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• Symmetric loopy network
• Each neuron is a perceptron with +1/-1 output

Recap: Hopfield network
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Recap: Hopfield network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form, including a bias term (not typically used in 

Hopfield nets)
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Recap: Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

state
PE
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Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it 

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7



“Training” the network

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?
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Recap: Hebbian Learning to Store a 
Specific Pattern

• For a single stored pattern, Hebbian learning 
results in a network for which the target 
pattern is a global minimum

HEBBIAN LEARNING:
1
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Storing multiple patterns

• is the set of patterns to store
• Superscript represents the specific pattern
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How many patterns can we store?

• Hopfield: For a network of neurons can store up to 0.14
random patterns

• In reality, seems possible to store K > 0.14N patterns
– i.e. obtain a weight matrix W such that K > 0.14N patterns are 

stationary
– But behavior with more than even 1 pattern is unpredictable
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“Training” the network

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?
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Evolution of the network
• Note:  for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:  
– Each step rotates the vector and then projects it onto the nearest 

corner
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Storing patterns
• A pattern is stored if:

– for all target patterns

• Training: Design such that this holds

• Simple solution:  is an Eigenvector of 
– And the corresponding Eigenvalue is positive

– More generally  orthant( ) = orthant( )

• How many such can we have?
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Storing more than one pattern
• Requirement: Given 

– Design such that 
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that 
can be stored?
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Storing orthogonal patterns
• Simple solution:  Design such that 

are the Eigen vectors of 
– Let  

– are positive

– For this is exactly the Hebbian
rule

• The patterns are provably stationary
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Storing orthogonal patterns
• The orthogonal patterns span the 

space
• Any pattern can be written as

• All patterns are stationary
– Remembers everything
– Completely useless network
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Hebbian rule and general (non-
orthogonal) vectors

• What happens when the patterns are not orthogonal
• What happens when the patterns are presented more than 

once
– Different patterns presented different numbers of times
– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector 
– Hint: For real valued vectors, use Lanczos iterations

• Can write   
்,  

ଶ

்

– Tougher for binary vectors (NP)
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The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
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The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stable

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
20

How do we find this 
network?



The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stable

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
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Can we do something 
about this?

How do we find this 
network?



A different tack

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?
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Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of 

the target patterns
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Alternate Approach to Estimating the 
Network

• Estimate (and ) such that 
– is minimized for 

– is maximized for all other 

• Caveat: Unrealistic to expect to store more than 
patterns, but can we make those patterns 

memorable 24



Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

25

The bias can be captured by 
another fixed-value component



Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target 
patterns
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Optimizing W

• Simple gradient descent:
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?
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The training again..

• Note the energy contour of a Hopfield 
network for any weight 

30state

Energy

Bowls will all actually be
quadratic



The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more 

frequently
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The negative class

• The second term tries to “raise” all non-target 
patterns
– Do we need to raise everything?
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Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the 

target patterns, and many will even vanish
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Identifying the valleys..

• Problem: How do you identify the valleys for 
the current ?
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Identifying the valleys..
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• Initialize the network randomly and let it evolve
– It will settle in a valley



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•  

்
௩ ௩

்
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Training the Hopfield network

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
•  

்
௩ ௩

்
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Which valleys?

39state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?



Which valleys?

40state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate



Identifying the valleys..
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• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
•  

்
௩ ௩

்
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A possible problem

44state

Energy

• What if there’s another target pattern 
downvalley
– Raising it will destroy a better-represented or 

stored pattern!



A related issue
• Really no need to raise the entire surface, or 

even every valley
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A related issue
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley
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Raising the neighborhood

47state

Energy

• Starting from a target pattern, let the network 
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
•  

்
ௗ ௗ

்
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Story so far
• Hopfield nets with neurons can store up to 

random patterns through Hebbian learning 
– Issue: Hebbian learning assumes all patterns to be stored are 

equally important

• In theory the number of intentionally stored patterns 
(stationary and stable) can be as large as 
– But comes with many parasitic memories

• Networks that store memories can be trained 
through optimization
– By minimizing the energy of the target patterns, while 

increasing the energy of the neighboring patterns
49



Storing more than N patterns

• The memory capacity of an -bit network is at 
most 
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is 

• How do we increase the capacity of the 
network
– How to store more than patterns
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Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons

51



Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

54

Visible bits



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!
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Visible bits Hidden bits



Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to 
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

56
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Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended 

patterns:
– Making errors in the don’t care bits doesn’t matter
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Robustness of recall

• The value taken by the K hidden neurons during recall 
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons
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Robustness of recall

• Also, we can have multiple extended patterns 
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons
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Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual 

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t 
care bits
– Possible to set the don’t care bits such that the overall pattern (and 

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits 
vary

• To exploit it properly, it helps to view the Hopfield net differently: as 
a probabilistic machine
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A probabilistic interpretation of 
Hopfield Nets

• For binary y the energy of a pattern is the 
analog of the negative log likelihood of a 
Boltzmann distribution
– Minimizing energy maximizes log likelihood
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The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann 

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..
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Continuing the Boltzmann analogy

• The system probabilistically selects states with 
lower energy
– With infinitesimally slow cooling, at it 

arrives at the global minimal state
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Spin glasses and the Boltzmann 
distribution

• Selecting a next state is analogous to drawing a sample 
from the Boltzmann distribution at in a universe 
where 
– Energy landscape of a spin-glass model: Exploration and 

characterization, Zhou and Wang, Phys. Review E 79, 2009

64
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Hopfield nets: Optimizing W

• Simple gradient descent:

65

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Simple gradient descent:

66
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Update rule

67

Natural distribution for variables:  The Boltzmann Distribution



From Analogy to Model

• The behavior of the Hopfield net is analogous 
to annealed dynamics of a spin glass 
characterized by a Boltzmann distribution

• So, let’s explicitly model the Hopfield net as a 
distribution..

68



Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of 
the state
– And the expected value of the state

state
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The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the average:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the 
two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



The Energy of the Network

• We can define the energy of the system as before
• Since neurons are stochastic, there is disorder or entropy (with T = 1)
• The equilibribum probability distribution over states is the Boltzmann 

distribution at T=1
– This is the probability of different states that the network will wander over at 

equilibrium

Visible 
Neurons



The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model: generates states according to 

Visible 
Neurons



The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•

77



The field at a single node

• Giving us

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons





The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons





Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons





Exploiting the probabilistic view

• Next..
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