
Neural Networks

Hopfield Nets and Boltzmann Machines
Fall 2022

1

• Symmetric loopy network
• Each neuron is a perceptron with +1/-1 output

Recap: Hopfield network

2

Recap: Hopfield network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

3

Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form, including a bias term (not typically used in

Hopfield nets)

4

Not assuming node bias

Recap: Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

5

Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

6

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

8

Recap: Hebbian Learning to Store a
Specific Pattern

• For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

HEBBIAN LEARNING:
1

-1

-1

-1 1

9

Storing multiple patterns

• is the set of patterns to store
• Superscript represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1

10

How many patterns can we store?

• Hopfield: For a network of neurons can store up to 0.14
random patterns

• In reality, seems possible to store K > 0.14N patterns
– i.e. obtain a weight matrix W such that K > 0.14N patterns are

stationary
– But behavior with more than even 1 pattern is unpredictable

11

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

12

Evolution of the network
• Note: for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:
– Each step rotates the vector and then projects it onto the nearest

corner

13

1

1

-1

-1

2D example 3D example

Storing patterns
• A pattern is stored if:

– for all target patterns

• Training: Design such that this holds

• Simple solution: is an Eigenvector of
– And the corresponding Eigenvalue is positive

– More generally orthant() = orthant()

• How many such can we have?

14

Storing more than one pattern
• Requirement: Given

– Design such that
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that
can be stored?

15

Storing orthogonal patterns
• Simple solution: Design such that

are the Eigen vectors of
– Let

– are positive

– For this is exactly the Hebbian
rule

• The patterns are provably stationary
16

Storing orthogonal patterns
• The orthogonal patterns span the

space
• Any pattern can be written as

• All patterns are stationary
– Remembers everything
– Completely useless network

17

Hebbian rule and general (non-
orthogonal) vectors

• What happens when the patterns are not orthogonal
• What happens when the patterns are presented more than

once
– Different patterns presented different numbers of times
– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector
– Hint: For real valued vectors, use Lanczos iterations

• Can write
்,

ଶ

்

– Tougher for binary vectors (NP)
18

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
19

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
20

How do we find this
network?

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
21

Can we do something
about this?

How do we find this
network?

A different tack

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

22

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
23

Alternate Approach to Estimating the
Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 24

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

25

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

26

Optimizing W

• Simple gradient descent:

27

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

28

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

29

The training again..

• Note the energy contour of a Hopfield
network for any weight

30state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

31state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

32state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

33state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

34state

Energy

Identifying the valleys..

35state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

36

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

37

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

38

Which valleys?

39state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

40state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

41state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

42

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
•

்
௩ ௩

்

43

A possible problem

44state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

45state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

46state

Energy

Raising the neighborhood

47state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
•

்
ௗ ௗ

்

48

Story so far
• Hopfield nets with neurons can store up to

random patterns through Hebbian learning
– Issue: Hebbian learning assumes all patterns to be stored are

equally important

• In theory the number of intentionally stored patterns
(stationary and stable) can be as large as
– But comes with many parasitic memories

• Networks that store memories can be trained
through optimization
– By minimizing the energy of the target patterns, while

increasing the energy of the neighboring patterns
49

Storing more than N patterns

• The memory capacity of an -bit network is at
most
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is

• How do we increase the capacity of the
network
– How to store more than patterns

50

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

51

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

52

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

54

Visible bits

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

55

Visible bits Hidden bits

Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

56

Visible bits Hidden bits

Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended

patterns:
– Making errors in the don’t care bits doesn’t matter

57

Visible bits Hidden bits

Robustness of recall

• The value taken by the K hidden neurons during recall
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

58

Robustness of recall

• Also, we can have multiple extended patterns
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons

59

Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits
– Possible to set the don’t care bits such that the overall pattern (and

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

• To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

60

A probabilistic interpretation of
Hopfield Nets

• For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution
– Minimizing energy maximizes log likelihood

61

The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

62

Continuing the Boltzmann analogy

• The system probabilistically selects states with
lower energy
– With infinitesimally slow cooling, at it

arrives at the global minimal state
63

Spin glasses and the Boltzmann
distribution

• Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at in a universe
where
– Energy landscape of a spin-glass model: Exploration and

characterization, Zhou and Wang, Phys. Review E 79, 2009

64

state

Energy

Hopfield nets: Optimizing W

• Simple gradient descent:

65

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Simple gradient descent:

66
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Update rule

67

Natural distribution for variables: The Boltzmann Distribution

From Analogy to Model

• The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

• So, let’s explicitly model the Hopfield net as a
distribution..

68

Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of
the state
– And the expected value of the state

state

PE

The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state

at temperature is

• At each state it has a potential energy
• The internal energy of the system, representing its

capacity to do work, is the average:

The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the
two terms

The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

• The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.

The Energy of the Network

• We can define the energy of the system as before
• Since neurons are stochastic, there is disorder or entropy (with T = 1)
• The equilibribum probability distribution over states is the Boltzmann

distribution at T=1
– This is the probability of different states that the network will wander over at

equilibrium

Visible
Neurons

The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

76

The field at a single node

• Let and be the states with the ith bit in the and
states

•

77

The field at a single node

• Giving us

• The probability of any node taking value 1
given other node values is a logistic

78

Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state , which

can take value 0 or 1 with a probability that depends on the local
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible
Neurons

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

Exploiting the probabilistic view

• Next..

82

