
Neural Networks

Hopfield Nets and Boltzmann Machines

1

Recap: Hopfield network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

2

Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form

– Bias term may be viewed as an extra input pegged to 1.0

3

Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜

4

Recap: Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

5

Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

6

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 8

Noisy pattern completion: Initialize the entire
network and let the entire network evolve

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 9

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Training a Hopfield Net to
“Memorize” target patterns

• The Hopfield network can be trained to
remember specific “target” patterns
– E.g. the pictures in the previous example

• This can be done by setting the weights
appropriately

10

Random Question:
Can you use backprop to train Hopfield nets?

Hint: Think unwrapping…

Training a Hopfield Net to
“Memorize” target patterns

• The Hopfield network can be trained to remember specific “target”
patterns
– E.g. the pictures in the previous example

• A Hopfield net with neurons can designed to store up to target
-bit memories
– But can store an exponential number of unwanted “parasitic”

memories along with the target patterns

• Training the network: Design weights matrix such that the
energy of …
– Target patterns is minimized, so that they are in energy wells
– Other untargeted potentially parasitic patterns is maximized so that

they don’t become parasitic
11

Training the network

12state

Energy

Minimize energy of
target patterns

Maximize energy of
all other patterns

Optimizing W

• Simple gradient descent:

Minimize energy of
target patterns

Maximize energy of
all other patterns

Training the network

14state

Energy

Minimize energy of
target patterns

Maximize energy of
all other patterns

Simpler: Focus on confusing parasites

• Focus on minimizing parasites that can prevent the net
from remembering target patterns
– Energy valleys in the neighborhood of target patterns

15state

Energy

Simpler: Focus on confusing patterns

16state

Energy

• Lower energy at valid memories
• Initialize the network at valid memories and let it evolve a few steps

– It will settle in a broad vicinity of the memory; raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

17

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

18

More efficient training
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

19state

Energy

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்

20

Problem with Hopfield net

• Why is the recalled pattern not perfect?

21

A Problem with Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
22

state

Energy

Parasitic memories

Recap – Analogy: Spin Glasses

• The total energy of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

௜ ௜௝ ௝

௝ஷ௜

௜

Response of current diplose

௜
௜ ௜ ௜

௜

23

Recap : Spin Glasses

• The system stops at one of its stable
configurations
– Where energy is a local minimum

state

PE

24

Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of the state at
equilibrium
– The system “prefers” low energy states
– Evolution of the system favors transitions towards lower-energy states

state

PE

The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state

at temperature is

• At each state it has a potential energy
• The internal energy of the system, representing its

capacity to do work, is the expected value of the PE:

The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system measures the
useful work derivable from it and combines the two terms

The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

• The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.

Revisiting Thermodynamic Phenomena

• The evolution of the system is actually stochastic
• At equilibrium the system visits various states according to

the Boltzmann distribution
– The probability of any state is inversely related to its energy

• and also temperatures: ିாೞ

௞்

• The most likely state is the lowest energy state

state

PE

Returning to the problem with
Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
31

state

Energy

Parasitic memories

The Hopfield net as a distribution

• Mimics the Spin glass system

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

33

The field at a single node

• Let and be the states with the ith bit in the and
states

•

34

The field at a single node

• Giving us

• The probability of any node taking value 1
given other node values is a logistic

35

Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state , which

can take value 0 or 1 with a probability that depends on the local
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible
Neurons

೔

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

೔

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or 0 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

೔

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

39

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

40

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

41

Assuming T = 1

Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

– Estimates the probability that the bit is 1.0.
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

42

Assuming T = 1

Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter
a) For

௝௜ ௝

௝ஷ௜

௜

43

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion: Initialize the entire
network and let the entire network evolve

Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
44

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
45

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
46

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
47

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter: increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior

Annealing

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For
ଵ

் ௝௜ ௝௝ஷ௜

௜

48

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

49

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For
ଵ

் ௝௜ ௝௝ஷ௜

௜

Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a
conditional distribution

• What is the overall probability of the entire set
of neurons taking any configuration

50

The overall probability

• The probability of any state can be shown to be
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
51

The overall probability

• Stop when the running average of the log
probability of patterns stops increasing
– I.e. when the (running average) of the energy of

the patterns stops decreasing
52

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

்

– The parameter of the distribution is the weights matrix

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

೔

The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

೔

Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability
distribution to states
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to

other patterns

Training the network

• Must train the network to assign a desired probability distribution
to states

• Given a set of “training” inputs
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed: maximize likelihood of stored states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all “training”
vectors
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

௜௝ ௜ ௝

௜ழ௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

ௌ∈𝐒

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝
௜ ௝

ௌ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

ᇱ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

The second term

• The second term is simply the expected value
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we
can compute it by sampling!

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

Estimating the second term

• The expectation can be estimated as the average of
samples drawn from the distribution

• Question: How do we draw samples from the Boltzmann
distribution?
– How do we draw samples from the network?

ೞೌ೘೛೗೐ೞ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be

The simulation solution for the second
term

• The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”

ೞ೔೘ೠ೗

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

Maximum Likelihood Training

• The overall gradient ascent rule

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Sampled estimate

Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Overall Training

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

state

Energy

Note the similarity to the update rule for the Hopfield network

Adding Capacity to the Hopfield
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

69

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

70

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

71

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Training the network

• For a given pattern of visible neurons, there are any
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible
Neurons

Hidden
Neurons

The patterns
• In fact we could have multiple hidden patterns

coupled with any visible pattern
– These would be multiple stored patterns that all give

the same visible output
– How many do we permit

• Do we need to specify one or more particular
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?

Boltzmann machine without hidden
units

• This basic framework has no hidden units

• Extended to have hidden units

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

With hidden neurons

• Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown
– Since they are only defined over visible neurons

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

Must train to maximize
probability of desired
patterns of visible bits

Training the network

• Must train the network to assign a desired
probability distribution to visible states

• Probability of visible state sums over all
hidden states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training”
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term

௜௝ ௜ ௝

௜ழ௝ு

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௏∈𝐕

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states
for each visible configuration in our training set

– But the second term is summed over all states

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௞௟ ௞ ௟௞ழ௟

௞௟ ௞
"
௟
"

௞ழ௟ுᇱ
௜ ௝

ு௏∈𝐕

௞௟ ௞
ᇱ
௟
ᇱ

௞ழ௟

௜௝ ௞
"
௟
"

௞ழ௟ௌ"
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

The simulation solution

• The first term is computed as the average
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as
the average of sampled states when the network
is running “freely”

ೞ೔೘ೠ೗

ೞ೔೘ೠ೗

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

More simulations

• Maximizing the marginal probability of requires
summing over all values of
– An exponential state space
– So we will use simulations again

Visible
Neurons

Hidden
Neurons

Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

Visible
Neurons

Hidden
Neurons

Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

Visible
Neurons

Hidden
Neurons

Gradients

• Gradients are computed as before, except that
the first term is now computed over the
expanded training data

ೞ೔೘ೠ೗

Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped

training samples
• Compute gradient and update weights
• Iterate

௜௝
௜ ௝

𝑺

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than

Hopfield nets
• But also enables computation of probabilities

of patterns, and completion of pattern

Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate

௜௝
௜ ௝

𝑺

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗
೔

Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value

Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?

Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, …. , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features, anchor features, estimate a posteriori probability

distribution over classes
• Or choose most likely class

Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small
number of bits

Solution: Restricted Boltzmann
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul

Smolensky

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN

೔

Solution: Restricted Boltzmann
Machines

VISIBLE

HIDDEN

೔

೔
VISIBLE

HIDDEN

Recap: Training full Boltzmann
machines: Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

-1

1

1

1 -1

Visible Neurons Hidden Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!

VISIBLE

HIDDEN

௜ ௝௜ ௜ ௜

௝

௜ ି௭೔

Recap: Training full Boltzmann
machines: Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

-1

1

1

1 -1

Visible
Neurons

Hidden
Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN

೔ ೔

Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v

Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to
hidden node j)

• <vi, hj> represents average over many generated training
samples

v0

h0

v1

h1

v2

h2

v

h





jiji

ij
hvhv

w

vp 0)(log

i

j

i i i

j j j

Recall: Hopfield Networks
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

103state

Energy

A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of
the gradient

v0

h0

v1

h1

10)(log





jiji
ij

hvhv
w

vp

i

j

i

j

Restricted Boltzmann Machines

• Excellent generative models for binary (or
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models

105

Continuous-values RBMs

VISIBLE

HIDDEN

೔

VISIBLE

HIDDEN

Hidden units may also be continuous values

Other variants

• Left: “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm

Topics missed..

• Other algorithms for Learning and Inference
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …

108

