
Homework 1
An Introduction to Neural Networks

11-785: Introduction to Deep Learning (Fall 2023)

OUT: September 6, 2023
Early Deadline/HW1P2 MCQ Deadline: September 14, 2023, 11:59 PM

DUE: September 28, 2023, 11:59 PM
Code Submission Deadline: October 5, 2023, 11:59 PM

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with and work with other students on homework assignments.

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– Meeting regularly with your study group to work together is highly encouraged. You may discuss
ideas and help debug each other’s code. You can even see from each other’s solution what is
effective, and what is ineffective. You can even ”divide and conquer” to explore different strategies
together before piecing together the most effective strategies. However, the actual code used to
obtain the final submission must be entirely your own.

• Overview:

– Part 2: This section of the homework is an open ended competition hosted on Kaggle.com, a
popular service for hosting predictive modeling and data analytics competitions. The competition
page can be found here.

– Part 2 Multiple Choice Questions: You need to take a quiz before you start with HW1-Part 2.
This quiz can be found on Canvas under HW1P2: MCQ (Early deadline). It is mandatory
to complete this quiz before the early deadline for HW1-Part 2.

– Part 2 Code Submission: You need to submit your notebook on Autolab after the final
deadline. More information will be shared on Piazza.

• Submission:

– Part 2: See the the competition page for details.

– Part 2 Code: Autolab page for the code submission will be shared on Piazza after the deadline.

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/
https://www.kaggle.com/t/4aa2130b64fc4855ad74aaf293688a60
https://www.kaggle.com/t/4aa2130b64fc4855ad74aaf293688a60

• Note:

– The maximum number of parameters allowed for the models for this HW is 25 million (including
ensembles).

2

Homework objective

After this homework, you would ideally have learned:

• To solve a medium-scaled classification problem using an MLP

– How to set up the MLP

– How to handle the data

– How to train the model

– How to optimize the model

• To explore architectures and hyperparameters for the optimal solution

– To identify and tabulate all the various design/architecture choices, parameters and hyperparam-
eters that affect your solution

– To devise strategies to search through this space of options to find the best solution.

• The process of staging the exploration

– To initially set up a simple solution that is easily implemented and optimized

– To stage your data (e.g. by initially working on a subsample of the training data) to efficiently
search through the space of solutions.

– To track losses and performance on validation data to ensure the code is working properly and
the model is being trained properly

– To subset promising configurations/settings and then evaluate those on the larger (complete)
dataset

• To engineer the solution using your tools

– To use objects from the PyTorch framework to build an MLP.

– To deal with issues of data loading, memory usage, arithmetic precision etc. to maximize the time
efficiency of your training and inference.

3

Checklist

Here is a checklist page that you can use to keep track of your progress as you go through the writeup
and implement the corresponding sections in your starter notebook. As you complete each function in the
notebook, you can check the corresponding boxes aligned with each section. It is recommended that you go
through this writeup and starter notebook simultaneously step by step.

1. Getting Started

Complete Quiz-0

Download starter notebook and set up virtual environment (optional)

Install Kaggle API and create a directory

Download dataset .npz files from Kaggle

2. Complete the AudioDataset class

Revise recitations for Dataloaders and OOP if necessary, refer Appendix

Define label index mapping in init ()

Assign data index mapping, length, context, and offset to self

Zero pad data as needed for context size

Calculate starting and ending timesteps using offset and context in getitem ()

Return reshaped frames at index with context and corresponding phoneme label

3. Complete training loop train model()

Create dataloader for the training dataset

Set model in ’Training Mode’

Clear the gradients

Compute the model output and the loss

Complete the Backward Pass

Update model weights

4. Complete inference loop evaluate model()

Set model to ’Evaluation Mode’ and create validation set dataloader

Compute model output in ”no grad” mode

Calculate validation loss using model output

Get most likely phoneme as prediction from the model output

Calculate validation accuracy

5. Hyperparameter Tuning

Make initial submission before early submission deadline

Use Weights and Biases to log metrics for each epoch

Make sure the model is saved after every few epochs

Try changing the parameters listed in Section-10 to improve results

Attend office hours if you need help :)

4

Objectives

The main goal of this homework is to explore neural networks for speech recognition, mainly focusing on
phoneme state labelling.

Speech recognition is an important field in deep learning with multiple applications. Speech is a fundamental
form of human communication. Speech recognition involves converting spoken language into written text
or data that could be understood by machines. Speech data refers to audio recordings of human speech,
while phonemes represent the smallest units of sound that can convey a different meaning(bake, take: b,t).
Spectrograms are visual representations of the acoustic properties of speech signals, i.e. captures the changes
in the frequency over time.

The dataset provided has speech data in the form of Mel spectrograms (more about it ahead in the writeup).
The training data has the corresponding phonemes for this data and we need to train an MLP for predicting
the same on the test dataset.

In this homework, you would be building a multilayer perceptron(MLP) that can effectively recognize and
label the phoneme states in the training data. An MLP is a type of neural network that comprises multiple
layers of perceptrons, that help it capture the features and patterns of the data. Here, we aim to deepen your
knowledge of neural networks, and in addition to that you would work on parameter and hyperparameter
tuning. This would help it generalize and predict more accurately and hence enhance its ability to recognize
and identify the phonemes.

5

Introduction : Frame Level Classification of Speech

This part of the homework is a live competition on kaggle.

In this challenge you will take your knowledge of feedforward neural networks and apply it to a more useful
task than recognizing handwritten digits: speech recognition. You are provided a dataset of audio recordings
(utterances) and their phoneme state (subphoneme) labels. The data comes from articles published in
the Wall Street Journal (WSJ) that are read aloud and labelled using the original text. If you have not
encountered speech data before or have not heard of phonemes or spectrograms, we will clarify the problem
further.

1 Task

Your task is to generate predictions for the phonemes of the test set. You will be evaluated on the accuracy
of the prediction of the phoneme state labels for each frame in the test set. Grade cut-offs are released after
the early deadline. For detailed information, please look at the kaggle page. If you have not encountered
speech data before or have not heard of phonemes or spectrograms, we will clarify the problem further. The
training data comprises of:

• Speech recordings (raw mel spectrogram frames)

• Frame-level phoneme state labels

The test data comprises of:

• Speech recordings (raw mel spectrogram frames)

• Phoneme state labels are not given

Your job is to identify the phoneme state label for each frame in the test data set. It is important to note
that utterances are of variable length.

2 Getting Started

The starter notebook contains the basic building blocks for training the MLP. Students must follow the flow
diagram provided below to get started.

The starter notebook contains a dataset class - AudioDataset. The class reads all utterances from the
folders into a list, and concatenates all of them to create one huge utterance along with their corresponding
labels. The concatenated array of utterances are then padded with zeros on the beginning and the end as
mentioned in Section 5.2. The class returns a frame of interest with context frames around it, and the frame’s
corresponding phoneme label at each index. For detailed information on overall deep learning workflow, refer
to Recitation 0.

6

https://www.kaggle.com/t/4aa2130b64fc4855ad74aaf293688a60
https://www.kaggle.com/t/4aa2130b64fc4855ad74aaf293688a60

Figure 1: How to use starter notebooks

3 Phonemes and Phoneme States

As letters are the atomic elements of written language, phonemes are the atomic elements of speech. It is
crucial for us to have a means to distinguish different sounds in speech that may or may not represent the
same letter or combinations of letters in the written alphabet.

For this challenge, we will consider a total of 40 phonemes in this language.

A powerful technique in speech recognition is to model speech as a markov process with unobserved states.
This model considers observed speech to be dependent on unobserved state transitions. We refer to these
unobserved states as phoneme states or subphonemes. For each phoneme, there are 3 respective phoneme
states. The transition graph of the phoneme states for a given phoneme is as follows:

Example: [”+BREATH+”, ”+COUGH+”, ”+NOISE+”, ”+SMACK+”, ”+UH+”, ”+UM+”, ”AA”, ”AE”,
”AH”, ”AO”, ”AW”, ”AY”, ”B”, ”CH”, ”D”, ”DH”, ”EH”, ”ER”, ”EY”, ”F”, ”G”, ”HH”, ”IH”, ”IY”,
”JH”, ”K”, ”L”, ”M”, ”N”, ”NG”, ”OW”, ”OY”, ”P”, ”R”, ”S”, ”SH”, ”SIL”, ”T”, ”TH”, ”UH”, ”UW”,
”V”, ”W”, ”Y”, ”Z”, ”ZH”]

Hidden Markov Models (HMMs) estimate the parameters of this unobserved markov process (transition and
emission probabilities) that maximize the likelihood of the observed speech data. Your task is to instead take

7

a model-free approach and classify mel spectrogram frames using a neural network that takes a frame (plus
optional context) and outputs class probabilities for all 40 phoneme states. Performance on the task will
be measured by classification accuracy on a held out set of labeled mel spectrogram frames. Training/dev
labels are provided as integers [0-39].

4 Speech Representation

Raw speech signal (also known as the speech waveform) is stored simply as a sequence of numbers that
represent the amplitude of the sound wave at each time step. This signal is typically composed of sound
waves of several different frequencies overlaid on top of one another. For human speech, these frequencies
represent the frequencies at which the vocal tract vibrates when we speak and produce sound. Since this
signal is not very useful for speech recognition if used directly as a waveform, we convert it into a more useful
representation called a “melspectrogram” in the feature extraction stage.

5 Feature Extraction

The variation with time of the frequencies present in a particular speech sample are very useful in determining
the phoneme being spoken. In order to separate out all the individual frequencies present in the signal, we
perform a variant of the Fourier Transform, called the Short-Time Fourier Transform (STFT) on small,
overlapping segments (called frames, each of 25ms) of the waveform. A single vector is produced as the result
of this transform. Since we use a stride of 10ms between each frame, we end up with 100 vectors per second of
speech. Finally, we convert each vector into a 28-dimensional vector (refer the links in the optional readings
section for exact details of how this is done). For an utterance T seconds long, this leaves us with a matrix
of shape (100*T, 28) known as the melspectrogram. Note that in the dataset provided to you, we have
already done all of this pre-processing and provided the final (*, 28) shaped melspectrograms to you.
You can refer to the recitation on Data Pre-processing to understand this better. An illustration of this
process is represented in the figure below.

The data provided in this assignment consists of these melspectrograms, and phoneme labels
for each 28-dimensional vector in the melspectrogram. The task in this assignment is to predict
the label of a particular 28-dimensional vector in an utterance.

5.1 Data Files

You can find the training and test data under the ’Data’ tab on Kaggle.

A diagrammatic representation of the data is as follows:

data

train-clean-100

mfcc (28539,)

transcript (28539,)

dev-clean

mfcc (2703,)

transcript (2703,)

test-clean

mfcc (2620,)

We recommend that you run you code and ablations using a fraction of the train-clean-100 training set, and
then the model again using the full training set once you figure out your best model and configuration.

5.2 Context

Since each vector represents only 25ms of speech it may not be sufficient to feed only a single vector into the
network at a time. Instead, it may be useful to provide the network with some “context” of size K around

8

https://www.kaggle.com/competitions/11785-hw1p2-f23/data

Figure 2: Feature extraction

Figure 3: Data representation

each vector in terms of additional vectors from the speech input.

Concretely, a context of size 5 would mean that we provide an input of size (11, 28) to the network - the size
11 may be explained as : the vector to predict the label for, 5 vectors preceding this vector, and 5 vectors
following it. It is worth thinking about how you would handle providing context before one of the first K
frames of an utterance or after one of the last K frames.

Hint: There are several ways to implement this, but you could try:

9

1. Concatenating all utterances and padding with K 0-valued vectors before and after the resulting matrix

OR

2. Pad each utterance with K 0-valued vectors, at the extra cost of bookkeeping the beginning index of
each utterance’s first vector.

Note: When loading the data and adding context, you might want to add some zero padding to every
utterance for better results. The way we add context for the first and last frame of the utterance is to add
some form of zero padding. For example, if we consider a single utterance of dimension (1000, 28) and we
consider the context to be 5, then we want to implement zero padding before and after this utterance such
that the dimension becomes (1010, 28). Subsequently, the input layer will have (1+2*context size)*28 nodes.
Try to think about why this calculation would make sense with respect to the Dataloader and the speech
data given. Context is a hyperparameter and the recommended value of context to be set for this homework
is between 0-50. For more information on context, refer to Appendix B.2

Figure 4: Context: Movement of spectrum from adjacent frames on either side has cues about what the
frame in question could represent

5.3 Cepstral Normalization 1

In speaker recognition, we want to remove any channel effects (impulse response of vocal tract, audio path,
room, etc.). Cepstral Normalization is a helpful technique you could perform in order to achieve this.

Providing that the input signal is x[n] and channel impulse response is given by h[n], the recorded signal
is a linear convolution of both, and by taking the Fourier Transform, due to the convolution-multiplication
equivalence property of Fourier Transform, we get Y[f] = X[f] · H[f].

The next step in the calculation of cepstrum is taking the logarithm of the spectrum:

Y[q] = log Y[f] = log X[f] · H[f]) = X[q] + H[q]

because of the log property. Now we know that in the cepstral domain any convolutional distortions are
represented by addition. Let’s assume that all of them are stationary (which is a strong assumption as a
vocal tract and channel response are not changing) and the stationary part of speech is negligible. We can
observe that for every i-th frame true is:

Yi[q] = H[q] +Xi[q] (1)

By taking the average over all frames we get:

1

N

∑
i

Yi[q] = H[q] +
1

N

∑
i

Xi[q] (2)

1https://dsp.stackexchange.com/questions/19564/cepstral-mean-normalization

10

If we define the difference between Yi[q] and the average:

Di[q] = Yi[q]−
1

N

∑
j

Yj [q]

= H[q] +Xi[q]− (H[q] +
1

N

∑
j

Xj [q]

= Xi[q]−
1

N

∑
j

Xj [q]

(3)

We now removed channel effects from our signal. In simple words, to our cepstrum, we have subtracted the
average from each coefficient and divided by standard deviation to perform Cepstral Normalization.

6 Evaluation

The evaluation metric for this competition is frame-level accuracy. There are a total of 36191134 frames in
the test set. You will be ranked by unweighted accuracy on those phoneme state labels. This homework is
worth 100 points. The distribution of the points is as follows:

3 points: Early MCQs (due September 14 2023)

7 points: Preliminary Submission (due September 14 2023)

90 points: High Cutoff

70 points: Medium Cutoff

50 points: Low Cutoff

30 points: Very Low Cutoff

7 Submission Format

Submission files should contain two columns: Id and Label.

Id: The 0-based index of the frame in the test set [0-1943252] (data type: int).

Label: The predicted label of the phoneme [0-39] (data type: int).

Id=0 is the first frame in the first utterance.

Id=36191134 is the last frame in the last utterance.

A sample submission file is available on the Data page on Kaggle. Please submit your prediction/submission
files here. You will be allowed a maximum of 10 submissions every day.

You need to make atleast one submission (of a basic model) to Kaggle before the early deadline.

7.1 Mandatory Preliminary Submission

There is a mandatory preliminary submission and an associated MCQ that, together, are worth 10% of the
points for the homework. The deadline for this preliminary submission is posted on the course website and
piazza. This submission is intended to get you started quickly on the homework. We provide starter code in
the form of a notebook that should, hopefully, make it relatively straightforward to make this submission.

For the preliminary submission, you must download the data, train a very simple preliminary model with it
using the sampled (10%) dataset, using the (code in the) notebook provided. You must then process both
the validation and evaluation data with the obtainded model, and submit the evaluation results to Kaggle.
You must also answer the preliminary-submission MCQ on canvas, which queries you about the homework,

11

https://www.kaggle.com/t/4aa2130b64fc4855ad74aaf293688a60/submit

the values of specific data instances, and the loss obtained while training the preliminary model. The MCQ
is worth 3 points. The actual preliminary submission is worth 7 points. You must get an accuracy of at least
46% on the preliminary submission to get the 7 points. If you do not make the cutoff you get 0 points for
the submission.

You will find attached with this writeup, a Python notebook to get you started with the homework. It is
not mandatory to use this notebook, and you are free to write your own code. With the starter code and
the sampled dataset, you will be able to reach the early submission cutoff. Note: You need to submit your
results that crosses the preliminary cutoff before the early deadline. Not doing so will cost you 7 points.
The preliminary cutoff is set much lower than the final cutoff, and running the starter notebook should be
enough to reach this cutoff.

7.2 Usage

• Download data from Kaggle: the data in the toy problem is the same as the one for the main dataset,
although a very small portion of the main dataset. Try to implement the interface with Kaggle, data
downloading and decompressing.

• Implement the data loader and network model. You can implement a simple one layer network for
toy problem to assist testing other parts of codes and enlarge your network once training on the main
dataset.

• Set up your training workflow and make sure it is running on toy dataset.

• Since the toy dataset is small and not representative, the trained model on toy dataset cannot accurately
indicate the performance of your network.

Notice that the toy problem is used for making sure your codes runnable, checking the type and shape of the
data, learning to interface with the Kaggle. The accuracy of the model on the toy problem cannot indicate
the performance of your network on the main dataset.

7.3 Ablations

Ablations are performed by the team to get an idea about different parameters and hyperparameters tuning
and how the models would work alongside getting the best model. If planned properly by the team, ablations
would be very helpful and handy when it comes to tuning the model.
An example of an ablation sheet: Ablation Sheet

12

https://docs.google.com/spreadsheets/d/1m3o8W4YLGV9xa7EONYizTga9-oUkA-TUEH2_xRyg3i0/edit?usp=sharing

8 Hyperparameter Tuning

Below are a few variations in hyperparameters that might help you reach the low cutoff.

Hyperparameters Values

Number of Layers 2-8
Activations ReLU, LeakyReLU, softplus, tanh, sig-

moid
Batch Size 64, 128, 256, 512, 1024, 2048
Architecture Cylinder, Pyramid, Inverse-Pyramid,

Diamond
Dropout 0-0.5, Dropout in alternate layers
LR Scheduler Fixed, StepLR, ReduceLROnPlateau,

Exponential, CosineAnnealing
Weight Initialization Gaussian, Xavier, Kaiming(Normal and

Uniform), Random, Uniform
Context 0-50
Batch-Norm Before or After Activation, Every layer

or Alternate Layer or No Layer
Optimizer Vanilla SGD, Nesterov’s momentum,

RMSProp, Adam
Regularization Weight Decay
LR 0.001, you can experiment with this
Normalization You can try Cepstral Normalization

Table 1: Hyperparameter Tuning

Weight initialization is an important aspect before training a neural network. It refers to defining initial
values for the neural network prior to training. The weights have to be appropriately assigned to ensure
good performance of the model.

Along with these, R-Drop: Regularized Dropout might also lead to better performance. Additonally, mask-
ing might also lead to better performance.

Masking is the technique to mask or block certain segments of the audio data to enhance the model during
training. The main two types of masking include the following:

1. Time masking: block the time frames of the audio signal

2. Frequency masking: block the frequency bands of the audio signal

Masking would help reduce noise in the data and help better generalization for the model.

9 Optional Reading

Go through this link and Piazza Post @127 to understand how Mel-Spectrograms are generated.

13

https://arxiv.org/abs/2106.14448
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://piazza.com/class/lgz7orh89m76aw/post/127

Appendices

A Early Submission Architecture

Very Low Cutoff Architecture: (65%) This is the straightforward architecture in your starter notebook
and consists of no hidden layers. (should cross cutoff within a few epochs when trained on train-100)

Context: 20
Hidden layers: 0
Activation: RELU
Learning rate: 1e-3
Optimizer: Adam

B Dataloader

Data is the backbone of any Deep Learning system and Pytorch makes it easy to do this using the Dat-
aloader functionality. Before beginning we would strongly recommend watching the dataloader recitation
and completing HW0P2(it will take you approximately an hour but save you a lot of trouble later).
Having watched the recitation, you know the dataset class is crucial since this can speed up your training
significantly and if you do not implement it efficiently it could be the bottle-neck.

B.1 Data

Our data consists of a folder containing MFCCs, another consisting of the transcripts. We have 28539 record-
ings and corresponding 28539 transcripts, each recording is of different lengths. Which basically means for
each timestep, we have a translated phoneme. For instance, the first recording(”0019-000198-000”) has shape
(196,28) and the transcript is of length 198(why the extra 2 phonemes?).

Figure 5: Visualized MFCC

B.2 Context 2

As explained above, to be able to understand what phoneme a timestep corresponds to, we need some
”context” and for that we look for some information before the timestep and some information after the
timestep. To make this clearer, let’s consider some timestep t, and some context c, and further let the
phoneme corresponding to the this timestep be p. For our network we want the dataloader to take the
information from [t− c, t+ c] (our input) and return the phoneme (our target).

2From Private Piazza post @297 on F22 by Vish Srinivasan

14

For example, let’s consider a short example. Say we considered frames as text for the sake of simplicity in
illustration, and we had the following recording -

mfcc = [A B C D E]

Now in your get item function, if we wanted to get the frame at index 0, without any context, we would
get mfcc[0]=A. Now we want to pad this recording with context zeros at the beginning and the end, to
provide the MLP with window frames, instead of one frame at a time, to predict the phoneme at index i.
Let’s consider context as 3. So the mfcc now becomes:

mfcc = [0 0 0 A B C D E 0 0 0]

Now if we wanted to access the first frame at index i = 0, we would get mfcc[0] = 0, which is not intended,
as what we really want to access is A, with 3 frames behind it, and 3 frames in front.

So your start and end indices for slicing a window of frames would theoretically look like this first:

start = i - context

end = i + context + 1

window_of_interest = mfcc[start:end] = mfcc[i-context:i+context+1]

But because we pad to get context around the first and last frame, we have to now offset the padding to
access the intended frame of interest. The way we would access A again would be using frame[0+context].
We have to offset our starting index for a frame at index i because we padded the beginning and end of our
recording. We do the same for the ending index. So the right way to access our frame window now becomes:

start = i - context + context = i

end = i + context + context + 1 = i + 2*context + 1

window_of_interest = mfcc[start:end] = mfcc[i:i+2*context+1]

This way, if you are trying to access A again in the padded mfcc, window of interest would correspond to
mfcc[0:7], returning [0 0 0 A B C D], which has 3 zero contexts before and after our frame of interest A.

B.3 Dataset class

For this homework, you will be implementing the getitem(), len() and the init() functions of our Dataset
class(AudioDataset). We want to load all our data in the constructor(init), so that we can access the in-
formation at a given index using the getitem(index). The len() just gives the length of the dataset. The
getitem will return the input and target for training, so the input will be information at the index but with
context on both sides. While, the target will be the phoneme. We have given you the list of phonemes, but
neural networks only return numerical datatypes(double, float, int etc.) so we want you to convert or map
the given input to a numerical value which you can convert or map back to the original value while testing.
All this computation which is common and not dependent on a specific index should always be done in the
constructor and not the getitem() or it would be called every time data is queried.
Now, lets come to some finer details of the getitem() function and its implications on the padding the data.
We are taking context in each frame, how will this affect the edges of the data? We will have to pad it to be
able to get the data on the edges. This will mean that i=0 of X(mfccs) and Y(transcript) does not match?
Your job is to figure out how do we access the data such that we get aligned input and labels.

15

	Task
	Getting Started
	Phonemes and Phoneme States
	 Speech Representation
	Feature Extraction
	Data Files
	Context
	Cepstral Normalization https://dsp.stackexchange.com/questions/19564/cepstral-mean-normalization

	Evaluation
	Submission Format
	Mandatory Preliminary Submission
	Usage
	Ablations

	Hyperparameter Tuning
	Optional Reading
	Appendices
	Early Submission Architecture
	Dataloader
	Data
	Context From Private Piazza post @297 on F22 by Vish Srinivasan
	Dataset class

	qz: Off
	starter: Off
	kaggle: Off
	dataset: Off
	rect: Off
	labidx: Off
	labidx: Off
	labidx: Off
	timestep: Off
	idxpair: Off
	attndesc: Off
	attndesc: Off
	attndesc: Off
	attnmask: Off
	attndesc: Off
	attnmask: Off
	attndesc: Off
	attndesc: Off
	attndesc: Off
	attndesc: Off
	spellerunit: Off
	xent: Off
	wandb: Off
	tf: Off
	traindesc: Off
	fp: Off

