
HW2 Bootcamp
Convolutional Neural Networks



HW2 Part 1
Convolutional Neural Networks with Numpy

Slides kindly made by Aparajith



Resampling

• For loop is not required in python
• Look up np.kron
• Array slicing: [start:end:step]

• Things to remember
• Trying to compute the required shape while up sampling (some simple 

formula you can think of?)

• Computing and storing the shape in forward.

• This is because the gradient should be the same shape as the input. 



Convolutions

• You can perform convolutions in 2 ways:
• The Loopy way (Bad)

• Tensordot (Good)

• The more for loops you use for your questions, the more time it takes 
to run. 

• With tensordot, you don’t have to do all those broadcasting and 
everything given in the write-up



Tensordot

• Ref: 
https://numpy.org/doc/stable/reference/generated/numpy.tensordo
t.html

• Appendix of the write up has amazing documentation of it 
• Don’t use for loops for convolution even though everything is given in 

the lecture slides

• Tensordot is faster and helps you (also TAs) to debug easily

• You only need 1 for loop for conv1d and 2 for loops for conv2d. If you 
are using more, then your implementation of tensordot is wrong even 
if you get the answer right

https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html
https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html


Tensordot

• Before starting ConvXd.py, open a notebook and try to understand tensordot with random 
examples

• Consider the shapes:
• Input: X(A, B, C); Weight: W(P, Q, R)
• You can do tensordot when you have matched shapes
• If B = Q and C = R,

• Tensordot(X, W, matched axes) -> Output(A, P)
• You can think that the output shape will be the shape of the unmatched axes in that 

order
• Make sure inputs (input and weight) to tensordor have some matching axes. Why do you 

need matching axes in convolution? (Hint: A filter only looks at a segment of input)

• Tip: Print shapes in your code to understand 



Tensordot

(A, X, C, Y) (X, P, Q, Y) (A, C, P, Q) 

(X, Y) from input 1 matches to (X, Y) from input 2
Can you think in terms of axes?

Can you find the output pattern?

Should match all the axes that you think needs to be matched. Not restricted to 2 
axes



Conv1d to Conv2d

• Try to understand each step while coding conv1d

• Every step between Conv1d and Conv2d (forward and backward) are 
identical

• While transitioning from Conv1d to Conv2d, you just need to account 
for the extra dimension and do an extra something



Pooling

• Lectures have a basic pseudocode which can be developed

• You might need many loops for this task
• Np.max and np.unravel_index might be useful if you want to reduce the number of loops

• But multiple loops are acceptable for this particular task

• Backprop in both might is harder than forward, but if you know the 
concept behind it, it will not be that hard.

• Look at the write up for images.



Easy way to understand gradient propagation

Input 
(A)

Kernels 
(2)

Output 
(Z)

We get 2 maps in backward for dLdZ. After some process for finding dLdA, you again get 2 maps. But A has 
1 map and dLdA will also have the same shape. How to understand gradient propagation?



Easy way to understand gradient propagation

Input 
(A)

Kernels 
(2)

Output 
(Z)

Draw the influence diagram.



Easy way to understand gradient propagation

Input 
(A)

Kernels 
(2)

Output 
(Z)

Any small change dA will cause a change in both maps of Z. 

dA



Scanning MLP

• Appendix of HW2P1

• Tips to understand better: Draw everything

How Conv1d sees the 
input

How Linear sees the 
input



Scanning MLP

MLP

Consider that the MLP takes 
some input and produces 2 
output features

Input: 



Scanning MLP

MLP

Input: 



Scanning MLP

MLP



Scanning MLP

Kernel size=3 



Scanning MLP

Flatten

MLP

You did this in HW1P2 when 
you used a non-zero context



Scanning MLP

Flatten

MLP



Scanning MLP

Flatten

MLP



Scanning MLP

Input: 

Output: 



Scanning MLP

Which gives in_channels = 3, out_channels = 2, kernel_size = 3, stride = 1

We transformed Linear(9, 2) to Conv1d(3, 2, kernel_size= 3, stride= 1)

Input: 

Output: 



CNN Model

• Just calling all the layers which you implemented previously

• Only thing to think about: Initialization size of the final Linear Layer?

• Errors which you may get:
• If you have a closeness error (true_divide error), change to np.tanh()


