
HW2 Bootcamp



Logistics

•HW2P2 is significantly harder than HW1P2. Models will be harder to 
develop, train, and converge. Please start early!

•Models must be written yourself and trained from scratch.

•You may use CMU Virtual Andrew (8GB Nvidia L40, 32 GB RAM) for 
training.



Problem Statement

•Face Classification
•Given an image, figure out which person it is.

•Face Verification
•Given a set of images, figure out if they are of the same person.
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Face Verification
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Face Verification
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Workflow

•First train a strong classification model for the classification task.

•Then, for the verification task, use the model trained on 
classification.

• take the penultimate features as feature embeddings of each image.

•You should additionally train verification-specific losses such 
as ArcFace, Triplet Loss to improve performance.



Building Blocks

Input Image + 
Transformations

Choice of 
Model

Training the 
model



Building Blocks

Input Image + 
Transformations

Choice of 
Model

Training the 
model



Color 
Jitter



Random Perspective



Random Vertical Flip



Transformation Guide

URL:
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-exa 
mples-plot-transforms-py

Common Issue:

TypeError: Input tensor should be a torch tensor. Got <class

'PIL.Image.Image'>.

—> Please check the sequencing of your transforms. Read the documentation and verify 

the kind of input required.

https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
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Residual Connections
 In traditional feedforward neural networks, data flows through each layer 

sequentially: The output of a layer is the input for the next layer.

 Residual connection provides another path for data to reach latter parts 

of the neural network by skipping some layers. 



Residual Connections

● The residual connection first applies identity mapping to x
● Then it performs element-wise addition F(x) + x. 
● The whole architecture that takes an input x and produces output 

F(x) + x is usually called a residual block or a building block. 
● Quite often, a residual block will also include an activation function 

such as ReLU applied to F(x) + x.



How do they help??

● For feedforward neural networks, training a deep network is usually very difficult, 
due to problems such as exploding gradients and vanishing gradients. 

● On the other hand, the training process of a neural network with residual 
connections is empirically shown to converge much more easily, even if the network 
has several hundreds layers.

● It is easier to learn Zero weights than an Identity mapping, if the residual 
connections aren’t present.



ResNet Block

•Remember that to understand a paper, we just really need to 
understand its blocks.

•ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

•The key point is residual connection



ResNet: BasicBlock

•It’s just a regular 3x3 convolution (then BN, ReLU), another 3x3 
convolution (then BN).

•Then, a skip connection adding input and output, then ReLU.



ResNet: BottleneckBlock

•A bit more involved.

•A 256-channel input goes through a point-wise convolution, 
reducing channels to 64.

•Then, a 3x3 regular convolution maintains channels at 64.

•Then, a point-wise convolution expands channels back to 256.

•Finally, the residual connection.



Basic and Bottleneck Block

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.



Residual Connection - Basic Block

class BasicBlock(torch.nn.Module):

  def __init__(self, n_h):

    self.linear0 = torch.nn.Linear(n_h, n_h)

    self.linear1 = torch.nn.Linear(n_h, n_h)

    self.bn0 = torch.nn.BatchNorm1d(n_h)

    self.bn1 = torch.nn.BatchNorm1d(n_h)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):

    R0  = A0

    Z0  = self.linear0(A0)

    BZ0 = self.bn0(Z0)

    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)

    BZ1 = self.bn1(Z1)

    A2  = self.relu(BZ1 + R0)

    return A2



Residual Connection - Bottleneck Block

class Bottleneck(torch.nn.Module):

  def __init__(self, n_h):

    self.residual = torch.nn.Linear(n_h, n_h*4)

    self.linear0 = torch.nn.Linear(n_h, n_h  )

    self.linear1 = torch.nn.Linear(n_h, n_h  )

    self.linear2 = torch.nn.Linear(n_h, n_h*4)

        

    self.bn0 = torch.nn.BatchNorm1d(n_h  )

    self.bn1 = torch.nn.BatchNorm1d(n_h  )

    self.bn2 = torch.nn.BatchNorm1d(n_h*4)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):

    R0  = self.residual(A0)

    Z0  = self.linear0(A0)

    BZ0 = self.bn0(Z0)

    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)

    BZ1 = self.bn1(Z1)

    A2  = self.relu(BZ1)

    Z2  = self.linear2(A2)

    BZ2 = self.bn2(Z2)

    A3  = self.relu(BZ2 + R0)        

    return A3



Basic and Bottleneck Block

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.



Architectures

•At this point, you should have basic familiarity with convolutions 
as taught in lecture.

•Now, how do we take convolutions and assemble them into a 
strong architecture?

•Layers? Channel size? Stride? Kernel Size? Etc.

•We’ll cover three different types of blocks:
•Resnet blocks

•Convnext blocks

•Mobile blocks



General Architecture Flow

•CNN architectures are divided into stages, which are divided 
into blocks.

•Each “stage” consists of (almost) equivalent “blocks”

•Each “block” consists of a few CNN layers, BN, and ReLUs.

•To understand an architecture, we mostly need to understand its

blocks.

•All that changes for blocks in different stages is the base # of channels



General Architecture Flow

•However, you do need to piece these blocks together into a final 
model.

•The general flow is like this:
•Stem

•Stage 1

•Stage 2

•…
•Stage n

•Classification Layer



General Architecture Flow

•The stem usually downsamples the input by 4x.

•Some stages do downsample. If they do, generally, the 
first convolution in the stage downsample by 2x.

•When you downsample by 2x, you usually increase channel 
dimension by 2x.

•So, later stages have smaller spatial resolution, higher # of channels



ResNet: Overall 
Architecture



ConvNeXt: Block

•A 7x7 depth-wise convolution.
•A point-wise convolution increasing # of channels
•A point-wise convolution decreasing # of 

channels
•Residual Connection



ConvNeXt block

•This is a very new paper, a state-of-the-art architecture.

•However, its intuitions are very similar to MobileNetV2.

•Again, remember that to understand a paper, we just really need to 
understand its blocks.

•Just a single block type for ConvNeXt

•Read the paper for details on stages/channel sizes, etc.
•We recommend ConvNeXt-T size which has less than 35M parameters.



ResNet vs ConvNeXt: Differences

•Note that ConvNeXt has fewer BN/ReLU
•GELU is just more advanced ReLU
• Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri. "Activation functions in deep 

learning: A comprehensive survey and benchmark." Neurocomputing (2022).

https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545


ResNet vs ConvNeXt



Mobile Block

•The goal of MobileNet blocks is to be parameter efficient.

•They do so by making extensive use of depth-wise convolutions and

point-wise convolutions



A Normal 
Convolution

•Considering just a single output channel



A Normal Convolution (Another Diagram)

•Considering a single output channel



A Normal 
Convolution

•Considering all output channels



Depth-wise Convolutions

•Shorthand for “Depth-wise separable convolutions”

•“Depth”-wise separable, because considering channels as 
“depth”, perform convolutions on them independently



Depth-wise Convolutions (Another 
Diagram)



Point-wise Convolutions

•“Point”-wise convolutions because each pixel is considered 
independently

•Considering just a single output channel:



Point-wise Convolutions

•“Point”-wise convolutions because each pixel is considered 
independently

•Considering all output channels:



Summary

•A normal convolution mixes information from both different channels 
and different spatial locations (pixels)

•A depth-wise convolution only mixes information over spatial 
locations

•Different channels do not interact.

•A point-wise convolution only mixes information over 
different channels

•Different spatial locations do not interact



Mobile Block

•Again, to understand an architecture, we mostly need to 
understand its blocks.

•All that changes for blocks in different stages is the base # of channels



Mobile Block

•The core block has three steps:
•Feature Mixing

•Spatial Mixing

•Bottlenecking Channels



Mobile Block: Feature Mixing

•A point-wise convolution that increases the channel dimension by an 
“expansion ratio”



Mobile Block: Spatial Mixing

•A depth-wise convolution that communicates information over 
different spatial locations.



Mobile Block: Bottlenecking Channels

•Point-wise convolution to reduce channel dimension by the same 
expansion ratio.



ConvNeXt vs MobileNetV2
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ConvNeXt vs MobileNetV2

ConvNeXt

•A 7x7 depth-wise 
convolution.

•A point-wise convolution 
increasing # of channels

•A point-wise convolution 
decreasing # of channels

•Residual Connection

MobileNetV2

•A point-wise 
convolution increasing # 
of channels

•A 3x3 depth-wise convolution.

•A point-wise 
convolution decreasing 
# of channels

•Residual Connection
Extremely 
Similar!



ConvNeXt vs MobileNetV2: Differences

•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).



ConvNeXt vs MobileNetV2: Differences

•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

•The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

•Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.



ConvNeXt vs MobileNetV2: Differences
•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

•The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

•Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

•ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
•Note: You will need to normalize the data if you use LN.

•ConvNeXt recommends training via AdamW, MobileNetV2 
recommends SGD



Other Interesting 
Papers

Former SOTA
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The easy bit 
first….



Monitoring Training vs Validation Acc
•The standard intuition of “overfitting” is – if the training & validation 
gap is too large, you should stop training as it’s overfitting.

•However, in modern DL, this intuition is not as relevant.

•XELoss != Accuracy
•Model can keep improving after training accuracy hits 100%.

•There is recent research that finds that on some problems, training accuracy 
hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch 
1000,
validation hits 100%.

•Of course, we can’t train for that long, but train until validation 
stops improving.

•Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs” 
and just let it run. □ what I prefer to do.



How to tackle overfitting?

•There are a lot of different tricks to improving your CNN model.

•From the recent ConvNeXt paper:



How to tackle overfitting?

•There are a lot of different trick to 
improving your CNN model.

•From the recent ConvNeXt paper
•What we recommend trying first:

•Label Smoothing (huge boost)
•Stochastic Depth
•DropBlock (paper)
•Dropout before final classification layer

•Then you can try the others

•Check out “Bag of Tricks for Image 
Classification with Convolutional Neural 
Networks”

•https://arxiv.org/abs/1812.01187



Let’s get real now….
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Face Verification
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CMU Virtual Andrew

https://www.cmu.edu/computing/services/endpoint/software/virtual-andrew.html


