Storing specific patterns

• Storing 1 pattern: We want

• This is a stationary pattern

HEBBIAN LEARNING:
1

-1

-1

-1 1

61

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

62

Storing specific patterns

•

HEBBIAN LEARNING:1

-1

-1

-1 1

The pattern is stationary

63

Storing specific patterns

• This is the lowest possible energy value for the network for
binary weights

HEBBIAN LEARNING:1

-1

-1

-1 1

64

Storing specific patterns

• This is the lowest possible energy value for the network for
binary weights

HEBBIAN LEARNING:1

-1

-1

-1 1

65

The pattern is STABLE

Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Stored pattern has lowest energy
• Gradation of energy ensures stored pattern (or its ghost) is recalled

from everywhere 66

Storing multiple patterns

• To store more than one pattern

೛ ೛

• is the set of patterns to store
• Super/subscript represents the specific pattern
• is the number of patterns

1

-1

-1

-1 1

1

1

-1

1 -1

67

How many patterns can we store?

• Hopfield: For a network of neurons can
store up to ~0.15 random patterns through
Hebbian learning
– Provided they are “far” enough

• Where did this number come from?
68

The limits of Hebbian Learning
• Consider the following: We must store -bit patterns of the form

௞ ଵ
௞

ଶ
௞

ே
௞

• Hebbian learning (scaling by ଵ

ே
for normalization, this does not affect

actual pattern storage):

௜௝ ௜
௞

௝
௞

௞

• For any pattern ௣ to be stable:

௜
௣

௜௝ ௝
௣

௝

௜
௣

௜
௞

௝
௞

௞

௝
௣

௝

69

The limits of Hebbian Learning
• For any pattern ௣ to be stable:

௜
௣

௜
௞

௝
௞

௞

௝
௣

௝

௜
௣

௜
௣

௝
௣

௝
௣

௝

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• Note that the first term equals 1 (because ௝
௣

௝
௣

௜
௣

௜
௣)

– i.e. for ௣ to be stable the requirement is that the second crosstalk term:

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• The pattern will fail to be stored if the crosstalk

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝ 70

The limits of Hebbian Learning
• For any random set of K patterns to be stored, the probability of the

following must be low

௜
௣

௜
௣

௜
௞

௝
௞

௞ஷ௣

௝
௣

௝

• For large and K the probability distribution of approaches a
Gaussian with 0 mean, and variance
– Considering that individual bits ௜

௟ and have variance 1

• For a Gaussian,
– ଶ for

• I.e. To have less than 0.4% probability that stored patterns will not
be stable,

71

How many patterns can we store?

• A network of neurons trained by Hebbian learning can store up to
~0.14 random patterns with low probability of error
– Computed assuming

• On average no. of matched bits in any pair = no. of mismatched bits
– Patterns are “orthogonal” – maximally distant – from one another

– Expected behavior for non-orthogonal patterns?

• To get some insight into what is stored, lets see some examples
72

Hebbian learning: One 4-bit pattern

• Left: Pattern stored. Right: Energy map
• Note: Pattern is an energy well, but there are other local minima

– Where?
– Also note “shadow” pattern

73

Topological representation on a Karnaugh map

Storing multiple patterns:
Orthogonality

• The maximum Hamming distance between two -bit
patterns is
– Because any pattern for our purpose

• Two patterns and that differ in bits are
orthogonal
– Because

• For , where is an odd number, there are at most
orthogonal binary patterns

– Others may be almost orthogonal

74

Two orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– But patterns perfectly confusable for recall

75

Two non-orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)
– No other local minima exist
– Actual wells for patterns

• Patterns may be perfectly recalled!

– Note K > 0.14 N 76

Three orthogonal 4-bit patterns

• All patterns are local minima (stationary)
– But recall from perturbed patterns is random

77

Three non-orthogonal 4-bit patterns

• Patterns in the corner are not recalled
– They end up being attracted to the -1,-1 pattern
– Note some “ghosts” ended up in the “well” of other patterns

• So one of the patterns has stronger recall than the other two
78

Four orthogonal 4-bit patterns

• All patterns are stationary, but none are stable
– Total wipe out

79

Four nonorthogonal 4-bit patterns

• One stable pattern
– “Collisions” when the ghost of one pattern occurs

next to another
80

How many patterns can we store?

• Hopfield: For a network of neurons can store up to 0.14
random patterns

• Apparently a fuzzy statement
– What does it really mean to say “stores” 0.14N random patterns?

• Stationary? Stable? No other local minima?

– What if the patterns to store are not random?

• N=4 may not be a good case (N too small)
81

A 6-bit pattern

• Perfectly stationary and stable

• But many spurious local minima..
– Which are “fake” memories 82

“Unrolled” 3D Karnaugh map

Two orthogonal 6-bit patterns

• Perfectly stationary and stable

• Several spurious “fake-memory” local minima..
– Figure overstates the problem: actually a 3-D Kmap

83

Two non-orthogonal 6-bit patterns

84

• Perfectly stationary and stable
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal case

Three non-orthogonal 6-bit patterns

85

• Note: Cannot have 3 or more orthogonal 6-bit patterns..
• Patterns are perfectly stationary and stable (K > 0.14N)
• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”
– Fewer spurious minima than for the orthogonal 2-pattern case

Four non-orthogonal 6-bit patterns

86

• Patterns are perfectly stationary for K > 0.14N
• Fewer spurious minima than for the orthogonal 2-

pattern case
– Most fake-looking memories are in fact ghosts..

Six non-orthogonal 6-bit patterns

87

• Breakdown largely due to interference from “ghosts”

• But multiple patterns are stationary, and often stable
– For K >> 0.14N

More visualization..

• Lets inspect a few 8-bit patterns
– Keeping in mind that the Karnaugh map is now a

4-dimensional tesseract

88

One 8-bit pattern

89

• Its actually cleanly stored, but there are a few
spurious minima

Two orthogonal 8-bit patterns

90

• Both have regions of attraction

• Some spurious minima

Two non-orthogonal 8-bit patterns

91

• Actually have fewer spurious minima
– Not obvious from visualization..

Four orthogonal 8-bit patterns

92

• Successfully stored

Four non-orthogonal 8-bit patterns

93

• Stored with interference from ghosts..

Eight orthogonal 8-bit patterns

94

• Wipeout

Eight non-orthogonal 8-bit patterns

95

• Nothing stored
– Neither stationary nor stable

Observations

• Many “parasitic” patterns
– Undesired patterns that also become stable or

attractors

• Apparently, a capacity to store more than
0.14N patterns

96

Parasitic Patterns

• Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:
–

• They are also from other random local energy minima from
the weights matrices themselves

97

state

Energy

Target patterns Parasites

Capacity
• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• Patterns that are non-orthogonal easier to remember
– I.e. patterns that are closer are easier to remember than

patterns that are farther!!

• Can we attempt to get greater control on the process than
Hebbian learning gives us?
– Can we do better than Hebbian learning?

• Better capacity and fewer spurious memories?
98

Story so far
• A Hopfield network is a loopy binary net with symmetric connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum
– The network acts as a content-addressable memory

• Given a damaged memory, it can evolve to recall the memory fully

• The network must be designed to store the desired memories
– Memory patterns must be stationary and stable on the energy contour

• Network memory can be trained by Hebbian learning
– Guarantees that a network of N bits trained via Hebbian learning can store 0.14N

random patterns with less than 0.4% probability that they will be unstable

• However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

99

Poll 3: @1798

100

Mark all that are true

 We can try to “assign” memories to a Hopfield network through Hebbian learning
of the weights matrix

 All patterns learned through Hebbian learning will be “remembered”
 The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

Poll 3

101

Mark all that are true

 We can try to “assign” memories to a Hopfield network through Hebbian learning
of the weights matrix

 All patterns learned through Hebbian learning will be “remembered”
 The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

Bold Claim

• I can always store (upto) N orthogonal
patterns such that they are stationary!

– Why?

• I can avoid spurious memories by adding
some noise during recall!

102

Recap: Hebbian Learning to Store a
Specific Pattern

• For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

HEBBIAN LEARNING:
1

-1

-1

-1 1

103

Storing multiple patterns

• Let be the vector representing -th pattern
• Let be a matrix with all the stored patterns
• Then..

1

-1

-1

-1 1

1

1

-1

1 -1

104
Number of patterns is a positive semi-definite matrix

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the following
slides we will use

105

Energy landscape
only differs by

an additive constant and
a scaling

Location
of minima remain same

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the following
slides we will use

106

Energy landscape
only differs by

an additive constant and
a scaling

Location
of minima remain same

Both have the
same Eigen vectors

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the following
slides we will use

107

Energy landscape
only differs by

an additive constant and
a scaling

Location
of minima remain same

Both have the
same Eigen vectors

NOTE: This
is a positive

semidefinite matrix

Consider the energy function

108

Consider the energy function

• The Energy function is concave if is positive
(semi) definite

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is concave

109

The Energy function

• is a concave quadratic

110

-1

1 -1

1

ଵ

଴

The Energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• But components of can only take values
– I.e lies on the corners of the unit hypercube

111

The energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• The minima will lie on the boundaries of the hypercube
– But components of can only take values
– I.e. lies on the corners of the unit hypercube

112

The energy function

• The stored values of are the ones where all
adjacent corners are lower on the quadratic

Stored patterns

113

Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well
– Intuitively, patterns must ideally be maximally far apart

• Though this doesn’t seem to hold for Hebbian learning

Stored patterns
Ghosts (negations)

114

Evolution of the network
• Note: for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:
– Each step rotates the vector and then projects it onto the nearest

corner

115

1

1

-1

-1

2D example 3D example

Storing patterns
• A pattern is stored if:

– for all target patterns

• Training: Design such that this holds

• Simple solution: is an Eigenvector of
– And the corresponding Eigenvalue is positive

– More generally orthant() = orthant()

• How many such can we have?

116

Random fact that should interest you

• Number of ways of selecting two -bit binary
patterns and such that they differ from

one another in exactly bits is

• The size of the largest set of -bit binary
patterns that all differ from one
another in exactly bits is at most
– Trivial proof.. 

117

Only N patterns?

• Symmetric weight matrices have orthogonal Eigen vectors
• You can have max orthogonal vectors in an -dimensional

space
118

(1,1)

(1,-1)

random fact that should interest you

• The Eigenvectors of any symmetric matrix
are orthogonal

• The Eigenvalues may be positive or negative

119

Storing more than one pattern
• Requirement: Given

– Design such that
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that
can be stored?

120

Storing orthogonal patterns
• Simple solution: Design such that

are the Eigen vectors of
– Let

– are positive

– For this is exactly the Hebbian
rule

• The patterns are provably stationary
121

Hebbian rule
• In reality

– Let

– are orthogonal to

–

–

122

Storing orthogonal patterns
• When we have orthogonal (or near

orthogonal) patterns
–

–

• The Eigen vectors of span the space

• Also, for any

123

Storing orthogonal patterns
• The orthogonal patterns span the

space
• Any pattern can be written as

• All patterns are stationary
– Everything is a stationary memory
– Completely useless network

124

Storing K orthogonal patterns
• Even if we store fewer than patterns

– Let

– are orthogonal to

–

–

• Any pattern that is entirely in the subspace spanned by
is also stable (same logic as earlier)

• Only patterns that are partially in the subspace spanned by
 are unstable

– Get projected onto subspace spanned by
125

Problem with Hebbian Rule

• Even if we store fewer than patterns
– Let

– are orthogonal to

–

• Problems arise because Eigen values are all 1.0
– Ensures stationarity of vectors in the subspace
– All stored patterns are equally important
– What if we get rid of this requirement?

126

Hebbian rule and general (non-
orthogonal) vectors

• What happens when the patterns are not orthogonal
• What happens when the patterns are presented more than

once
– Different patterns presented different numbers of times
– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector
– Hint: For real valued vectors, use Lanczos iterations

• Can write ௉ ௉ ௣
்,  ௉

ଶ
௣
்

– Tougher for binary vectors (NP)
127

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
128

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
129

How do we find this
network?

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
130

Can we do something
about this?

How do we find this
network?

Story so far
• Hopfield nets with N neurons can store up to 0.14N random patterns

through Hebbian learning with 0.996 probability of recall
– The recalled patterns are the Eigen vectors of the weights matrix with the

highest Eigen values

• Hebbian learning assumes all patterns to be stored are equally important
– For orthogonal patterns, the patterns are the Eigen vectors of the constructed

weights matrix
– All Eigen values are identical

• In theory the number of stationary states in a Hopfield network can be
exponential in N

• The number of intentionally stored patterns (stationary and stable) can be
as large as N
– But comes with many parasitic memories

131

132

