
Neural Networks

Hopfield Nets and Boltzmann Machines
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Recap: Hopfield network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form

– Bias term may be viewed as an extra input pegged to 1.0
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Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜
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Recap: Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

state
PE
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Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it 

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 8

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 9

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve



Training a Hopfield Net to 
“Memorize” target patterns

• The Hopfield network can be trained to 
remember specific “target” patterns
– E.g. the pictures in the previous example

• This can be done by setting the weights 
appropriately
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Random Question:
Can you use backprop to train Hopfield nets?

Hint: Think unwrapping…



Training a Hopfield Net to 
“Memorize” target patterns

• The Hopfield network can be trained to remember specific “target” 
patterns
– E.g. the pictures in the previous example

• A Hopfield net with neurons can designed to store up to target 
-bit memories
– But can store an exponential number of unwanted “parasitic” 

memories along with the target patterns

• Training the network: Design weights matrix such that the 
energy of … 
– Target patterns is minimized, so that they are in energy wells
– Other untargeted potentially parasitic patterns is maximized so that 

they don’t become parasitic
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Training the network

12state

Energy

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 



Optimizing W

• Simple gradient descent:

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 



Training the network

14state

Energy

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 



Simpler: Focus on confusing parasites

• Focus on minimizing parasites that can prevent the net 
from remembering target patterns
– Energy valleys in the neighborhood of target patterns

15state
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Simpler: Focus on confusing patterns

16state

Energy

• Lower energy at valid memories
• Initialize the network at valid memories and let it evolve a few steps

– It will settle in a broad vicinity of the memory; raise it



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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More efficient training
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley

19state
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்
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Problem with Hopfield net

• Why is the recalled pattern not perfect?
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A Problem with Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
22

state

Energy

Parasitic memories



Recap – Analogy: Spin Glasses

• The total energy of the system

• The system evolves to minimize the energy
– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

௜ ௜௝ ௝

௝ஷ௜

௜

Response of current diplose

௜
௜ ௜ ௜

௜
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Recap : Spin Glasses

• The system stops at one of its stable 
configurations
– Where energy is a local minimum

state

PE
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of the state at 
equilibrium
– The system “prefers” low energy states
– Evolution of the system favors transitions towards lower-energy states

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the expected value of the PE:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system measures the 
useful work derivable from it and combines the two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



Revisiting Thermodynamic Phenomena

• The evolution of the system is actually stochastic
• At equilibrium the system visits various states according to 

the Boltzmann distribution
– The probability of any state is inversely related to its energy

• and also temperatures: ିாೞ

௞்

• The most likely state is the lowest energy state

state

PE



Returning to the problem with 
Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
31
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The Hopfield net as a distribution

• Mimics the Spin glass system

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model: generates states according to 

Visible 
Neurons



The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•
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The field at a single node

• Giving us

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons

೔



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons

೔



Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or 0 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons

೔



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜

40

Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

– Estimates the probability that the bit is 1.0. 
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter
a) For 

௝௜ ௝

௝ஷ௜

௜
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Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
44



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
45

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
46

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
47

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter:  increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior



Annealing

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜
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Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

49

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜



Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a 
conditional distribution

• What is the overall probability of the entire set 
of neurons taking any configuration 

50



The overall probability

• The probability of any state can be shown to be 
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
51



The overall probability

• Stop when the running average of the log 
probability of patterns stops increasing
– I.e. when the (running average) of the energy of 

the patterns stops decreasing
52



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

்

– The parameter of the distribution is the weights matrix 

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

೔



The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

೔



Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and 
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability 
distribution to states 
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to 

other patterns



Training the network

• Must train the network to assign a desired probability distribution 
to states 

• Given a set of “training” inputs 
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed:  maximize likelihood of stored states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 
vectors 
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

௜௝ ௜ ௝

௜ழ௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

ௌ∈𝐒

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training 

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝
௜ ௝

ௌ



The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ



The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

ᇱ



The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ



The second term

• The second term is simply the expected value 
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 
can compute it by sampling!

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



Estimating the second term

• The expectation can be estimated as the average of 
samples drawn from the distribution

• Question:  How do we draw samples from the Boltzmann 
distribution?
– How do we draw samples from the network?

ೞೌ೘೛೗೐ೞ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be 



The simulation solution for the second 
term

• The second term in the derivative is computed 
as the average of sampled states when the 
network is running “freely”

ೞ೔೘ೠ೗

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



Maximum Likelihood Training

• The overall gradient ascent rule

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Sampled estimate



Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗



Overall Training

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

state

Energy

Note the similarity to the update rule for the Hopfield network



Adding Capacity to the Hopfield 
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

69



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

71



Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible 
Neurons

Hidden 
Neurons



The patterns
• In fact we could have multiple hidden patterns 

coupled with any visible pattern
– These would be multiple stored patterns that all give 

the same visible output
– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?



Boltzmann machine without hidden 
units

• This basic framework has no hidden units

• Extended to have hidden units

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗



With hidden neurons

• Now, with hidden neurons the complete state 
pattern for even the training patterns is 
unknown
– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons

Must train to maximize 
probability of desired
patterns of visible bits



Training the network

• Must train the network to assign a desired 
probability distribution to visible states 

• Probability of visible state sums over all 
hidden states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training” 
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term

௜௝ ௜ ௝

௜ழ௝ு

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௏∈𝐕

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states 
for each visible configuration in our training set

– But the second term is summed over all states

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௞௟ ௞ ௟௞ழ௟

௞௟ ௞
"
௟
"

௞ழ௟ுᇱ
௜ ௝

ு௏∈𝐕

௞௟ ௞
ᇱ
௟
ᇱ

௞ழ௟

௜௝ ௞
"
௟
"

௞ழ௟ௌ"
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



The simulation solution

• The first term is computed as the average 
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as 
the average of sampled states when the network 
is running “freely”

ೞ೔೘ೠ೗

ೞ೔೘ೠ೗

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



More simulations

• Maximizing the marginal probability of requires 
summing over all values of 
– An exponential state space
– So we will use simulations again

Visible 
Neurons

Hidden 
Neurons



Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 
the first term is now computed over the 
expanded training data

ೞ೔೘ೠ೗



Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped 

training samples
• Compute gradient and update weights
• Iterate

௜௝
௜ ௝

𝑺

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗



Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than 

Hopfield nets
• But also enables computation of probabilities 

of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate
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Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, ….  , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features,  anchor features,  estimate a posteriori probability 

distribution over classes
• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul 

Smolensky
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Solution: Restricted Boltzmann 
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..
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Solution: Restricted Boltzmann 
Machines
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Recap: Training full Boltzmann 
machines: Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training
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Sampling: Restricted Boltzmann 
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!
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Recap: Training full Boltzmann 
machines: Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate
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Sampling: Restricted Boltzmann 
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units
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Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v



Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to 
hidden node j)

• <vi, hj> represents average over many generated training 
samples
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Recall: Hopfield Networks
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley
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A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of 
the gradient
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Restricted Boltzmann Machines

• Excellent generative models for binary (or 
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application 

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models
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Continuous-values RBMs
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Hidden units may also be continuous values



Other variants

• Left:  “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm



Topics missed..

• Other algorithms for Learning and Inference 
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …
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