
Homework 3 Part 2
Utterance to Phoneme Mapping

11-785: Introduction to Deep Learning (Fall 2023)

Out: October 22, 2023, 11:59PM
Early Deadline/MCQ Deadline: October 31, 2023, 11:59PM

Due: November 9, 2023, 11:59PM

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and
Plagiarism.

– You are allowed to talk with and work with other students on homework assign-
ments.

– You can share ideas but not code, you must submit your own code. All submitted
code will be compared against all code submitted this semester and in previous
semesters using MOSS.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code
form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– Meeting regularly with your study group to work together is highly encouraged.
You may discuss ideas and help debug each other’s code. You can even see
from each other’s solution what is effective, and what is ineffective. You can
even ”divide and conquer” to explore different strategies together before piecing
together the most effective strategies. However, the actual code used to obtain
the final submission must be entirely your own.

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/

Homework Objective

After this homework, you would ideally have learned:

• To solve a sequence-to-sequence problem using Sequence models.

– How to set up GRU/LSTM based models on pytorch

– How to utilize CNNs as feature extractors

– How to handle sequential data

– How to pad / pack baches of variable length data

– How to train the model using CTC Loss

– How to optimize the model

– How to implement and utilize decoders such as greedy and beam decoders

• To explore architectures and hyperparameters for the optimal solution

– How to identify and tabulate all the various design/architecture choices, param-
eters and hyperparameters that affect your solution

– How to devise strategies to search through this space of options to find the best
solution

• The process of staging the exploration

– How to initially set up a simple solution that is easily implemented and optimized

– How to stage your data to efficiently search through the space of solutions

– How to subset promising configurations/settings and tune them to obtain higher
performance

• To engineer the solution using your tools

– How to use objects from the PyTorch framework to build a GRU/LSTM based
model

– How to deal with issues of data loading, memory usage, arithmetic precision etc.
to maximize the time efficiency of your training and inference

2

Checklist

This homework is fairly straightforward, as such, below is a short checklist of things you can
use to take inventory of your progress.

1. Write train and test (possibly val) dataset classes.

2. Build the basic LSTM based network with packing and padding

3. Write the Levenshtein distance function

4. Write training and evaluation loops

5. Write code for final inference and kaggle submission

6. Build a feature extractor into your model

7. Use more complex MLPs for classification

8. Please review Recitations 0A (Python Fundamentals), 0C (Numpy Fundamentals), 0D
(Pytorch Fundamentals), 0E (Google Colab), 0F (GCP), 0G (AWS), 0H (Kaggle), 0I
(Data Loaders), 0J (Data Sets), 0K (Data Preprocessing), 0L (Debugging), 0M (What
to do when you’re struggling), 0N (Cheating), 0O (Workflow of homeworks) and 0P
(Log and Monitor - WandB) for supplementary material that could be helpful for this
assignment.

9. Win at life.

Multiple Choice Questions

You need to take a quiz before you start with HW3-Part 2, which can be found on Canvas
under HW3P2-MCQ (Early deadline). It is mandatory to complete this quiz before the
early deadline for HW3-Part 2.

3

Contents

1 Introduction 5
1.1 Overview . 5
1.2 An Alignment Problem of Inputs and Outputs 6
1.3 The challenge tasks . 10

2 Problem Specifics 10
2.1 The Neural Network . 11
2.2 Training the network . 13

2.2.1 Viterbi training: Training with the best alignment 15
2.2.2 Training using all alignments . 16

2.3 Inference . 16
2.3.1 Greedy Search . 17
2.3.2 Beam Search . 17
2.3.3 Caveats . 18

3 Dataset 19
3.1 File Structure . 19

4 Padding and Packing Sequences 20
4.1 Forward Pass - RNNs . 20

5 Evaluation 22

6 Submission 23
6.1 Preliminary Submission . 23
6.2 Final Submission . 23

7 Conclusion 23

Appendices 24

A pBLSTM 24

B Viterbi Alignment 25

4

1 Introduction

• Key new concepts:

– CTC (Connectionist Temporal Classification)

– Decoding Strategies (Beam Search)

• Restrictions: You may not use any data besides that provided as part of this home-
work. Usage of any attention based techniques is not allowed.

• Automatic Speech Recognition (ASR): Kaggle Competition link: https://www.
kaggle.com/competitions/automatic-speech-recognition-asr

• Data Set: The data for 3p2 includes a list of 40 phonemes from English, a training set,
a validation set, and a test set. The training and validation data comprise (sequences
of feature vectors derived from) speech recordings, and the sequence of phonemes
representing the transcription for each utterance. The transcriptions are not time-
aligned to the speech feature vectors. You must use these to train your model. The
test data only comprise speech recordings. You must use your train model to derive
transcriptions for them.

1.1 Overview

Figure 1: Audio to phonemes

In homework 3p2, we return to the topic of speech recognition by predicting the phonemes
in a recording. Figure 1 illustrates the task at hand, where an audio recording of a person
saying the word “yes” has been passed though a neural network, which outputs the phonetic
transcription, /Y/ /EH/ /S/. In this assignment, you will be implementing RNNs and the
dynamic programming algorithm, Connectionist Temporal Classification, to generate such
labels.

The kind of output labels you must generate in this homework is somewhat in contrast
to what we did in HW1P2, which too addressed the problem of speech recognition. In
both homeworks the speech recordings are parametrized as a sequence of feature vectors
(mel spectral vectors, each representing a “frame” of speech), which arrive at a rate of
100 frames per second. In HW1P2, we labeled each of these frames independently – the
classification of one frame was not affected in any manner by the classification of any other
frame. Consequently, the speech was labeled at a rate of 100 labels per second. In light of
homework 1, if in our above example, if the word “yes” took a quarter second to utter, we
would have derived 25 vectors from the recording, and our actual labeling scheme would have
resulted in the label sequence /Y/ /Y/ · · · /Y/ /EH/ /EH/ · · · /EH/ /S/ · · · /S/ (with

5

https://www.kaggle.com/competitions/automatic-speech-recognition-asr
https://www.kaggle.com/competitions/automatic-speech-recognition-asr

a total of 25 such labels in all). It is rather unnatural to tag every frame of the signal in
this manner – if you were asked to label the phonemes in the recording yourself, you would
be very unlikely to label it in the above manner, with a sequence of 25 phonetic symbols.
Instead, you are far more likely to simply label it as /Y/ /EH/ /S/. Not only is this the
more natural way of labeling the recording, it also does not require you to address the rather
challenging problem of knowing exactly where one phoneme ended, and where the next one
began.

In 3p2, we want you to generate more natural predictions, regardless of how words have been
articulated in the speech recordings, so that the output of such an example would be /Y/
/EH/ /S/.

Figure 2 illustrates the problem. A sequence of feature vectors derived from a speech record-
ing goes into the network. The network must output the sequence of phoneme labels for the
recording.

The challenge inherent in this problem becomes apparent immediately. The output sequence,
/Y/ /EH/ /S/ is shorter in length than the input sequence, and doesn’t have a one-to-one
correspondence with it. Thus, while the output is order-aligned with the input (i.e. since
/Y/ occurs before /EH/ in the output, the portion of the input corresponding to /Y/ also
occurs before the portion of the input corresponding to /EH/), it is is not time-synchronous
(i.e. in one-to-one correspondence) with it. Also, it isn’t immediately apparent when (i.e.
at what times) the the symbols must be output. Thus, we must figure out how to output
an order-aligned time-asynchronous label sequence that best represents the input.

Figure 2: The network is required to take in a sequence of feature vectors (x1, · · · , x6 in our illustration) and
output a sequence of phonemes (/Y/ /EH/ /S/ in our illustration)..

Addressing this order-aligned time-asynchrony of the output is central to this homework.
We must determine how to design a neural network for such inference, how to train it, and
how to actually perform inference with it. We outline the solution and associated challenges
below.

1.2 An Alignment Problem of Inputs and Outputs

Speech recognition is an instance of a sequence-to-sequence conversion (or transduction),
the problem of converting (or transducing) input sequences to output sequences. Examples

6

include machine translation, where a word sequence in one language is converted to a word se-
quence in another language, dialog systems, where the word sequence in a query is transduced
to the word sequence in the response, and, of course speech recognition, where the sequence
of vectors in the speech input is converted to the sequences of words or phonemes in the out-
put. Sequence-to-sequence models are neural networks that perform sequence-to-sequence
conversion. In our problem, speech recognition, the output sequence is order-synchronous
with the input, though it may not be time-synchronous. Since the speech feature vectors
from a recording actually form a time series, and since this homework is an exercise on
recurrent neural networks, the neural network is an RNN.

Figure 3 re-illustrates the problem of Figure 2, explicitly showing the recurrent nature of
the neural network. The input to the model is a sequence of feature vectors (shown by the
orange boxes) from a speech recording. The network must analyze the input sequence and
generate the output phoneme sequence (e.g. “/Y/ /EH/ /S/”) that best matches the audio.

The issue is that the output is sporadic, not time-synchronous. It is unknown a priori which
phonemes occur in the output, the length of the output sequence, or even when to output
the phonemes the recording. How, then, do we deal with this problem?

Figure 3: Illustration of non-time-synchronous output. The sequence of speech feature vectors (orange boxes)
corresponds to the word “yes”, pronounced as the phoneme sequence “/Y/ /EH/ /S/”. The model must output
the identities of each of the phonemes at the termination of the phoneme.

We tackle the problem by decomposing the inference into a two-step process. In the first
step, a neural network generates outputs at every time step. This eliminates the uncertainty
of knowing when to generate the (sporadic) outputs. In the second stage, we perform a
dynamic programming (DP) search-like operation on the complete set of outputs generated
by the network, to generate the actual final output. Figure 4 illustrates the process. The
entire framework, including both components, is known as the “Connectionist Temporal
Classification” framework or CTC (although the term CTC is sometimes also used just to
refer to the DP component).

The problem of deriving an asynchronous symbol sequence from the time-synchronous output
of the neural network is now transferred to the DP module. As it turns out, this is a simpler
problem than having the network directly generate sporadic outputs.

7

Figure 4: Solving the asynchronicity problem through a two-stage solution: a) the neural
network computes outputs at every time step, b) a dynamic-programming block analyzes
the output of the network to determine the actual final time-asynchronous output.

The key to the problem is the realization that the neural network’s actual output at each
time is, in fact, the vector of probabilities for all the symbols (phonemes in this problem).
The final output layer of the network is a softmax layer that computes the probabilities for
each of the symbols P (AH), P (AE), P (B) etc at each time. This is illustrated in Figure 5.
Thus the DP must, in fact, operate on these probabilities.

Figure 5: At each time the network actually outputs a vector of probabilities for the symbols
(classes) in our “vocabulary”.

A very simple solution for order-synchronous, time-asynchronous inference is shown in Figure
6. The neural network derives the set of symbol probabilities for each input vector. The
DP stage simply greedily selects the most probable symbol at each time, and subsequently
“squeezes out” all repetitions of a symbol, to derive the final asynchronous output.

8

(a) At each time the network actually out-
puts a vector of probabilities for the sym-
bols (classes) in our “vocabulary”. The fig-
ure shows the generation of probabilites for
a sequence of 12 input vectors.

(b) Simply selecting the most probable sym-
bol at each time (shown by the red box) re-
sults in a symbol sequence (“- /AA/ /AA/
/B/ /B/ - - - /B/ /B/ - /AA/ /AA/” in
our example). “Squeezing” out repetitions
results in a compressed sequence (“- /AA/
/B/ - /B/ - /AA/” in our example), and
subsequently removing blanks from this com-
pressed sequence gives us our result (“/AA/
/B/ /B/ /AA/” in our example).

Figure 6: Simple two-stage solution, including (a) the derivation of probabilities from the
neural network, followed by (b) a greedy search over the probabilities and compression of
the resulting sequence, to obtain the asynchronous ouptput.

A critical component of this framework is the “blank” symbol, which must be included as
part of the symbol set output by the network (even though it is not actually a part of the
phoneme list for the language). The blank symbol represents an invisible, but real symbol
which behaves like any other symbol, but is removed from the final output sequence (because
it is invisible).

The greedy selection approach originally results in a sequence of symbols with many repe-
titions. For instance, in the example of Figure 6, the greedy output is “- /AA/ /AA/ /B/
/B/ - - - /B/ /B/ - /AA/ /AA/”. Eliminating repetitions gives us “- /AA/ /B/ - /B/ -
/AA/”. The blank symbol must be removed from this sequence to obtain the final output
“/AA/ /B/ /B/ /AA/”. The need for the blank symbol becomes apparent from this ex-
ample: if we had not had the blank as part of the network’s vocabulary, then the greedy
output would have been something like “/AA/ /AA/ /AA/ /B/ /B/ /B/ /B/ /B/ /B/ /B/
/AA/ /AA/ /AA/” (there would be no blanks). Compressing it would simply produce an
“/AA/ /B/ /AA/”, because the entire sequence of /B/s would compress to a single /B/ –
there is no other unambiguous way of compressing the sequence of /B/s. As a result, we
could not obtain genuine repetitions of a symbol, like the two /B/s in /AA/ /B/ /B/ /AA/.
The blank symbol resolves this problem: it enables us to generate genuine repetitions by
separating out the repetitions by inserting some blanks between them. In fact, even if our
inference mechanism is not greedy, the blanks remain critical for us to obtain unambiguous
asynchronous output.

9

1.3 The challenge tasks

The actual solution to the homework must address three challenges:

1. The structure of the neural network that computes the symbol probabilities
at each time, and how to train it

Since this is a homework focused on recurrent neural networks, and because speech is a
signal with distinct temporal structure, our neural networks must be based on recurrent
architectures. This is the only requirement imposed on you; various variations on the
theme described in Section 2.1 may be considered within this framework.

2. How to set up the DP such that losses can be computed from it in a manner
that is differentiable, and permits loss derivatives to be propagated to the
neural network

The actual output is produced after performing DP on the output of the network, and
not directly from the network. Losses are computed on the output of the DP module.
We must determine how to propagate their derivatives back through the DP block into
the network to train it.

3. How to perform actual inference using DP. (The simple greedy approach
shown above is just one solution; how do we improve on it?)

The greedy algorithm is only one possible approach to obtaining an asynchronous output
from the network, and may not even generate the most probable asynchronous output
sequence for an input. Better results may be obtained through inference techniques that
attempt to find the symbol sequence with the maximum total probability; the beam search
algorithm is one such. We will also investigate these.

Without further ado, let us dive into the problem.

2 Problem Specifics

For this assignment, you will be transcribing (converting) each speech recording into a se-
quence of phonemes from the list below. You will be evaluated on the accuracy of the
transcriptions you generate.

" ", "[SIL]", "NG", "F", "M", "AE", "R", "UW", "N", "IY", "AW", "V", "UH", "OW",

"AA", "ER", "HH", "Z", "K", "CH", "W", "EY", "ZH", "T", "EH", "Y", "AH", "B",

"P", "TH", "DH", "AO", "G", "L", "JH", "OY", "SH", "D", "AY", "S", "IH"

This list of 41 phonemes (39 actual phonemes, BLANK symbol and the [SIL] symbol repre-
senting silence) is not in alphabetic order. The above list of phonemes includes the BLANK
symbol at the index 0 and you are given a dictionary that includes the BLANK symbol. Note
that [SIL] is a distinct symbol representing silence, and is not a BLANK – the BLANK is

10

distinct from [SIL]. Also, after rearranging the phonemes into alphabetic order,
make sure the BLANK symbol is at the top of the list, at the 0 index. Some of
the routines we use later in this homework assume that BLANK is the zeroth symbol.

Thus, your model will be a recurrent neural network that produces 41 outputs at each time.

In the following sections, we will discuss optimal neural network structures for the task at
hand, how this model should be trained, and how to perform inference.

2.1 The Neural Network

As mentioned earlier, the neural network must be a recurrent network. This is the only
requirement imposed on you; however we may consider any of the following in designing the
actual network:

• As explained in the lecture, long-term memory is best retained by LSTMs (or LSTM-
like structures, such as GRUs), so our recurrent models may be based on LSTMs or
GRUs.

• For this homework we will assume that the entire speech recording is available before
we attempt recognition (i.e. we are not restricted to a “streaming” setup where speech
must be recognized as it arrives), so our recurrent networks can, in fact be bidirectional.

• Also, although the explanation in the previous section assumed that symbol probabil-
ities are computed for every input vector, this may not in fact be required, since the
asynchronous output symbol sequence typically has far fewer symbols than the num-
ber of vectors in the input. This means we could potentially downsample the input
sequence within the network to reduce its length by a uniform factor.

Other options may also be explored. Within these confines, let us consider how a typical
neural network may be setup.

The model will take in an input sequence of vectors X0, · · · , XN−1 and produce a sequence
of probability vectors. The input sequence of speech feature vectors exhibits both short-term
structural relations, and long-term contextual dependence. The model must try to capture
these dependencies. It can consist of one or more the following components:

• 1-D CNN layer. 1D CNNs capture the structural dependence between adjacent vectors in
the input. They may also have a stride greater than 1 (usually 2) in order to reduce the
feature rate by a factor equal to the stride.

• Bidirectional LSTM layers (Bi-LSTMS) to capture long-term contextual dependencies.

• A new variant of Bi-LSTMs called pyramidal Bi-LSTMs or pBLSTMs. pBLSTMs, like
CNNs with stride=2, reduce the time-resolution of the input by a factor of 2. See Appendix
A for a detailed description of pBLSTMs.

Here is a typical RNN model for speech recognition. It includes a pBLSTM for illustrative
purposes. For purposes of convenience (and as a reference for a future homework – HW4P2),
we have decomposed it into two parts, as shown in Figure 7. The first part of the network is

11

https://pytorch.org/docs/stable/generated/torch.nn.RNN.html

Figure 7: The neural network comprises two distinct components – an encoder, which con-
verts the sequence of inputs x0, · · · , xN into a sequence of latent embeddings E0, · · · , EN ,
and an output probability layer, comprising a linear layer followed by a softmax, which is
applied separately to each embedding to generate a probability vector Pt at each time t.

an “encoder”, which takes in the input sequence and produces a sequence of embeddings – a
sequence of vectors that represent “latent” features derived from the input. Comparing this
to a conventional RNN, the encoder is just the portion of the network until the final output
layer (i.e. until the penultimate layer). Note that if the encoder includes downsampling
layers (e.g. CNNs with stride greater than 1, or pBLSTM layers), the number of embedding
vectors output by it will be proportionally smaller than the length of the input sequence.

These embeddings are then passed to the output layer (which comprises a linear layer followed
by a softmax at each time, to generate a probability vector at each time.

The Encoder: A typical instance of an encoder comprises one or more initial layers of 1D
CNNs, followed by one or more layers of bidirectional LSTMs (Bi-LSTMs), and finally by
one or more layers of pBLSTMs. Note that each pBLSTM layer reduces the time resolution
by a factor of 2. The output of the final layer of the network is the sequence of embeddings.

Here is pseudocode for an example encoder that reduces the rate by a factor of 2. This is
only an example and the details of how you implement the model up to you. You must devise
your own architecture, and each of the modules (BiLSTM, pBLSTM, optionally CNNs or
ResNets, and the overall encoder) will be classes.

X = (batchsize, length, dim) array, which is a minibatch of input sequences

The output is minibatch of embedding sequences (for the entire input

minibatch).

function E = Encoder(X)

O1 = 1DCNN(X, stride=1, CNNparams)

O2 = BiLSTM(O1, BLSTMwidth, BLSTMparams)

E = pBLSTM(O2, pBLSTMwidth, pBLSTMparams) # Will reduce length by 2

return E

end

12

Listing 1 Encoder

There are many variants you could try. The 1DCNNs could be replaced by ResNets. Also,
the example code only downsamples the input by 2. To downsample it further you could
either include strides in CNN layers or have more pBLSTM layers. (As mentioned in the
introduction, the pBLSTM is optional for this homework.)

You can follow these links to find Pytorch’s implementation of LSTMs and GRUs.

Overall network: The overall network passes the embeddings to a final output layer to
compute a sequence of probability vectors. The overeall pseudocode might look as follows:

X = (batchsize, length, dim) array, which is a minibatch of input sequences

The output is minibatch of probability sequences (for the entire input

minibatch).

function LogP = NetworkComputeLogProbabilityTable(X)

E = Encoder(X)

Z = linear(E)

LogP = LogSoftmax(Z)

return LogP

end

Listing 2 Overall network

Here the linear layer is applied individually to each vector in the sequence of embeddings E.
Thus Z is a (batchsize, length, nsymbol) array for the minibatch. In theory, the softmax is
applied to each vector in Z to compute a probability vector. In practice, we usually compute
a logsoftmax (the log of the softmax), because (1) the max probability entry stays the same;
(2) the log operation turns multiplication into addition, which is more numerically stable;
(3) pytorch CTCLoss expects log softmax probabilities as input.

Thus, the network results in a (batchsize, length, nsymbol) array representing a batchsize ×
length array of log-probability vectors.

2.2 Training the network

The training data provided to train the network will comprise speech recordings, and their
transcriptions. In data terms, each training instance will comprise the pair (x0, x1, · · · , xN ,
/PH1/, · · · , /PHK/), where x0, x1, · · · , xN represents the sequence of feaure vectors derived
from the speech signal, and /PH1/, · · · , /PHK/ represents the phoneme sequence for the
recording (e.g. /Y/ /EH/ /S/). We must train the network from these training data.

As mentioned earlier, the actual phoneme sequence for any input speech may be much shorter
than the input itself and is not time-synchronous with it, although it is order-aligned. To deal
with this asynchrony we use the two-stage solution of Section 1.2, where we decompose the
problem by having the network output a sequence of probability vectors in time-synchrony

13

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

(possibly downsampled) with the input, and use a DP framework to derive the actual outputs
from these probabilities.

While the output of the system is now no longer time-synchronous with the input, the network
itself continues to produce time-synchronous (though possibly downsampled) outputs (which
are probability vectors). In order to train the network, we will require a target corresponding
to every probability vector output by the network, as illustrated by Figure 8.

Figure 8: On training data, only the final output label sequence, e.g. /Y/ /EH/ /S/ is
provided. These are what are expected to be output by the DP module that operates on the
output of the network. However, to train the network, targets are required corresponding to
every output by the network, as shown by the arrows.

In other words, we require an output label corresponding to each probability vector output
by the network. Had we had such a time-synchronous target label sequence, we could have
easily used Cross Entropy loss over the model’s output and the target, and this loss could
have been sent back to update the model’s parameters for training. However the actual label
sequence we have is compressed and not time-synchronous, although it is order-aligned.

Hence, in order to compute the the loss, we must expand our label sequence to align it
to the input. For instance, consider a training recording that has been parameterized into
a sequence of (for illustration) twelve feature vectors x0, · · · , x11, and is given the label
sequence /HH/ /AY/. Consider that our encoder downsamples by 2 to result in generate
six time-synchronous probability vectors1 P0, · · · , P5. The label sequence /HH/ /AY/ must
now be expanded to length 6, such as to /HH/ /HH/ /HH/ − /AY/ /AY/, to match the
output sequence of probability vectors from the neural network. Note that in expanding the

1The encoder will actually produce six time-synchronous embeddings, from which we will obtain six
time-synchronous probability vectors

14

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
/HH/ /HH/ /HH/ /HH/ /HH/ /AY/
− /HH/ /HH/ /HH/ /HH/ /AY/
− − /HH/ /HH/ /HH/ /AY/
− − /HH/ /HH/ /AY/ −
/HH/ /HH/ /HH/ /HH/ − /AY/
/HH/ /HH/ /HH/ − /AY/ /AY/
/HH/ /HH/ − −/ /AY/ /AY/
− /HH/ /HH/ − − /AY/
− /HH/ − /AY/ − −

Table 1: Examples of ways of aligning /HH/ /AY/ to six time steps. Any of these could be
used as the target sequence for Figure 8.

label sequence to the desired length, we must also consider the blank symbol (shown as −
here).

The way to expand the label sequence to match the length of the input is not unique. Table
1 shows just some of the ways in which /HH/ /AY/ can be aligned against six outputs from
the encoder.

It is clear from the above example that there can be a very large number of ways to align
the phoneme sequence to the input, any one of which could potentially be used as the target
sequence. Which of them do we choose, to train our network? We have a couple of solutions
– to choose the most probable (using the Viterbi algorithm, as discussed in class), or to
simply consider all of them.

2.2.1 Viterbi training: Training with the best alignment

In the first approach, which we call “Viterbi training”, we first find the most likely alignment
of the target phoneme sequence to the input. This can be done using the Viterbi algorithm.
We have encountered the Viterbi algorithm in class. Pseudocode for it can be found in
Appendix B.

Once the best alignment is found, we can use that with a standard cross-entropy loss. The
pseudocode below shows how you could compute the loss for a single training sequence. We
leave the generalization to a minibatch to you.

X = (length, dim) array, which is a input sequence

Y = (labellength) array, which is the label corresponding to X

Performs a forward pass, aligns the labels, and computes the loss

function L = Viterbi(X, Y)

LogP = NetworkComputeLogProbabilityTable(X)

Target = ViterbiAlign(LogP, Y)

L = XentLoss(LogP, Target)

end

Listing 3 Viterbi Training

15

Note that the ViterbiAlign expects log probabilities, rather than probabilities. The pseu-
docode above reflects this. ViterbiAlign also expects BLANK as the first symbol (0th index)
in the symbol (phoneme) list.

2.2.2 Training using all alignments

Our preferred approach is the second approach: instead of choosing any specific alignment, we
compute the loss against every one of these alignments, and the overall loss is a weighted sum
of all these losses, where the weight for any alignment is the probability of that alignment.
In probability terms, our loss is the expected loss over all possible alignments.

There are an exponential number of possible alignments, so explicitly computing the losses
for all of them, and summing them up is not going to be possible. However, we can do so
efficiently using a dynamic programming method, namely the forward-backward algorithm,
as we saw in class.

You can implement the forward-backward algorithm yourself. However, fortunately, pytorch
already provides this as a standard loss called CTCloss. In Pytorch, you can use nn.CTCLoss.
Pay close attention to the documentation to determine the input shape and format required
to compute CTC Loss.

CTCLoss computes the expected loss over all possible alignments. The CTC loss function
is differentiable with respect to the per time-step output probabilities (i.e. w.r.t. each of
P0, P1, P2, · · ·), and can hence compute the gradients w.r.t these, and subsequently used to
update the model parameters through backpropagation.

The overall code for computing the CTC Loss might look like this:

X = (batchsize, length, dim) array, which is a minibatch of input sequences

Y = (batchsize, labellength) array, which is the labels corresponding to X

Performs a forward pass and computes the CTC Loss

function L = NetworkCTCLoss(X, Y)

LogP = NetworkComputeLogProbabilityTable(X)

L = CTCLoss(LogP, Y)

end

Listing 4 Training with CTC Loss

In the pseudocode above, as mentioned before, we are using log softmax to match the
expected input of pytorch CTC loss. In addition, CTC Loss expects an argument for the
index of BLANK in the symbol (phoneme) list.

After calculating either the Viterbi loss or the CTC loss, we can perform the backward pass
and get the gradients using L.backward().

2.3 Inference

Once we have a model that produces a vector of probabilities for every time-step of the input,
we ask the following question: How do we best convert this output table of probabilities into

16

https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html

a sequence?

To come up with a sequence of symbols, there are a couple of strategies.

2.3.1 Greedy Search

Greedy Search is the technique illustrated in Figure 6b. It is easy to implement and se-
lects the most probable output at each time-step. Essentially, this strategy will go through
our generated probability table and argmax along the phoneme probabilities at each time,
and finally compress the output squeezing out repetitions and removing the blanks. The
pseudocode below explains greedy decoding for a single test instance.

X = (length, dim) array, which is a minibatch of input sequences

symbols = dictionary of phonemes. Must include BLANK

Performs forward pass to compute probability table, followed by greedy decode.

function O = GreedyDecode(X, symbols)

Returns a length x nclass probability table, where nclass includes the blank

P = NetworkComputeProbabilityTable(X)

ArgMax returns length x 1 array of argmaxes of each probability vector in P

A = ArgMax(P, dim=1)

O = []

Eliminate repetitions and remove blanks.

for i = 0:length-1

if i == 0 || (A[i] != A[i-1] && symbols[A[i]] != BLANK)

O.attach(symbols[A[i]])

end

end

return O

end

Listing 5 Greedy decoding for a single test instance

However, this method is suboptimal – it chooses the most likely time-synchronous output,
rather than the most likely order-aligned output as discussed in class.

2.3.2 Beam Search

As an alternative to Greedy Search, we may attempt to explicitly find the most likely order-
aligned sequence. However, there are an exponential number of possible sequences, all of
which must be evaluated in order to find the most likely one. This is clearly infeasible.

As a compromise, we can use the beam-search strategy that evaluates all possible hypotheseis
(i.e. all potential symbol sequences) within a narrow beam of hypotheses.

The main idea behind Beam Search is to limit the scope of your exhaustive exponential
search by an upper bound of k ”beams” or sequences, by keeping a beam of top-k scored
sub-sequences at each time step (BeamWidth). There is a real chance of missing the absolute
best path using this strategy. However, the sub-optimality of Beam Search Decoding is much

17

better than Greedy Decoding. For more details on beam search, please refer to the lecture
slides.

If you have already implemented Beam Search in BeamSearch.py in your 3p1, you can use
that implementation here. The Beam Search implementation of 3p1 outputs 2 arguments,
one of which can be used to predict your sequence of phonemes. Otherwise, for 3p2, you
can use the decoder you get from the ctcdecodelibrary in python, which you will find in the
starter notebook.

Note: You will likely be using beam search on your validation data, while you train. Increas-
ing the beam width can exponentially increase the training time. Please stick to a smaller
beam width (3) for your validation data, while training. You may increase the beam width
while making predictions on test data.

2.3.3 Caveats

We will usually work with minibatches of input, rather than individual inputs, for compu-
tational efficiency (and, in the case of training, better convergence). This gives rise to a
problem in the sequence-to-sequence setting: the different input sequences in a mini-batch
may all be of different lengths. However, for efficient processing we would like the data to be
organized in a rectangular (or, more generally, cuboidal) structure. Vector processing units
such as GPUs operate on the entire cuboid of data.

When the sequences in the minibatch are all of different length, we must pad the shorter
sequences such that all of them are the same length (as illustrated in Figure 9a). The
padded regions are usually 0-valued and carry no useful information. However, in the process
of vector computation the processsor will nevertheless operate on these invalid regions of the
input (the green regions of Figure 9a) and generate potentially meaningless outputs from
them. This is a problem not merely during inference; it can also cause problems when we
train the model.

To deal with this issue, we must mask the meaningless regions of the minibatch cuboid, using
a binary mask that zeroes out the influence of the meaningless regions from the computation.
Such a mask is illustrated in Figure 9b.

All of this leads to complications: (a) how do we select and pad inputs so that their lengths
match up within a minibatch, (b) how do we construct the corresponding masks, and, most
importantly, (c) how do we use these masks to null out the contribution of the meaningless
regions to training and inference. In our discussion of actual implementation details in
Section 4, we will also touch upon these issues.

18

https://github.com/parlance/ctcdecode

(a) A minibatch of variable-length sequences.
The green regions represent the padding.

(b) The masks associated with the inputs in
the batch.

Figure 9: An example minibatch of size 5 consisting of variable length sequences of lengths
7, 4, 6, 5, 3 respectively. (b) An example binary mask for a minibatch is a one-hot matrix
that has 0s in positions of padding and 1s elsewhere.

3 Dataset

In this homework we aim to train a sequence to sequence model that takes Mel-Frequency
Cepstral Coefficients MFCCs. The data for this homework is similar to that of HW1P2, and
you will be provided with mel-spectrograms that have 28 band frequencies for each time step
of the speech data. You can refer to HW1P2 write-up to revisit a detailed description of the
data.

The feature data is an array of utterances, and each utterance is of dimension (Tin, 28),
where Tin refers to the number of frames in the utterance. Each utterance has a correspond-
ing transcript (label) of length Tout, which refers to the length of the output sequence. This
naturally keeps order synchrony but breaks time synchrony. For the purpose of this compe-
tition, we provide a look-up that maps each phoneme to a single character. The mapping
provided in a cell in the starter notebook is slightly modified and overloaded.

3.1 File Structure

• train-clean-100 : Training set

• dev-clean : Dev (Validation) set

• test-clean : Testing set

• */mfcc/* : Same as HW1P2 for train, dev and test datasets

• */transcripts/* : Contains sequence of labels which is not frame specific as in HW1P2.

• random submission.csv: This is a random submission file that contains a randomized
submission in the required format for kaggle.

• ORDER: This is important. In your test dataset, please load the files in sorted order
of their names in the directory.

The dataset class in this homework would be similar to homework except for 2 small changes:

19

https://autolab.andrew.cmu.edu/courses/11485-f23/assessments/hw1p2/attachments/4551

1. We no longer require context.

2. Padding sequences for processing inputs as batches would be achieved by functionalities
provided by PyTorch: padding and packing.

4 Padding and Packing Sequences

As mentioned in Section 2.3.3, we outline a few PyTorch methods that help us work with
sequences of variable lengths for more efficient computation.

PyTorch gives us a few functions to accomplish the same:

• pad sequence()

• pad packed sequence()

• pack padded sequence()

To construct minibatches of sequences, we have to pad all sequences in the mini-batch to
the length of the longest sequence in the given mini-batch with a constant padding value
(typically 0). Lets use an example to understand this: say, given an input mini-batch x,
you have six sequences of variable lengths, ranging from 2 to 9 as shown in Figure 10. For
us to work with mini-batches, we would have to pad all sequences to have the same length
as the longest sequence, which is of length 9. pad sequence(x) returns a tensor of padded
sequences with a constant padding value, resulting in a mini-batch of shape (6, 9).

Packing is not as immediately intuitive. Consider the same example of a batch with variable
length sequences: After padding, we have a mini-batch of shape (6,9). In order to perform a
matrix multiplication with a weight matrixW , say of shape (9,3) - we will need 6×9×3 = 162
multiplications. However, as mentioned in Section 2.3.3, we would be generating meaningless
outputs on padded regions of the input. In reality, you would only need (9×3)+(8×3)+(6×
3)+(4×3)+(2×3) = 96 multiplications. Packing allows PyTorch to optimize computation
by flattening the sequences by timestep (sorted in order of sequence lengths) while keeping
track of the effective batch-size at each time-step. If you pass your padded sequence through
the pack padded sequence() function, you would get back a tuple of outputs, where one
would contain the packed sequences of tensors and the other would contain the actual batch
size at each time step (ignoring the padding). (Figure 11).

4.1 Forward Pass - RNNs

The data provided to us being of varying lengths, it is incumbent upon us to pad all se-
quences in a batch for use to the model. We must accumulate all the sequences (features
and target) in a batch and pad them first. This can be achieved using PyTorch’s implemen-
tation of pad sequence. Documentation: Pad Sequence

In order to perform operations in batch, we must and pack and unpack the data every
time when passing data through an RNN. It is important to pack a padded sequence using
pack padded sequence() before passing it through an RNN, and to pad a packed sequence

20

https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html

Figure 10: Batch with variable length sequences

using pad packed sequence() after computation from the RNN.

The below two functions show that RNNs use a Packed Sequence object as input; they
performs all computations required for each input at a given time-step before moving onto
the next, enabling faster processing. Padding all inputs would consolidate all input MFCCs
to be of equal lengths. Hence, we must calculate and store the actual (unpadded) length of
each recording before forwarding it to the model for use.

pack padded sequence:

• Input Parameters:

1. data sequence

2. lengths of each data sequence (as a list)

• Output:
PackedSequence(data=tensor([]), batch sizes=tensor([]), sorted indices=tensor([]), un-
sorted indices=tensor([]))

• Example:
packed = pack padded sequence(recordings, length of each recording,

batch first=True, enforce sorted=False)

pad packed sequence:

• Input Parameters:

1. takes in a packed data sequence as input

• Output Parameters:

1. original data sequence

2. actual (unpadded) length of each sequence

• Example:
seq unpacked, lens unpacked = pad packed sequence(packed, batch first=True)

21

Figure 11: Packed padded sequence

5 Evaluation

You will be evaluated using Kaggle’s character-level string edit distance; since we map each
phoneme to a single character, you will be evaluated on phoneme edit-distance. Specifically,
we will be using the Levenshtein Distance, which counts how many additions, deletions, and
modifications are required to make one sequence into another (library).

Figure 12: Calculation of Levenshtein Distance

Levenshtein Distance takes as input two strings, and the computed distance is the number
of character differences between the strings. It is calculated in an order synchronous fashion

22

https://pypi.org/project/python-Levenshtein/

as such: Levenshtein.distance(target, prediction)

In this case, the Levenshtein Distance = 2.

6 Submission

6.1 Preliminary Submission

There is a mandatory preliminary submission and an associated MCQ that, together, are
worth 10% of the points for the homework. This submission is intended to get you started
quickly on the homework. The deadline for this preliminary submission is October 31,
2023, 11:59PM. We have provided a HW3P2 starter to help you with the preliminary
submission, which you can download from piazza.

**Disclaimer: The starter notebook is not as elaborate as it has been for previous home-
works. After 2 homeworks, we are expecting you to be in a position to write your own
notebook from scratch. Please start early, completing the starter notebook will take time.
You can reuse the code from previous starter notebooks if you want, but you will have to
code most of the implementations yourself.

6.2 Final Submission

Your submission should be a CSV file. The headers should be “id” and “predictions”. “id”
refers to the 0-based index of utterance in the test set, and “predictions” is the phoneme
string. (See sample submission for details.) Note: the headers are case sensitive.

7 Conclusion

That’s all. As always, feel free to ask on Piazza if you have any questions.

Glhf!
Psst, don’t know what this means? Haha, zoomer.

23

https://www.google.com/search?q=glhf+meaning&oq=glhf&aqs=chrome.0.69i59j69i57j0i512l8.3266j0j7&sourceid=chrome&ie=UTF-8

Appendices

A pBLSTM

Figure 13: Taken from ‘LAS’, an illustration of the pBLSTM layers in the encoder with only 3 LSTM layers
(and 2 time reductions).

The pBLSTM is a variant of Bi-LSTMs that downsamples sequences by a factor of 2 by con-
catenating adjacent pairs of inputs before running a conventional Bi-LSTM on the reduced-
length sequence. So, given an input vector sequence X0, X1, X2, X3, . . . XN−1, the pBLSTM
first concatenates adjacent pairs of vectors as [X0, X1], [X2, X3], . . . [XN−2, XN−1], and then
computes a regular BiLSTM on the reshaped input.

If the length of the original input sequence is odd, then it is either padded out by appending
an extra vector of zeros at the end, before reshaping, or trimmed to an even length by deleting
the final vector. Note that we are concatenating adjacent vectors instead of averaging them
to retain all the information in the sequence while also reducing the rate. You can also try
pooling operations instead.

The following pseudocode shows how you could implement a simple pBLSTM. The Params
in the code refer to the full set of BiLSTM parameters. Obviously, this is just pseudocode
intended to describe the logic, and is not at all python-like; the actual code you write would
look very different, and you would actually implement a pBLSTM class.

X = (batchsize, length, dim) is a minibatch of sequences, possibly from a

previous layer

Assumes dataloader ensures all input sequences in the batch are the same length

function O = pBLSTM(X, LSTMwidth, Params)

Reshape inputs to have half the length, but twice the dimensionality

X_downsampled = reshape(X,B,L/2,2*D)

output = BiLSTM(X_downsampled, LSTMwidth, Params)

return output

end

Listing 6 pBLSTM

24

https://arxiv.org/abs/1508.01211

Here BiLSTM() is a Bi-directional LSTM layer that takes in a minibatch of input sequences
and generates a minibatch of output sequences of the same length. You could also replace
the Bi-directional LSTM by a Bi-directional GRU.

If you are not enamoured of bidirectionality, the LSTM (or GRU) layer could be uni-
directional, while maintaining the pyramidal structure. The key here is the combination
of downsampling with an RNN.

B Viterbi Alignment

The Viterbi alignment algorithm finds the most probable alignment of a symbol sequence
to an input. In doing so, it must also consider the invisible “blank” symbol, which can
optionally occur between symbols. So, for example, given a symbol sequence /A/ /B/,
it also considers that there might be invisible blanks between the symbols, i.e. that the
sequence might actually be any of the following:

A/ /B/
/A/ /B/ −
− /A/ /B/

− /A/ /B/ −
/A/ − /B/

− /A/ − /B/
/A/ − /B/ −

− /A/ − /B/ −

The actual alignment might be an expansion of any of these sequences. The algorithm must
determine which of these sequences best matches the input, and further what expansion of
it best matches the input.

The algorithm proceeds as follows: Given a symbol sequence, say /A/ /B/ /C/, it first
converts it to a directed graph that also represents optional blanks. Every variant of the
sequence is a path from source to sink of this graph. This is done by introducing optional
(skippable) blanks at the beginning and end of the sequence, as well as blanks between sym-
bols, which may only be skipped if the symbols are non-identical (i.e. a blank is mandatory
between repeating symbols). Figure 14 illustrates this with an example.

Figure 14: Graph representing all possible variants of the sequence /AA/ /B/ /B/ /AA/ with
the optional blanks. Any path from the source (red) to the sink (blue) node represents a valid
variant. Note that blanks are optional at the beginning and end of the sequence. They are also
optional between two symbols, unless the two symbols are identical.

Subsequently the algorithm composes a trellis – a graph that “unrolls” the graph over time,
for as many time steps as the length of the input. This results in a rectangular graph, with

25

as many rows as the number of nodes in the graph. There in an edge from a node in the ith

row at time t to a node in the jth row at the next time t + 1 if there is an edge from the
ith node to the jth node in the original graph itself. Figure 15 shows an example of such a
graph.

Figure 15: The trellis aligning the graph of Figure 14 against an sequence of 9 inputs. Any
path from one of the red nodes (sources) to one of the blue nodes (sinks) is a valid alignment
of /AA/ /B/ /B/ /AA/ to the input.

Each node in the graph is assigned a score equal to the log probability of the symbol it
corresponds to, computed at the time it corresponds to. For instance, the node in the
fourth row (corresponding to /B/ in our example) at time t = 3 would contain the log
probability log(P (/B/, t = 3)), i.e. the log probability assigned to /L/ by the network at
t = 3. Similarly, the node in the third row (corresponding to −) at t = 4 carries the log
probability log(P (−, t = 4)). All edges have a score of 0.

The pseudocode below, lifted from the slides, explains how to compose the graph and find
the best path through it. The code may be buggy, so please verify the logic first. Also, it is
not very python, so you will have to pythonize it.

S is a sequence of symbols in the target output

function Yext = ExtendedSequenceWithBlanks(Y)

j = 1

loop through target symbol output

for i = 1:N

add BLANK symbol before each symbol in target ouput

Yext(j) = BLANK

j = j + 1

Yext(j) = Y(i)

j = j + 1

end

append BLANK symbol in the end

Yext(j) = BLANK

26

return Yext

end

Listing 7 Viberti Algorithm: Compose Graph

function AlignedSymbol = ViterbiAlign(LogP, Y)

extend the sequence with BLANK symbol

Yext = ExtendedSequenceWithBlanks(Y)

N = length(Yext) # length of extended sequence

BP(i, j) represents the best parent symbol when t=i, symbol=j

Bscr(i, j) represents the best probability at t=i and symbol=j

initialize best parents and scores at t=1

BP(1,1) = BP(1,2) = -1

Bscr(1,1) = LogP(1,Yext(1))

Bscr(1,2) = LogP(1,Yext(2))

Bscr(1,3:N) = -inf

loop through each timestamp

for t = 2:T

assign the best parent and score for the first symbol in the target

output

BP(t,1) = BP(t-1,1)

Bscr(t,1) = Bscr(t-1,1) + LogP(t,Yext(1))

loop through the symbols in the extended target output

for i = 2:N

if (i > 2 && Yext(i) != Yext(i-2))

check paths extended both previous symbol (if not duplicate) and

BLANK symbol

BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1), Bscr(t-1,i-2))

else

check only paths extended from BLANK symbol

BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1))

end

update the score by adding the probability of current symbol

Bscr(t,i) = Bscr(t-1,BP(t,i)) + LogP(t,Yext(i))

end

end

Get the best aligned symbol sequence by backtracing best parents

AlignedSymbol(T) = Bscr(T,N) > Bscr(T,N-1) ? N, N-1;

for t = T downto 1

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

return AlignedSymbol

end

Listing 8 Viterbi Algorithm

27

	Introduction
	Overview
	An Alignment Problem of Inputs and Outputs
	The challenge tasks

	Problem Specifics
	The Neural Network
	Training the network
	Viterbi training: Training with the best alignment
	Training using all alignments

	Inference
	Greedy Search
	Beam Search
	Caveats

	Dataset
	File Structure

	Padding and Packing Sequences
	Forward Pass - RNNs

	Evaluation
	Submission
	Preliminary Submission
	Final Submission

	Conclusion
	Appendices
	pBLSTM
	Viterbi Alignment

