Computing Derivatives & Autograd

11485/685/785 Fall 2023: RECITATION 3

Dheeraj Pai and Miya Sylvester

September 15, 2023

Logistics and deadlines

@ Sept 15: AWS Credit form

@ Sept 15: Kaggle Setup Form - Piazza ©82

@ Sept 23: HW1P1 and HW1P2

e Study groups mentors - Piazza @346 (Change in group - check ©346)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Recap from Lecture

@ Neural Networks (NN) consist of parameters, mainly weights W and biases b.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Recap from Lecture

@ Neural Networks (NN) consist of parameters, mainly weights W and biases b.
o Update Rule: W =W — nj—VLV

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Recap from Lecture

@ Neural Networks (NN) consist of parameters, mainly weights W and biases b.
o Update Rule: W =W — nj—VLV
dL 5

e How do we compute derivatives i7"

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Table of Contents

e Differentiation methods

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Symbolic Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Symbolic Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Given x1, xo as inputs, calculate 2% 9% (at the point x1, x2).

Ox1? Oxo

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Symbolic Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2))
Given x1, x> as inputs, calculate %’1, %{2 (at the point x1, x2).

Partial Derivatives

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Symbolic Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2))
Given x1, x> as inputs, calculate %’1, %{2 (at the point x1, x2).

Partial Derivatives

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Symbolic Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2))
Given x1, x> as inputs, calculate %’1, %{2 (at the point x1, x2).

Partial Derivatives

Differentiation methods

Numerical Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Numerical Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

e Given x1, x» as inputs, calculate (’% (at the point x7,x2)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Numerical Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

@ Given x1, x» as inputs, calculate 6%/1 (at the point x1,x)

4
Procedure

@ Use the limit formula:
im f(x1+ h,x2) — f(x1, x2)

h—0 h

@ Select a small h (1075)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Numerical Differentiation

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

@ Given x1, x» as inputs, calculate 6%/1 (at the point x1,x)

4
Procedure

@ Use the limit formula:
im f(x1+ h,x2) — f(x1, x2)

h—0 h

@ Select a small h (1075)

@ Substitute the values of x1, x2, h

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Questions?

Dheeraj Pai and Miya Sylvester Computi rivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W, b, x)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate 6%/1’ E%/Vv % (at the point x, W, b)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate f%’ E%/Vv g—}é (at the point x, W, b)

Challenges
@ What happens when we have 1 billion parameters?

v

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate f%’ E%/Vv g—}é (at the point x, W, b)

Challenges
@ What happens when we have 1 billion parameters?

@ Leads to 1 billion equations

v

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate f%’ E%/Vv g—}é (at the point x, W, b)
Challenges

@ What happens when we have 1 billion parameters?

@ Leads to 1 billion equations

@ Each equation involves nearly 1 billion floating-point operations

v

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Symbolic Differentiation for NNs?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate f%’ E%/Vv g—}é (at the point x, W, b)

Challenges
@ What happens when we have 1 billion parameters?
@ Leads to 1 billion equations
@ Each equation involves nearly 1 billion floating-point operations
@ Roughly 1 x 10'® FLOPS for a single gradient update

v

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ %’V, % (at the point x, W, b)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ aa—‘ﬁ’v, % (at the point x, W, b)

Challenges

@ Numerical instability and inaccuracy. How do you choose the most appropriate h?

V

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ aa—‘ﬁ’v, % (at the point x, W, b)

Challenges
@ Numerical instability and inaccuracy. How do you choose the most appropriate h?

@ What happens when we have 1 billion parameters?

V

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ aa—‘ﬁ’v, % (at the point x, W, b)

Challenges
@ Numerical instability and inaccuracy. How do you choose the most appropriate h?
@ What happens when we have 1 billion parameters?

@ Leads to 1 billion equations

V

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ aa—‘ﬁ’v, % (at the point x, W, b)

Challenges
@ Numerical instability and inaccuracy. How do you choose the most appropriate h?
@ What happens when we have 1 billion parameters?
@ Leads to 1 billion equations

@ Each equation involves nearly 1 billion floating-point operations

V

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods

Why Not Use Numerical Differentiation?

y = MLP(W, b, x)

e Given x, W, b as inputs, calculate %/1’ aa—‘ﬁ’v, % (at the point x, W, b)

Challenges
@ Numerical instability and inaccuracy. How do you choose the most appropriate h?
What happens when we have 1 billion parameters?
Leads to 1 billion equations
Each equation involves nearly 1 billion floating-point operations
Roughly 1 x 10*® FLOPS for a single gradient update

V

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Table of Contents

© Automatic differentiation

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Key Question

dy dh dg 7
e Can we compute 7~ from g and 27

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(g(x))

dy dh dg 7
e Can we compute 7~ from g and 27

@ Decompose complex derivatives into simpler parts.

dY __ dh dg

@ 9x T dg X dx

A

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(g(x))

dy dh dg 7
e Can we compute 7~ from g and 27

@ Decompose complex derivatives into simpler parts.

dY __ dh dg

@ 9x T dg X dx

A

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(gi(x), g2(x))

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(gi(x), g2(x))

Key Question

e Can we compute % 7

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(gi(x), g2(x))

Key Question

e Can we compute dy 7

@ Decompose complex derivatives into simpler parts.

dY __ dh dg1 dg2
C dx dg1 + dg2 dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(x) = h(gi(x), g2(x))

Key Question

e Can we compute dy 7

@ Decompose complex derivatives into simpler parts.

dY __ dh dg1 dg2
C dx dg1 + dg2 dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(X17X25 e 7XI7) = h(gl(X17X27 e 7Xn))g2(X1,X27 R ’Xn))

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(X17X25 e 7XI7) = h(gl(X17X2a e 7Xn)’g2(X1,X27 R 7Xn))

Key Question

dy dy

o Can we compute o
n

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(X17X25 e 7XI7) = h(gl(X17X2a e 7Xn)’g2(X1,X27 R 7Xn))

Key Question

dy dy

o Can we compute o
n

@ Answer: Yes.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Basic Idea - Chain rule

Function Decomposition

Y = f(X17X25 e 7XI7) = h(g].(X17X27 e 7Xn)’g2(X1,X27 R 7Xn))

Key Question

dy dy

o Can we compute o
n

@ Answer: Yes.

)

@ Decompose complex derivatives into simpler parts. ‘

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Autodiff Example
Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example
Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example
Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1
Vo = Xo
vs = In(vy)

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example

Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Vo = Xo

vs = In(vy)
Vg = V1 Vo

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example

Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Vo = Xo

vs = In(vy)
Vg = V1 Vo

V5 = sin(v2)

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example

Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Vo = Xo

vs = In(vy)
Vg = V1 Vo

V5 = sin(v2)

Vo = V3 + V4

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example

Decompose with intermediate variables

y = f(x1,x2) = In(x1) + x1x2 — sin(x2)

Vi =X1

Vo = Xo

vs = In(vy)
Vg = V1 Vo

V5 = sin(v2)
Ve = V3 + vy
Yy=v=V -\
Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Autodiff Example

Intermediate Variables

vi =x1
Vo = Xo

vz = In(vq)
Vi = V1va
vs = sin(vz)
Ve = V3 + vy

Yy=vw=V— Vs

Can you compute all the derivatives %? By
looking at only one equation at a time.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Questions?

Dheeraj Pai and Miya Sylvester Computi rivatives & Autograd

Automatic differentiation

Autodiff Example - Graph computation

Intermediate Variables

Vi = X1

V2 = X2

vz = In(vy)

Vg = V1 Vo

Vg — Sin(Vz)

Ve = V3 + Vg
y=w=vw—u

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Autodiff Example - Graph computation

Intermediate Variables

Vi = X1

V2 =X -
vz = In(vy)

Vg = V1V X2
Vg — Sin(Vz)

Ve = V3 + Vg

yY=vwv=VV— Vs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Autodiff Computation (Advantage)

Complex Model

y = MLP(W, b, x)

Computational Cost

o 1 Billion parameters

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Autodiff Computation (Advantage)

Complex Model

y = MLP(W, b, x)

Computational Cost
o 1 Billion parameters
@ Forward pass = 1B FLOPS

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Autodiff Computation (Advantage)

Complex Model
y = MLP(W, b, x)

Computational Cost

o 1 Billion parameters
@ Forward pass = 1B FLOPS
@ Backward pass = 1B FLOPS

Total = 2B FLOPS <« 1le + 18

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Question

When is automatic differentiation a bad idea ?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Question

When is automatic differentiation a bad idea ?

Hint: Think about the memory to store the variables. What if you need the derivative
of just one variable

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Question

When is symbolic differentiation a good idea ?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Question

When is symbolic differentiation a good idea ?

Hint: Integrals?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation

Automatic Differentiation in Practice

o Generate the computational graph
while forward propagation

@ Store each intermediate variables X
@ Chain rule to compute the derivatives.

@ Optimize, parallelize based on variable
dependencies

@ Many more additional blocks -
Accumulate Grad etc,

Images from https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation

Questions?

Dheeraj Pai and Miya Sylvester Computi rivatives & Autograd

Automatic differentiation Libraries

Table of Contents

© Automatic differentiation Libraries

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic Differentiation Libraries

Static Vs Dynamic Graphs
execution

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static Graph Automatic Differentiation Execution

Define Optimize Start a
the graph the graph session

Send
Update Backprop on
aIJ)rams re ersi Ir)a h e alaiiE
Vi
P grap (forward)

Automatic differentiation Libraries

Optimization Techniques
]
o
"]
o
o
o
o
o
o
o

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Dead Code Elimination

Common Subexpression Elimination
Operator Fusion

Memory Optimization

Graph Pruning

Kernel Fusion

Data Layout Optimization
Batching Optimization

Pipeline Optimization

Device Placement

Automatic differentiation Libraries

Dynamic graph Automatic differentiation execution

Initial Node Build graph
(Tensor dynamically
Variable/ during
Data tensor) forward pass
Destroy Ilj\}[)j;;e Run Back-
the graph Weights propagation

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi
V2

V3

Vg =

V5

V6

X1

X2
|n(V1)
Vivp
sin(vo)
vz + vy

Vi =Ve — V5

Dheeraj Pai and Miya Sylvester

Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi=Xx1

D G
vz = In(vy)

V4 = vivo ,

vs = sin(v2) In

Ve = V3 + Vs

y=vi=V— Vs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi =X1

o
vz = In(vy)

V4 = vivo .

vs = sin(v2) *

In
Ve = V3+ v
yYy=Vvi=Ve— V5 @

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi=Xx1

V2 = X2

vz = In(vy)
Vo = V1 Vo

vs = sin(v2) *

Ve = V3+ v
y=vi=V— Vs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi =X1

V2 = X;

N (o][~ | [=
vz = In(vy)

none 2D ¢

vs = sin(v2)

Ve = V3 + Vs

y=vi=Ve— Vs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Dynamic Graph execution

Vi=X1

Vo = X2

vz = In(vy)

Vo = V1 Vo

vs = sin(v2)

Ve = V3 + Vs
y=v=Ve— Vs

Dheeraj Pai and Miya Sylvester

Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
e Optimization-friendly

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
e Optimization-friendly
e Easy parallelization

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
e Optimization-friendly
e Easy parallelization
o Hard to debug (compiled graph)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

e Dynamic graphs:

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals
e Dynamic graphs:
o Flexible and intuitive for researchers

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:

Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)

Limited flexibility for conditionals

e Dynamic graphs:
o Flexible and intuitive for researchers
o Easier debugging

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:
Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

e Dynamic graphs:
o Flexible and intuitive for researchers

o Easier debugging
e Slower performance

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:

Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

e Dynamic graphs:

Flexible and intuitive for researchers
Easier debugging

Slower performance

Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Static graph vs Dynamic graph

e Static graphs:

Optimization-friendly

Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

e Dynamic graphs:

Flexible and intuitive for researchers
Easier debugging

Slower performance

Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,

ADOL-G, CppAD, Theano, PyTorch, Horovod,
R e Stan TensorFlow JAX, TF 2.0 DeepSpeed,
TAPENADE ’ Ray,
PySyft
¥ ¥ ¥ ¥ v
1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present

@ 1980s - 1990s: Mostly C/FORTRAN based. Static graphs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,
ADOL-G, CppAD, Theano, PyTorch, Horovod,
R e Stan TensorFlow JAX, TF 2.0 ey
TAPENADE ’ ' Ray,
PySyft
¥ ¥ ¥ ¥ v
1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present

@ 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
@ 2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,

ADOL-G, CppAD, Theano, PyTorch, Horovod,
R e Stan TensorFlow JAX, TF 2.0 DeepSpeed,
TAPENADE ’ Ray,
PySyft
¥ ¥ ¥ ¥ v
1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present

@ 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
@ 2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
@ 2015 - TF/Pytorch - C/Cuda DL focused optimizations.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,

ADOL-G, CppAD, Theano, PyTorch, Horovod,
R e Stan TensorFlow JAX, TF 2.0 DeepSpeed,
TAPENADE ’ Ray,
PySyft
¥ ¥ ¥ ¥ v
1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,
ADOL-C Horovod,
’ CppAD, Theano, PyTorch,

LU L, ‘ Stan TensorFlow JAX, TF 2.0 Deepspess:

TAPENADE Ray,
PySyft
v ¥ ¥ ¥ .

1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present
@ 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
@ 2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
@ 2015 - TF/Pytorch - C/Cuda DL focused optimizations.
@ 2016 - Pytorch - dynamic graphs
@ 2018 - JAX - duck typing of numpy, TF 2.0

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

History of Autodiff Libraries

FairScale,

ADOL-G, CppAD, Theano, PyTorch, Horovod,
R e Stan TensorFlow JAX, TF 2.0 DeepSpeed,
TAPENADE ’ Ray,
PySyft
¥ ¥ ¥ ¥ v
1980s-1990s Early 2000s 2010-2015 2016-Present 2020-Present

@ 1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

@ 2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Automatic differentiation Libraries

Evolution of Autodiff Libraries in 2010s and 2020s

@ 2010s: diverging philosophies
e Static graphs: TensorFlow 1.x, Caffe - industry
e Dynamic graphs: PyTorch 0.x - research

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Evolution of Autodiff Libraries in 2010s and 2020s

@ 2010s: diverging philosophies
e Static graphs: TensorFlow 1.x, Caffe - industry
e Dynamic graphs: PyTorch 0.x - research

e 2020s (PyTorch ~ TensorFlow):
e PyTorch:

e Optimizations for nn.Modules
@ Torch compile
e Optimized with caching

o TensorFlow:

o Eager execution

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Evolution of Autodiff Libraries in 2010s and 2020s

@ 2010s: diverging philosophies
e Static graphs: TensorFlow 1.x, Caffe - industry
e Dynamic graphs: PyTorch 0.x - research

e 2020s (PyTorch ~ TensorFlow):
e PyTorch:

e Optimizations for nn.Modules
@ Torch compile
e Optimized with caching

e TensorFlow:
o Eager execution
e Industry:

o Distributed training: Fairscale, Deepspeed,

[Rajbhandari, Samyam, et al. "ZeRO: Memory optimizations toward training trillion parameter models.”]

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

Distributed AD: PyTorch, FairScale & DeepSpeed

o PyTorch:
o Native support for data parallelism, AccumulateGrad
o Distributed Data Parallel (DDP) for multi-GPU training
o FairScale:
e Optimization techniques like ZeRO, Sharded DDP (Sharded models)
e Memory vs communication optimizations
o DeepSpeed:
o Specialized for very large models (100B+ parameters)
e ZeRO-3 for extreme memory efficiency
e Pipeline parallelism for layer distribution
e Common Features:
e Activation Checkpointing
e Sharded models, distributed training, compensate compute and network against
memory

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic differentiation Libraries

References

https://dlsyscourse.org/

https://en.wikipedia.org/wiki/Automatic_differentiation

https://deeplearning.cs.cmu.edu/S23/document/recitation/
Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf

Fairscale: https://github.com/facebookresearch /fairscale

Baydin, Atilim Gunes, et al. " Automatic differentiation in machine learning: a
survey.” Journal of Marchine Learning Research 18 (2018): 1-43.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/
https://en.wikipedia.org/wiki/Automatic_differentiation
https://deeplearning.cs.cmu.edu/S23/document/recitation/Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf
https://deeplearning.cs.cmu.edu/S23/document/recitation/Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf

HW1P1 Autograd

Table of Contents

@ HWI1P1 Autograd

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

HW1P1 Autograd Overview

@ Create an Automatic Differentiation library using Numpy.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

HW1P1 Autograd Overview

@ Create an Automatic Differentiation library using Numpy.

@ Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

HW1P1 Autograd Overview

@ Create an Automatic Differentiation library using Numpy.

@ Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

@ Build activations, losses, layers using primitive operations.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.
50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

Some Tips for Autograd HW

@ You don't need to implement the graph for HW; a Python list will do the job.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

Some Tips for Autograd HW

@ You don't need to implement the graph for HW; a Python list will do the job.

@ Explicitly add operations and nodes to the list.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

Some Tips for Autograd HW

@ You don't need to implement the graph for HW; a Python list will do the job.
@ Explicitly add operations and nodes to the list.

@ Define minimal primitive backward functions - mul_backward, matmul_backward,
etc.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

HW1P1 Autograd

Some Tips for Autograd HW

@ You don't need to implement the graph for HW; a Python list will do the job.
@ Explicitly add operations and nodes to the list.

@ Define minimal primitive backward functions - mul_backward, matmul_backward,
etc.

@ Extremely simple if you read the writeup and all the comments in the handout.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

File Structure

- Build these files on their own first,
and then put it into your Part 1
homeworks, if you want

2 MyTorch Structure

In HW1P1, your implementation of MyTorch worked at the granularity of a single layer - thus, stacking sev-
eral Linear Layers followed by activations (and, optionally, BatchNorm) allowed you to build your very own
MLP. In this bonus assignment, we will build an alternative implementation of MyTorch based on a popular
Automatic Differentiation framework called Autograd that works at the granularity of a single operation. As
you will discover, this alternate implementation more closely resembles the internal working of popular Deep
Learning frameworks such as PyTorch and TensorFlow (version 2.0 onwards), and offers more flexibility in
building arbitrary network architectures. For Homework 1 Bonus, MyTorch will have the following structure:

handout
e mytorch/
— autograd_engine.py
— utils.py
— sandbox.py
— nn/
* functional.py
* modules/
- activation.py
- linear.py
- loss.py
e hwi_bonus/
— data
— mlp.py
— mlp_runner.py
e autograder/
— runner.py
— helpers.py
— test_activation.py
— test_autograd.py
— test_functional.py
— test_linear.py
— test_loss.py

e create_tarball.sh

Autograd Implementation

- Take advantage of ordering
- Backpropagation is to iterate
backwards on an operation list

3 Autograd

3.1 Background : Automatic Differentiation

Automatic Differentiation [1], or “Autodiff”, is a framework that allows us to calculate the derivatives of any
arbitrarily complex mathematical function. It does so by repeatedly applying the chain rule of differentiation
since all computer functions can be rewritten in the form of nested differentiable operations. Autodiff, which
is different from Symbolic Differentiation, and Numerical Differentiation, has several desirable properties:
two that we care most about are computational efficiency, and numerical accuracy. In practice, there are
several different ways to implement autodiff, which can be broadly categorised into two types - forward
accumulation, or forward mode (which computes the derivatives of the chain rule from inside to outside)
and reverse accumulation, or reverse mode (which computes the derivatives of the chain rule from outside
to inside). “Autograd” is just one such implementation of reverse mode automatic differentiation, which is
most widely used in the context of machine learning applications.

3.2 Autograd and Backprop

Recall from Lecture 2, “The neural network as a universal approximator”, that neural networks are just large,
large functions. Also recall from Lecture 3, that in order to train a neural network, we need to calculate the
derivatives (or gradients) of this large function (with respect to its inputs) - which is the backpropagation
algorithm - and use these gradients in an optimisation algorithm such as gradient descent to update the
parameters of the network. Finally, recall from earlier in this writeup that autodiff provides an efficient way
to compute exactly these required gradients by repeatedly applying the chain rule. The Autograd framework
keeps track of the sequence of operations that are performed on the input data leading up to the final loss
calculation. It then performs backpropagation and calculates all the necessary gradients.

Autograd Implementation

TV

|
L@L

3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computa-
tional graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations
going forward and backward. This is based on the key observation that regardless of the actual network
architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations
can be performed in order to achieve the correct result. (Readers who have a CS background may draw an
analogy with the concept of serialized transactions/operations in distributed /parallel computing). We break
down our implementation into two main classes - the Operation, and the Autograd classes - and a single
helper class (GradientBuffer).

dL

Autograd Implementation

TV

3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computa-
tional graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations
going forward and backward. This is based on the key observation that regardless of the actual network
architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations

analogy with the concept of serialized transactions/operations in distributed /parallel computing). We break
down our implementation into two main classes - the Operation, and the Autograd classes - and a single

b
j can be performed in order to achieve the correct result. (Readers who have a CS background may draw an

helper class (GradientBuffer).

dL _dL

dy

dn dy
dL _dL

dx
dy

do dy

db

dL

dL dL

dh

do dy

Autograd Implementation

dL

TV

dL

3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computa-
tional graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations
going forward and backward. This is based on the key observation that regardless of the actual network
architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations

analogy with the concept of serialized transactions/operations in distributed /parallel computing). We break
down our implementation into two main classes - the Operation, and the Autograd classes - and a single

b
j can be performed in order to achieve the correct result. (Readers who have a CS background may draw an

dh

dx
dL

dh

_dL

dx
dh

dw

~ dh

dw

helper class (GradientBuffer).

dL

dL

dy

dh
dL

dy
dL

dx
dy

db

dy

db

dL

dL

dL

dL dL

dx

dw

dh

do dy

Operation Class

3.3.1 Operation Class

The objects of this class represent every operation that is performed in the network. Thus, for every operation
that you perform on the data (say, multiplication, or addition), you will need to initialize a new Operation
object that specifies the type of operation being performed. Note that to calculate the derivative of any
operation in the network, we need to know the inputs that were passed to this node, and the outputs that
were generated. Storing the type of operation, the inputs, and the outputs are the primary responsibilities
of the Operation class.

Class attributes:
e inputs: The inputs to the operation.
e outputs: The output(s) generated by applying the operation to the inputs.

e gradients_to_update: These are the gradients corresponding to the operation inputs that must be
updated on the backward pass.

e backward_function: A backward function implemented for a specific operation (ex: add_backward
for operation add - see section 4.1.2 for more details). This function is called during backward pass to
calculate and update the gradients for operation inputs.

Autograd Class

3.3.2 Autograd Class

This is the main class for autograd engine that is responsible for keeping track of the sequence of operations
being performed, and kicking off the backprop algorithm once the forward pass is complete.

Class attributes:

e gradient_buffer: An instance of the GradientBuffer class, used to store a mapping between input
data and their gradients.

e operation_list: A Python list that is used to store sequence of operations that are performed on the
input data. Concretely, this stores Operation objects.

Class methods:

e add_operation(inputs, output, gradients_to_update, backward_operation): Initialises a new
instance of Operation with given arguments, and adds it to operation_list.

e backward(divergence): Kicks off backpropagation. Traverses the operation_list in reverse and
calculates the gradients at every node.

For this assignment, you will need to implement add_operationand backward methods.

GradientBuffer Class

SN UARAL LML ASEIAUAAUY] NS LE T ALE AAULAA UNS ASAAJSAVASAVALY SANANA LW IS W Mh W W ASLUAIA A A AR A WA AAANVAANS AL

3.3.3 GradientBuffer Class

This is a simple wrapper class around a Python dictionary with a few useful methods that allow for storing
and updating the gradients. While it’s not necessary to modify this class for your assignment, we strongly
recommend familiarizing yourself with the class attributes and methods to gain a better understanding of
its functionality.

Class attributes:

memory: A Python dictionary that holds the NumPy array corresponding to its gradient. For a given
NumPy array np_array, the key is the memory location of np_array and the value is the gradient
array associated with np_array. Note: Using the memory location as a key is a simple trick that
eliminates the need to perform extra bookkeeping of maintaining unique keys for all gradients.

Class methods:

get_memory_loc(np_array): Returns the memory location of np_array, used in other functions to
get keys.

is_in_memory (np_array): Checks if a gradient array corresponding to np_array is already in memory.
add_spot (np_array): Allocates a zero gradient array corresponding to np_array in memory.

update_param(np_array, gradient): Increments the gradient array corresponding to np_array by
the amount of gradient.

get_param(np_array): Returns the gradient array corresponding to np_array.

clear(): Clears the memory dictionary.

Example
Walkthrough

3.4 Example Walkthrough
Suppose that we are building a single layer MLP. Therefore, we perform the following operations on input
data x:

h=zxW (1)

The following steps need to be executed for this simple operation:

e First, we need to create an instance of autograd engine using:
autograd = autograd_engine.Autograd()

e For equation (1), we need to add a node to the computation graph performing multiplication, which
would be done in the following way:

autograd_engine.add_operation(
inputs = [x, W], output = h,
gradients_to_update = [None, dW],
backward_operation = matmul_backward

)
e Similarly for equation (2),

autograd_engine.add_operation(
inputs = [h, b], output =y,
gradients_to_update = [None, db],
backward_operation = add_backward

)
e Invoke backpropagation by:
autograd_engine.backward(divergence)
dW and db should be updated after this.

The concept above could be leveraged in building more complex computation steps (with few lines of code).

Example
Walkthrough

3.4 Example Walkthrough

Suppose that we are building a single layer MLP. Therefore, we perform the following operations on input
data x:

h=zxW (1)
y=h+b (2)

The following steps need to be executed for this simple operation:

1 |import numpy as np: . stance of autograd engine using:
2 from mytorch.nn.functional import matmul_backward, add_ backward
3 ngine.Autograd()
4 class Linear():
5 def _ init (self, in_features, out_features, autograd_engine): add a node to the computation graph performing multiplication, which
6 self.W = np.random.uniform(-np.sqrt(1l / in_features), np.sqrt(l g way:
7 size=(out_features, in_features)) # X
8 self.b = np.random.uniform(-np.sqrt(l / in_features), np.sqrt(l peratlon(
9 size=(out_features, 1)) # just changloutput = h,
10 self.dW = np.zeros(self.W.shape) te = [None, dW],
11 self.db = np.zeros(self.b.shape) n = matmul_backward
12
13 self.momentum W = np.zeros(self.W.shape)
14 self.momentum b = np.zeros(self.b.shape)
15
16 self.autograd_engine = autograd engine peration(
17 output =y,
18 def call (self, x): te = [None, db],
19 return self.forward(x) wora—wporas=on = add_backward

)
e Invoke backpropagation by:
autograd_engine.backward(divergence)
dW and db should be updated after this.

The concept above could be leveraged in building more complex computation steps (with few lines of code).

Operation Class &
Fu nctional.py (& Sandbox.py)

15

16 def add_backward(grad_output, a, b): .

17 a_grad = grad_output * np.ones(a.shape) S.31 Operatlon Class

18 b_grad = grad output * np.ones(b.shape) The objects of this class represent every operation that is performed in the network. Thus, for every operation

- ENmcR B grad, bgzad that you perform on the data (say, multiplication, or addition), you will need to initialize a new Operation

20 you p Y, p .) Y P

21 object that specifies the type of operation being performed. Note that to calculate the derivative of an

21 J P yP P g P y

22 def sub_backward(grad_output, a, b): operation in the network, we need to know the inputs that were passed to this node, and the outputs that
3 # TODO: implement the backward function for subtraction. were generated. Storing the type of operation, the inputs, and the outputs are the primary responsibilities

24 raise NotImplementedError of the Operation class.

25

26 Class attributes:

27 def matmul_backward(grad_output, a, b): . . X

28 # TODO: implement the backward function for matrix product. e inputs: The inputs to the operation.

29 raise NotImplementedError . 5)

35 3 e outputs: The output(s) generated by applying the operation to the inputs.

Al e gradients_to_update: These are the gradients corresponding to the operation inputs that must be

32 def outer_backward(grad_output, a, b): dAatad tha back d- pass

33 assert a.shape[0] == 1 or a.ndim upgated-onhetbatkwarg pass:

34 agsert b:shape[(] ==l or: b:ndim == 1 e backward_function: A backward function implemented for a specific operation (ex: add_backward

35 # TODO: implement the backward function for outer product. 5 : F

, 2 for operation add - see section 4.1.2 for more details). This function is called during backward pass to

36 raise NotImplementedError : . .

37 calculate and update the gradients for operation inputs.

38

39 def mul_backward(grad output, a, b): =

40 # TODO: implement the backward function for multiply.

41 raise NotImplementedError

42

43

44 def div_backward(grad_output, a, b):

45 # TODO: implement the backward function for division.
46 raise NotImplementedError

47

48

a

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

No backward in
Linear.py & Activation.py

def

def

_call (self, x):

return self.forward(x)

forward(self, x):

Computes the affine transformation forward pass of the Linear Layer

Args:
- X (np.ndarray): the input array,

Returns:
- (np.ndarray), the output of this forward computation.

TODO: Use the primitive operations to calculate the affine transformat

of the linear layer
TODO: Remember to use add operation to record these operations in
the autograd engine after each operation

TODO: remember to return the computed value
raise NotImplementedError

40
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

class Identity(Activation):

Identity function (already implemented).

"o

This class is a gimme as it is already implemented for you

def _ init_ (self, autograd_engine):
super (Identity, self)._ init__(autograd_engine)

def forward(self, x):
raise NotImplementedError

class Sigmoid(Activation):
def _ init (self, autograd_engine):
super (Sigmoid, self)._ init_(autograd_engine)

def forward(self, x):
raise NotImplementedError

class Tanh(Activation):
def _ init (self, autograd _engine):
super (Tanh, self)._ init_(autograd_engine)

def forward(self, x):
raise NotImplementedError

class ReLU(Activation):
def _ init__ (self, autograd_engine):
super (ReLU, self)._init__ (autograd_engine)

def forward(self, x):
raise NotImplementedError

Loss.py & Pytorch

74

75 # Hint: To simplify things you can just make a backward for this loss and not
76 # try to do it for every operation.

77 class SoftmaxCrossEntropy(LossFN):

78 def init (self, autograd_engine):

79 super (SoftmaxCrossEntropy, self)._ init_(autograd_engine)
80

81 def forward(self, y, y_hat):

82 # TODO: calculate loss value and set self.loss val

83 # To simplify things, add a single operation corresponding to the
84 # backward function created for this loss

85

86 # self.loss val = ...

87 # return self.loss _val

88 raise NotImplemented

89

