HW2 Bootcamp

Logistics

- •HW2P2 is **significantly harder** than HW1P2. Models will be harder to develop, train, and converge. Please start early!
- •Models must be written yourself and trained from scratch.
- •You may use CMU Virtual Andrew (8GB Nvidia L40, 32 GB RAM) for training.

Problem Statement

•Face Classification

• Given an image, figure out which person it is.

•Face Verification

• Given a set of images, figure out if they are of the same person.

Face Classification

Face Verification

Face Verification

$$ext{similarity} = rac{x_1 \cdot x_2}{\max(\|x_1\|_2 \cdot \|x_2\|_2, \epsilon)}$$

Workflow

- •First train a strong classification model for the classification task.
- •Then, for the verification task, use the model trained on classification.
 - take the penultimate features as feature embeddings of each image.
- •You should additionally train verification-specific losses such as ArcFace, Triplet Loss to improve performance.

Building Blocks

Original image

Input Image + Transformations

Choice of Model Training the model

Building Blocks

Input Image + Transformations

Choice of Model Training the model

Color Jitter

Original image

Random Perspective

Original image

Random Vertical Flip

Original image

Transformation Guide

URL:

<u>https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-exa</u> <u>mples-plot-transforms-py</u>

Common Issue:

TypeError: Input tensor should be a torch tensor. Got <class

'PIL.Image.Image'>.

-> Please check the sequencing of your transforms. Read the documentation and verify

the kind of input required.

Building Blocks

Input Image + Transformation

Choice of Model

Training the model

Residual Connections

In traditional feedforward neural networks, data flows through each layer **sequentially**: The output of a layer is the input for the next layer. **Residual connection** provides another path for data to reach latter parts of the neural network by **skipping** some layers.

Residual Connections

- The residual connection first applies identity mapping to *x*
- Then it performs element-wise addition F(x) + x.
- The whole architecture that takes an input *x* and produces output F(x) + x is usually called a residual block or a building block.
- Quite often, a residual block will also include an activation function such as ReLU applied to F(x) + x.

How do they help??

- For feedforward neural networks, training a deep network is usually very difficult, due to problems such as **exploding gradients and vanishing gradients**.
- On the other hand, the training process of a neural network with residual connections is empirically shown to converge much more easily, even if the network has several hundreds layers.
- It is easier to learn Zero weights than an Identity mapping, if the residual connections aren't present.

ResNet Block

- •Remember that to understand a paper, we just really need to understand its **blocks**.
- •ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

•The key point is residual connection

Figure 2. Residual learning: a building block.

ResNet: BasicBlock

- •It's just a regular 3x3 convolution (then BN, ReLU), another 3x3 convolution (then BN).
- •Then, a skip connection adding input and output, then ReLU.

ResNet: BottleneckBlock

- •A bit more involved.
- •A 256-channel input goes through a point-wise convolution, reducing channels to 64.
- •Then, a 3x3 regular convolution maintains channels at 64.
- •Then, a point-wise convolution expands channels back to 256.
- Finally, the residual connection.

Basic and Bottleneck Block

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

Residual Connection - Basic Block

class BasicBlock(torch.nn.Module): def forward(self, A0): def init (self, n h): R0 = A0self.linear0 = torch.nn.Linear(n h, n h) ZO = self.linearO(AO)self.linear1 = torch.nn.Linear(n h, n h) BZ0 = self.bn0(Z0)A1 = self.relu(BZ0)self.bn0 = torch.nn.BatchNorm1d(n h) self.bn1 = torch.nn.BatchNorm1d(n h) Z1 = self.linear1(A1) BZ1 = self.bn1(Z1)self.relu = torch.nn.ReLU(inplace=True) A2 = self.relu(BZ1 + R0)

return A2

Residual Connection - Bottleneck Block

class Bottleneck(torch.nn.Module): def forward(self, A0): R0 = self.residual(A0) def __init__ (self, n h): ZO = self.linearO(AO)self.residual = torch.nn.Linear(n h, n h*4) BZ0 = self.bn0(Z0)A1 = self.relu(BZ0)self.linear0 = torch.nn.Linear(n h, n h) self.linear1 = torch.nn.Linear(n h, n h) Z1 = self.linear1(A1)self.linear2 = torch.nn.Linear(n h, n h*4) BZ1 = self.bn1(Z1)A2 = self.relu(BZ1) self.bn0 = torch.nn.BatchNorm1d(n h self.bn1 = torch.nn.BatchNorm1d(n h) Z2 = self.linear2(A2)self.bn2 = torch.nn.BatchNorm1d(n h*4) BZ2 = self.bn2(Z2)A3 = self.relu(BZ2 + R0)self.relu = torch.nn.ReLU(inplace=True) return A3

Basic and Bottleneck Block

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

Architectures

- •At this point, you should have basic familiarity with convolutions as taught in lecture.
- •Now, how do we take convolutions and assemble them into a strong architecture?
 - Layers? Channel size? Stride? Kernel Size? Etc.
- •We'll cover three different types of blocks:
 - Resnet blocks
 - Convnext blocks
 - Mobile blocks

General Architecture Flow

- •CNN architectures are divided into stages, which are divided into blocks.
 - Each "stage" consists of (almost) equivalent "blocks"
 - Each "block" consists of a few CNN layers, BN, and ReLUs.
- •To understand an architecture, we mostly need to understand its **blocks**.
- •All that changes for blocks in different stages is the base # of channels

General Architecture Flow

- •However, you do need to piece these blocks together into a final model.
- •The general flow is like this:
 - Stem
 - Stage 1
 - Stage 2
 - . . .
 - Stage n
 - Classification Layer

General Architecture Flow

- •The stem usually downsamples the input by 4x.
- •Some stages do downsample. If they do, generally, the first convolution in the stage downsample by 2x.
- •When you downsample by 2x, you usually increase channel dimension by 2x.
 - So, later stages have smaller spatial resolution, higher # of channels

ResNet: Overall

-

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
conv2_x	56×56	3×3 max pool, stride 2					
		$\left[\begin{array}{c} 3\times 3, 64\\ 3\times 3, 64\end{array}\right]\times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times 3,128\\ 3\times 3,128\end{array}\right]\times 2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4.x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\left[\begin{array}{c}1\times1,256\\3\times3,256\\1\times1,1024\end{array}\right]\times6$	$\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\left[\begin{array}{c}1\times1,512\\3\times3,512\\1\times1,2048\end{array}\right]\times3$	$\left[\begin{array}{c}1\times1,512\\3\times3,512\\1\times1,2048\end{array}\right]\times3$	$\left[\begin{array}{c}1\times1,512\\3\times3,512\\1\times1,2048\end{array}\right]\times3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10 ⁹	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}	

Figure 2. Sizes of outputs and convolutional kernels for ResNet 34

7x7 conv, 64, /2 pool. /2 3x3 conv, 64 * 3x3 conv, 64 +---3x3 conv, 64 * 3x3 conv, 64 3x3 conv, 64 + 3x3 conv. 64 +----3x3 conv, 128, /2 ÷ 3x3 conv, 128 3x3 conv, 128 + 3x3 conv, 128 +---3x3 conv, 128 + 3x3 conv, 128 +----3x3 conv, 128 ¥ 3x3 conv, 128 +----3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 * 3x3 conv, 256 +---3x3 conv, 256 * 3x3 conv, 256 3x3 conv, 256 * 3x3 conv. 256 +---3x3 conv. 256 3x3 conv, 256 * 3x3 conv, 512, /2 ٠ 3x3 conv, 512 **** 3x3 conv, 512 + 3x3 conv, 512 + 3x3 conv, 512 + 3x3 conv, 512

avg pool

34-layer residual

ConvNeXt: Block

ResNet Block

ConvNeXt Block

- A 7x7 depth-wise convolution.
- A point-wise convolution increasing # of channels
- A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt block

- •This is a very new paper, a state-of-the-art architecture.
- •However, its intuitions are very similar to MobileNetV2.
- •Again, remember that to understand a paper, we just really need to understand its **blocks**.
- •Just a single block type for ConvNeXt
- •Read the paper for details on stages/channel sizes, etc.
 - We recommend **ConvNeXt-T size** which has less than 35M parameters.

ResNet vs ConvNeXt: Differences

ResNet Block

ConvNeXt Block

•Note that ConvNeXt has fewer BN/ReLU

- GELU is just more advanced ReLU
- Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri. "<u>Activation functions in deep</u> <u>learning: A comprehensive survey and benchmark.</u>" Neurocomputing (2022).

ResNet vs ConvNeXt

	output size	• ResNet-50	 ConvNeXt-T 	
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96\\ 1 \times 1, 384\\ 1 \times 1, 96 \end{bmatrix} \times 3$	
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192\\ 1 \times 1, 768\\ 1 \times 1, 192 \end{bmatrix} \times 3$	
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	
FLOPs		4.1×10^{9}	$4.5 imes 10^9$	
# params.		$25.6 imes 10^6$	$28.6 imes 10^6$	

Mobile Block

The goal of MobileNet blocks is to be parameter efficient.
They do so by making extensive use of **depth-wise convolutions** and **point-wise convolutions**

•Considering just a single output channel

A Normal Convolution (Another Diagram)

Fig. 2: Functional interpretation of 2D convolution (source)

•Considering a single output channel

•Considering all output channels

Depth-wise Convolutions

•Shorthand for "Depth-wise separable convolutions"

• "Depth"-wise separable, because considering channels as "depth", perform convolutions on them **independently**

Depth-wise Convolutions (Another Diagram)

Point-wise Convolutions

- "Point"-wise convolutions because each pixel is considered independently
- •Considering just a single output channel:

Image 7: Pointwise convolution, transforms an image of 3 channels to an image of 1 channel

Point-wise Convolutions

- "Point"-wise convolutions because each pixel is considered independently
- •Considering all output channels:

Image 8: Pointwise convolution with 256 kernels, outputting an image with 256 channels

Summary

•A normal convolution mixes information from both different channels and different spatial locations (pixels)

•A depth-wise convolution only mixes information **over spatial locations**

• Different channels do not interact.

•A point-wise convolution only mixes information **over different channels**

• Different spatial locations do not interact

Mobile Block

- •Again, to understand an architecture, we mostly need to understand its **blocks**.
- •All that changes for blocks in different stages is the base # of channels

Mobile Block

- •The core block has three steps:
 - Feature Mixing
 - Spatial Mixing
 - Bottlenecking Channels

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

Mobile Block: Feature Mixing

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

•A point-wise convolution that *increases the channel dimension* by an "expansion ratio"

Mobile Block: Spatial Mixing

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

•A depth-wise convolution that communicates information over different spatial locations.

Mobile Block: Bottlenecking Channels

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

•Point-wise convolution to reduce channel dimension by the same expansion ratio.

ConvNeXt

- •A 7x7 depth-wise convolution.
- •A point-wise convolution increasing # of channels
- •A point-wise convolution decreasing # of channels
- •Residual Connection

- •A point-wise convolution increasing # of channels
- •A 3x3 depth-wise convolution.
- A point-wise
 convolution decreasing
 # of channels
- •Residual Connection

ConvNeXt

•A 7x7 depth-wise convolution.

- •A point-wise convolution increasing # of channels
- •A point-wise convolution decreasing # of channels
- •Residual Connection

- A point-wise
 convolution increasing #
 of channels
- •A 3x3 depth-wise convolution.
- A point-wise convolution decreasing # of channels
- •Residual Connection

ConvNeXt

- •A 7x7 depth-wise convolution.
- Feature Mixing •A point-wise convolution increasing # of channels
- •A point-wise convolution decreasing # of channels
- Residual Connection

- •A point-wise convolution increasing # of channels
- •A 3x3 depth-wise convolution.
- •A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt

- •A 7x7 depth-wise convolution.
- •A point-wise convolution increasing # of channels
- •A point-wise convolution decreasing # of channels
- •Residual Connection

Extremely Similar!

- •A point-wise convolution increasing #
 - of channels
- •A 3x3 depth-wise convolution.
- A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt vs MobileNetV2: Differences

•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

ConvNeXt vs MobileNetV2: Differences

- •So what changed? Some things did change.
- •The depth-wise convolution in ConvNeXt is larger kernel size (7x7).
- •The order of spatial mixing & feature mixing are flipped.
 - In ConvNeXt, depth-wise convolution operates on lower # of channels.
 In MobileNetV2, operates on higher # of channels.
- •Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

ConvNeXt vs MobileNetV2: Differences

- •So what changed? Some things did change.
- •The depth-wise convolution in ConvNeXt is larger kernel size (7x7).
- •The order of spatial mixing & feature mixing are flipped.
 - In ConvNeXt, depth-wise convolution operates on lower # of channels.
 - In MobileNetV2, operates on higher # of channels.
- •Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.
- •ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
 - Note: You will need to normalize the data if you use LN.
- •ConvNeXt recommends training via AdamW, MobileNetV2 recommends SGD

Other Interesting

Paper Res

ResNeXt (2016)

- https://arxiv.org/pdf/1611.05431.pdf
- · Generally a strict improvement to ResNet, but slower. It's like 3 lines of code changed.
- SENet (2017)
 - https://arxiv.org/pdf/1709.01507.pdf
 - Channel-wise attention in CNNs. It's like 20 lines of code.
- EfficientNet (2019)
 - https://arxiv.org/pdf/1905.11946.pdf
 - Optimized model scaling. Probably can hard code this with some effort.
- RegNet (2020)
 - <u>https://arxiv.org/pdf/2003.13678.pdf</u>
 - ResNet with optimized layer sizes. It's probably... 10 lines changed?
- ResNeSt (2020)
 - https://arxiv.org/pdf/2004.08955.pdf
 - ResNeXt on steroids + attention. I (we?) will be really impressed ©
- NFNet (2021, SOTA) Former SOTA
 - https://arxiv.org/pdf/2102.06171v1.pdf
 - Quite doable actually

Building Blocks

Input Image + Transformation

Choice of Model Training the model

S

The easy bit first....

Monitoring Training vs Validation Acc

- •The standard intuition of "overfitting" is if the training & validation gap is too large, you should stop training as it's overfitting.
- •However, in modern DL, this intuition is not as relevant.
- •XELoss != Accuracy
 - Model can keep improving after training accuracy hits 100%.
 - •There is recent research that finds that on some problems, training accuracy hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000,

validation hits 100%.

- •Of course, we can't train for that long, but train until validation stops improving.
 - Or just set a standard LR schedule/setup like "CosineAnnealingLR for 50 epochs" and just let it run.
 □ what I prefer to do.

How to tackle overfitting?

•There are *a lot* of different tricks to improving your CNN model.

•From the recent ConvNeXt paper:

(pre-)training config	ImageNet-1K 224 ²
optimizer	AdamW
base learning rate	4e-3
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	4096
training epochs	300
learning rate schedule	cosine decay
warmup epochs	20
warmup schedule	linear
layer-wise lr decay [6, 10]	None
randaugment [12]	(9, 0.5)
label smoothing [65]	0.1
mixup [85]	0.8
cutmix [84]	1.0
stochastic depth [34]	0.1/0.4/0.5/0.5
layer scale [69]	1e-6
gradient clip	None
exp. mov. avg. (EMA) [48]	0.9999

L G NI N/ D/O/D/

How to tackle overfitting?

- •There are *a lot* of different trick to improving your CNN model.
- •From the recent ConvNeXt paper
- •What we recommend trying first:
 - Label Smoothing (huge boost)
 - Stochastic Depth
 - DropBlock (paper)
 - Dropout before final classification layer
- •Then you can try the others
- Check out "Bag of Tricks for Image Classification with Convolutional Neural Networks"
 - https://arxiv.org/abs/1812.01187

(pre-)training config	ConvNeXt-T/S/B/L ImageNet-1K 224 ²
optimizer	AdamW
base learning rate	4e-3
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	4096
training epochs	300
learning rate schedule	cosine decay
warmup epochs	20
warmup schedule	linear
layer-wise lr decay [6, 10]	None
randaugment [12]	(9, 0.5)
label smoothing [65]	0.1
mixup [85]	0.8
cutmix [84]	1.0
stochastic depth [34]	0.1/0.4/0.5/0.5
layer scale [69]	1e-6
gradient clip	None
exp. mov. avg. (EMA) [48]	0.9999
	and the second se

Let's get real now....

Loss Functions

Face Verification + Face Recognition tasks (VGG Face2)

Face Classification

Face Verification

Types of Loss functions

Non Contrastive loss functions

Contrastive-Losses

Types of Loss functions

Non Contrastive loss functions

Contrastive-Losses

How to train models with such loss functions?

Approach 1 - Joint Loss Optimization

Approach 2 - Sequential (Fine-tuning)

Types of Contrastive Losses

- **1. Centre Loss**
- 2. Triplet Loss
- 3. Sphere Face (Angular Softmax)
- 4. CosFace Loss
- 5. ArcFace

Centre Loss

$$\mathcal{L}_{C} = rac{1}{2}\sum_{i=1}^{m} \|m{x}_{i} - m{c}_{y_{i}}\|_{2}^{2}$$

- Increases the disparity between classes using softmax
- Increases inter-class distance by reducing intra-class Euclidean distance by assigning centers to each class.
- Calculating the centre for each class, is difficult

Triplet Loss

$$Loss = \sum_{i=1}^{N} \left[\|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_+$$

- Involves sampling 3 images, an anchor, a positive (same class as anchor) and a negative (different class from anchor).
- Use a p-norm distance function to increase the difference between anchor and negative whilst minimizing distance between anchor and positive.
- Sampling hard positives and hard negatives is key and difficult

Triplet Loss

Sphere Face

$$L_{\text{ang}} = -\sum_{i} \ln \frac{\exp\left\{ \|\mathbf{x}_{i}\| \cos(m \cdot \theta_{y_{i},i})\right\}}{\exp\left\{ \|\mathbf{x}_{i}\| \cos(m \cdot \theta_{y_{i},i})\right\} + \sum_{j \neq y_{i}} \exp\left\{ \|\mathbf{x}_{i}\| \cos\left(\theta_{j,i}\right)\right\}}$$

- Makes use of an angular margin, imposed by heta
- The learned features construct a discriminative angular distance equivalent to the geodesic distance on a hypersphere manifold
- θ :- denotes the type of decision boundary learned, which leads to different margins for different classes

Sphere Face

M ~ Angular Margin

CosFace

$$L_{\rm lmc} = -\frac{1}{N} \sum_{i=1}^{N} \ln \frac{\exp\left\{s \cdot (\cos\left(\theta_{y_i,i}\right) - m)\right\}}{\exp\left\{s \cdot (\cos\left(\theta_{y_i,i}\right) - m\right)\right\} + \sum_{j \neq y_i} \exp\left\{s \cdot (\cos\left(\theta_{j,i}\right)\right\}}$$

- Similar to Sphere Face
- Forms the decision margin in cosine space rather than angular space.

ArcFace

$$L = -\frac{1}{N} \sum_{i=1}^{N} \ln \frac{\exp\left\{s \cdot \cos(\theta_{y_i,i} + m)\right\}}{\exp\left\{s \cdot \cos\left(\theta_{y_i,i} + m\right)\right\} + \sum_{j \neq y_i} \exp\left\{s \cdot \left(\cos(\theta_{j,i})\right\}\right\}}$$

- Builds on the concepts of the sphere face and cos face.
- Replaced the multiplicative angular margin in CosFace, with an additive margin 'm'

ArcFace

• The additive factor of 'm' has found to lead to better convergence as compared to its multiplicative counterpart in Sphere Face.

CMU Virtual Andrew

https://www.cmu.edu/computing/services/endpoint/software/virtual-andrew.html

CMU vtab –	
또 Ctrl+Alt+Del 🛱 US8 Devices > [2] Fullsc	creen ···
Command Prompt – C X	
Thu Sep 28 19:00:24 2023	
NIDIA-SMI 536.25 Driver Version: 536.25 CUDA Version: 12.2	Q
GPU Name TCC/WDDM Bus-Id Disp.A Volatile Uncorr. ECC Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M. NIG M.	¤i
N/A OC P8 N/A / N/A 1145MiB / 8192MiB 1% Default N/A N/A	
Processes: GPU G1 C1 PID Type Process name GPU Memory USage USage USage 0 N/A N/A 1588 C+6 51h2txyesy\ShellExperienceHost.exe N/A 0 N/A N/A 1896 C+6 51h2txyesy\ShellExperienceHost.exe N/A 0 N/A N/A 1896 C+6 51h2txyesy\StartInputHost.exe N/A 0 N/A N/A 1896 C+6 51h2txyesy\StartHoutSperienceHost.exe N/A 0 N/A N/A 1896 C+6 61ketyBalbase/Nticrosoft.Photos.exe N/A 0 N/A N/A 12860 C+6 70soft.Hofey.exe/NsartHenutsperienceHost.exe N/A 0 N/A N/A 12860 C+6 storyonot.ketgeVpalere.exe N/A 0 N/A N/A 12860 C+6 storyonot.ketgeVpalere.exe N/A 0 N/A N/A 12860 C+6 storyonot.ketgeVpalere.exe N/A 0 N/A N/A 14344 C+6 storyonot.ketgeVpalere.exe N/A 0 N/A N/A 16592 C+6 up\ui-launcher-\AdskAccessUIHost.ex	
	2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 3 2 3
	7:01 PM 9/28/2023