HW2 Bootcamp

Convolutional Neural Networks



HW?2 Part 1

Convolutional Neural Networks with Numpy
Slides kindly made by Aparajith



Resampling

* For loop is not required in python
« Look up np.kron
i Array slicing: [start:end: step]

* Things to remember

* Trying to compute the required shape while up sampling (some simple
formula you can think of?)

* Computing and storing the shape in forward.

* This is because the gradient should be the same shape as the input.



Convolutions

* You can perform convolutions in 2 ways:
* The Loopy way (Bad)
* Tensordot (Good)
* The more for loops you use for your questions, the more time it takes
to run.

* With tensordot, you don’t have to do all those broadcasting and
everything given in the write-up



Tensordot

* Ref:
https://numpy.org/doc/stable/reference/generated/numpy.tensordo
t.html

* Appendix of the write up has amazing documentation of it

* Don’t use for loops for convolution even though everything is given in
the lecture slides

* Tensordot is faster and helps you (also TAs) to debug easily

*You only need 1 for loop for convld and 2 for loops for conv2d. If you
are using more, then your implementation of tensordot is wrong even
if you get the answer right


https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html
https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html

Tensordot

» Before starting ConvXd.py, open a notebook and try to understand tensordot with random
examples
* Consider the shapes:
* Input: X(A, B, C); Weight: W(P, Q, R)
* You can do tensordot when you have matched shapes
* fB=Qand C=R,
* Tensordot(X, W, matched axes) -> Output(A, P)

. YO(ljJ can think that the output shape will be the shape of the unmatched axes in that
order

* Make sure inputs (input and weight) to tensordor have some matching axes. Why do you
need matching axes in convolution? (Hint: A filter only looks at a segment of input)

 Tip: Print shapes in your code to understand



Tensordot

(A, X,C,Y) (X,P,Q,Y) —_— (A, C, P Q)
L 2

Can you find the output pattern?

(X, Y) from input 1 matches to (X, Y) from input 2
Can you think in terms of axes?

Should match all the axes that you think needs to be matched. Not restricted to 2
axes



Convld to Conv2d

*Try to understand each step while coding convld

* Every step between Convld and Conv2d (forward and backward) are
identical

* While transitioning from Convld to Conv2d, you just need to account
for the extra dimension and do an extra something



Pooling

* Lectures have a basic pseudocode which can be developed
* You might need many loops for this task

* Np.max and np.unravel_index might be useful if you want to reduce the number of loops

» But multiple loops are acceptable for this particular task

* Backprop in both might is harder than forward, but if you know the
concept behind it, it will not be that hard.

* Look at the write up for images.



Easy way to understand gradient propagation

Input Kernels Output
(A) (2) (2)

We get 2 maps in backward for dLdZ. After some process for finding dLdA, you again get 2 maps. But A has
1 map and dLdA will also have the same shape. How to understand gradient propagation?



Easy way to understand gradient propagation

M
‘#I /
-
Input Kernels Output
(A) (2) (2)

Draw the influence diagram.



Easy way to understand gradient propagation

M
4—-? /
-
Input Kernels Output
(A) (2) (2)

Any small change dA will cause a change in both maps of Z.



Scanning MLP

* Appendix of HW2P1
* Tips to understand better: Draw everything

How Conv1ld sees the
input

How Linear sees the
input




Scanning MLP

Input:

MLP

Consider that the MLP takes
some input and produces 2
output features




Scanning MLP

MLP

Input:




Scanning MLP

MLP




Scanning MLP

Kernel size=3




Scanning MLP

You did this in HW1P2 when
you used a non-zero context

Flatten




Scanning MLP

”””””’,,ff"

|

Flatten

MLP




Scanning MLP

”””””’,,ff"

\\Qaﬁen

MLP




Scanning MLP

Output:

Input:




Scanning MLP

Output:

Input:

Which gives in_channels = 3, out_channels = 2, kernel_size = 3, stride = 1

We transformed Linear(9, 2) to Conv1d(3, 2, kernel_size= 3, stride= 1)



CNN Model

e Just calling all the layers which you implemented previously
* Only thing to think about: Initialization size of the final Linear Layer?

* Errors which you may get:
* If you have a closeness error (true_divide error), change to np.tanh()



