
11-785: Introduction to Deep
Learning

Recitation OL : Debugging
Deep Neural Networks

Fall 2023
Shikhar Agnihotri
Harshith Arun Kumar

01 Common Debugging
Scenarios 02 General Coding

Tips

03 Visualizing image &
speech Datasets 04 Debugging with

breakpoints

Common Debugging Scenarios

“My code throws an error

and stops running, and I

don’t understand the

lengthy error message”

“My code runs, but the

accuracy is terribly low and

not improving”

”My model is taking forever

to train.”

Blocked ?Confused ? Slow ?

Consolidate
Hyperparameters

Putting everything in one place helps with

model experimentation. We can save

everything in a config dictionary.

Write test cases

Write a small test case for each function you

write.

● Print the type and shape of important

variables

● Slice and print only a segment of high

dimensional variables

● Visualize the data using matplotlib, we

will have a short code demo at the end

of this recitation

● Break and print after one iteration

Use print
statements

Control print statements via a debug flag

A switch between:

● Debugging mode: you want to print

extra information

● Training mode: you don’t want to do

anything redundant

if debug_flag==True:
 print("debugging information")

Restart Kernels

Control print statements via a debug flag

● If you are running your code in Jupyter

Notebook or Google Colab, sometimes

you accidentally ran a cell twice or you

ran cells in the wrong order.

● Technically there is nothing wrong with

your code – just restart kernel and

rerun everything from the beginning!

Visualizing Image
and Speech

Datasets

Debugging via
breakpoints

Types of Errors ● Error Type 1: Coding Error

○ Syntax Errors

○ Logic/Math Errors

○ Runtime Errors

● Error Type 2: Time Issue

● Error Type 3: Memory Issue

○ CUDA out of memory

○ Location of variables

Error Type 1:
● Syntax Errors:

○ Stack Overflow → Best

○ Refer to Recitation 0A - Python and OOP

fundamentals

Error Type 1:
● Logic/Math Errors:

○ Lot of matrix multiplication and math (HWP1)

○ Read write-up

○ Check shapes of variables (Dimensions)

○ Read numpy documentation for a function for its:

■ Purpose

■ Input type, shape

■ Output type, shape

Error Type 1:
● Runtime Errors

○ Read traceback to find root of error

○ Read library documentation for function specifics

○ Set batch size to 1 and run the code on CPU - More

readable error messages

● Pdb
○ Learn to use pdb → Interactive python debugger

○ Stack overflow → Best

Pdb demo

Error Type 2:
● Time Issue

○ I debugged all the syntax errors and my model runs

○ But takes 40 minutes to train an epoch

○ Ideally it is supposed to take 10 minute

Error Type 2:
● Things to check

○ If using GPU

○ Batch size (32 to 128, as large as your GPU does not complain)

○ Check data-loader and training loop:

■ Most iterations happen here

○ Use mixed_precision while training

○ Use time module to identify which part of the code is taking long

Error Type 3: ● Memory Issue
○ Model trains normally

○ But after 30 epochs:

Error Type 3:
● Common errors:

○ If you put too many things on GPU, you will see this:

○ Things to try:
■ Reduce batch size

■ Use cuda mixed precision

■ Read Tutorial before starting on HW P2s:

● https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html

Error Type 3:
● Common errors:

○ If you put too many things on GPU, you will see this:

○ Things to try:
■ Check if you used torch.inference mode() during validation and testing:

● Disables gradient calculation, only needed for backward-prop during training

● Reduces memory consumption

■ Call torch.cuda.empty cache() help reduce fragmentation of GPU memory in

certain cases.

Error Type 3:
● Common errors:

○ Forgetting to move data to GPU for training, validation and testing of the model.

Error Type 3:
● Common errors:

● In order to train a model on the GPU it is first necessary to send the model itself to the GPU:

● The second requirement for running the training loop on the GPU is to move the

training data:

Error Type 3:
● Common errors:

● If you are not careful, there might be a mismatch between the locations of different

data being used in a function.

● Things to try:

● You can find out which device your tensor data are on at different points in the

code by using the device property:

● To move the data to CPU or to GPU:

