
Computing Derivatives & Autograd
11485/685/785 Fall 2023: RECITATION 3

Dheeraj Pai and Miya Sylvester

September 15, 2023

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Logistics and deadlines

Sept 15: AWS Credit form

Sept 15: Kaggle Setup Form - Piazza @82

Sept 23: HW1P1 and HW1P2

Study groups mentors - Piazza @346 (Change in group - check @346)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Recap from Lecture

Neural Networks (NN) consist of parameters, mainly weights W and biases b.

Update Rule: W = W − η dL
dW

How do we compute derivatives dL
dW ?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Recap from Lecture

Neural Networks (NN) consist of parameters, mainly weights W and biases b.

Update Rule: W = W − η dL
dW

How do we compute derivatives dL
dW ?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Recap from Lecture

Neural Networks (NN) consist of parameters, mainly weights W and biases b.

Update Rule: W = W − η dL
dW

How do we compute derivatives dL
dW ?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Table of Contents

1 Differentiation methods

2 Automatic differentiation

3 Automatic differentiation Libraries

4 HW1P1 Autograd

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Symbolic Differentiation

Given Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Goal

Given x1, x2 as inputs, calculate ∂y
∂x1

, ∂y
∂x2

(at the point x1, x2).

Partial Derivatives

dy

dx1
=

1

x1
+ x2

dy

dx2
= x1 − cos(x2)

Substitute the values of x1, x2

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Symbolic Differentiation

Given Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Goal

Given x1, x2 as inputs, calculate ∂y
∂x1

, ∂y
∂x2

(at the point x1, x2).

Partial Derivatives

dy

dx1
=

1

x1
+ x2

dy

dx2
= x1 − cos(x2)

Substitute the values of x1, x2

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Symbolic Differentiation

Given Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Goal

Given x1, x2 as inputs, calculate ∂y
∂x1

, ∂y
∂x2

(at the point x1, x2).

Partial Derivatives

dy

dx1
=

1

x1
+ x2

dy

dx2
= x1 − cos(x2)

Substitute the values of x1, x2

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Symbolic Differentiation

Given Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Goal

Given x1, x2 as inputs, calculate ∂y
∂x1

, ∂y
∂x2

(at the point x1, x2).

Partial Derivatives

dy

dx1
=

1

x1
+ x2

dy

dx2
= x1 − cos(x2)

Substitute the values of x1, x2

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Symbolic Differentiation

Given Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Goal

Given x1, x2 as inputs, calculate ∂y
∂x1

, ∂y
∂x2

(at the point x1, x2).

Partial Derivatives

dy

dx1
=

1

x1
+ x2

dy

dx2
= x1 − cos(x2)

Substitute the values of x1, x2
Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Given x1, x2 as inputs, calculate ∂y
∂x1

(at the point x1, x2)

Procedure

Use the limit formula:

lim
h→0

f (x1 + h, x2)− f (x1, x2)

h

Select a small h (10−5)

Substitute the values of x1, x2, h

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Given x1, x2 as inputs, calculate ∂y
∂x1

(at the point x1, x2)

Procedure

Use the limit formula:

lim
h→0

f (x1 + h, x2)− f (x1, x2)

h

Select a small h (10−5)

Substitute the values of x1, x2, h

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Given x1, x2 as inputs, calculate ∂y
∂x1

(at the point x1, x2)

Procedure

Use the limit formula:

lim
h→0

f (x1 + h, x2)− f (x1, x2)

h

Select a small h (10−5)

Substitute the values of x1, x2, h

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

Given x1, x2 as inputs, calculate ∂y
∂x1

(at the point x1, x2)

Procedure

Use the limit formula:

lim
h→0

f (x1 + h, x2)− f (x1, x2)

h

Select a small h (10−5)

Substitute the values of x1, x2, h

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Questions?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Symbolic Differentiation for NNs?

Function Model

y = MLP(W , b, x)

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

y = MLP(W , b, x)

Goal

Given x ,W , b as inputs, calculate ∂y
∂x1

, ∂y
∂W , ∂y∂b (at the point x ,W , b)

Challenges

Numerical instability and inaccuracy. How do you choose the most appropriate h?

What happens when we have 1 billion parameters?

Leads to 1 billion equations

Each equation involves nearly 1 billion floating-point operations

Roughly 1× 1018 FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Table of Contents

1 Differentiation methods

2 Automatic differentiation

3 Automatic differentiation Libraries

4 HW1P1 Autograd

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g(x))

Key Question

Can we compute dY
dx from dh

dg and dg
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg × dg
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g(x))

Key Question

Can we compute dY
dx from dh

dg and dg
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg × dg
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g(x))

Key Question

Can we compute dY
dx from dh

dg and dg
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg × dg
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g(x))

Key Question

Can we compute dY
dx from dh

dg and dg
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg × dg
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g1(x), g2(x))

Key Question

Can we compute dY
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg1
× dg1

dx + dh
dg2

× dg2
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g1(x), g2(x))

Key Question

Can we compute dY
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg1
× dg1

dx + dh
dg2

× dg2
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g1(x), g2(x))

Key Question

Can we compute dY
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg1
× dg1

dx + dh
dg2

× dg2
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x) = h(g1(x), g2(x))

Key Question

Can we compute dY
dx ?

Chain Rule

Decompose complex derivatives into simpler parts.
dY
dx = dh

dg1
× dg1

dx + dh
dg2

× dg2
dx

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x1, x2, . . . , xn) = h(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn))

Key Question

Can we compute dY
dx1

. . . dY
dxn

Answer: Yes.

Chain Rule

Decompose complex derivatives into simpler parts.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x1, x2, . . . , xn) = h(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn))

Key Question

Can we compute dY
dx1

. . . dY
dxn

Answer: Yes.

Chain Rule

Decompose complex derivatives into simpler parts.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x1, x2, . . . , xn) = h(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn))

Key Question

Can we compute dY
dx1

. . . dY
dxn

Answer: Yes.

Chain Rule

Decompose complex derivatives into simpler parts.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

Y = f (x1, x2, . . . , xn) = h(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn))

Key Question

Can we compute dY
dx1

. . . dY
dxn

Answer: Yes.

Chain Rule

Decompose complex derivatives into simpler parts.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Intermediate Variables

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Can you compute all the derivatives dy
dvi

? By
looking at only one equation at a time.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Questions?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example - Graph computation

Intermediate Variables

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example - Graph computation

Intermediate Variables

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Computation (Advantage)

Complex Model

y = MLP(W , b, x)

Computational Cost

1 Billion parameters

Forward pass = 1B FLOPS

Backward pass = 1B FLOPS

Total Cost

Total = 2B FLOPS ≪≪ 1e + 18

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Computation (Advantage)

Complex Model

y = MLP(W , b, x)

Computational Cost

1 Billion parameters

Forward pass = 1B FLOPS

Backward pass = 1B FLOPS

Total Cost

Total = 2B FLOPS ≪≪ 1e + 18

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Computation (Advantage)

Complex Model

y = MLP(W , b, x)

Computational Cost

1 Billion parameters

Forward pass = 1B FLOPS

Backward pass = 1B FLOPS

Total Cost

Total = 2B FLOPS ≪≪ 1e + 18

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Question

When is automatic differentiation a bad idea ?

Hint: Think about the memory to store the variables. What if you need the derivative
of just one variable

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Question

When is automatic differentiation a bad idea ?

Hint: Think about the memory to store the variables. What if you need the derivative
of just one variable

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Question

When is symbolic differentiation a good idea ?

Hint: Integrals?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Question

When is symbolic differentiation a good idea ?

Hint: Integrals?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Automatic Differentiation in Practice

Generate the computational graph
while forward propagation

Store each intermediate variables

Chain rule to compute the derivatives.

Optimize, parallelize based on variable
dependencies

Many more additional blocks -
Accumulate Grad etc.

Images from https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Questions?

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Table of Contents

1 Differentiation methods

2 Automatic differentiation

3 Automatic differentiation Libraries

4 HW1P1 Autograd

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Automatic Differentiation Libraries

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static Vs Dynamic Graphs
execution

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static Graph Automatic Differentiation Execution

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Optimization Techniques

Dead Code Elimination

Common Subexpression Elimination

Operator Fusion

Memory Optimization

Graph Pruning

Kernel Fusion

Data Layout Optimization

Batching Optimization

Pipeline Optimization

Device Placement

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic graph Automatic differentiation execution

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

v1 = x1

v2 = x2

v3 = ln(v1)

v4 = v1v2

v5 = sin(v2)

v6 = v3 + v4

y = v7 = v6 − v5

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly

Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization

Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)

Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:

Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers

Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging

Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance

Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Static graph vs Dynamic graph

Static graphs:
Optimization-friendly
Easy parallelization
Hard to debug (compiled graph)
Limited flexibility for conditionals

Dynamic graphs:
Flexible and intuitive for researchers
Easier debugging
Slower performance
Higher memory consumption

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

1980s - 1990s: Mostly C/FORTRAN based. Static graphs

2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)

2015 - TF/Pytorch - C/Cuda DL focused optimizations.

2016 - Pytorch - dynamic graphs

2018 - JAX - duck typing of numpy, TF 2.0

2020 - Fairscale, Deepspeed, NCLL, Pytorch distributed
Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Evolution of Autodiff Libraries in 2010s and 2020s

2010s: diverging philosophies
Static graphs: TensorFlow 1.x, Caffe - industry
Dynamic graphs: PyTorch 0.x - research

2020s (PyTorch ≈ TensorFlow):
PyTorch:

Optimizations for nn.Modules
Torch compile
Optimized with caching

TensorFlow:

Eager execution

Industry:

Distributed training: Fairscale, Deepspeed,
[Rajbhandari, Samyam, et al. ”ZeRO: Memory optimizations toward training trillion parameter models.”]

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Evolution of Autodiff Libraries in 2010s and 2020s

2010s: diverging philosophies
Static graphs: TensorFlow 1.x, Caffe - industry
Dynamic graphs: PyTorch 0.x - research

2020s (PyTorch ≈ TensorFlow):
PyTorch:

Optimizations for nn.Modules
Torch compile
Optimized with caching

TensorFlow:

Eager execution

Industry:

Distributed training: Fairscale, Deepspeed,
[Rajbhandari, Samyam, et al. ”ZeRO: Memory optimizations toward training trillion parameter models.”]

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Evolution of Autodiff Libraries in 2010s and 2020s

2010s: diverging philosophies
Static graphs: TensorFlow 1.x, Caffe - industry
Dynamic graphs: PyTorch 0.x - research

2020s (PyTorch ≈ TensorFlow):
PyTorch:

Optimizations for nn.Modules
Torch compile
Optimized with caching

TensorFlow:

Eager execution

Industry:

Distributed training: Fairscale, Deepspeed,
[Rajbhandari, Samyam, et al. ”ZeRO: Memory optimizations toward training trillion parameter models.”]

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Distributed AD: PyTorch, FairScale & DeepSpeed

PyTorch:
Native support for data parallelism, AccumulateGrad
Distributed Data Parallel (DDP) for multi-GPU training

FairScale:
Optimization techniques like ZeRO, Sharded DDP (Sharded models)
Memory vs communication optimizations

DeepSpeed:
Specialized for very large models (100B+ parameters)
ZeRO-3 for extreme memory efficiency
Pipeline parallelism for layer distribution

Common Features:
Activation Checkpointing
Sharded models, distributed training, compensate compute and network against
memory

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

References

https://dlsyscourse.org/

https://en.wikipedia.org/wiki/Automatic_differentiation

https://deeplearning.cs.cmu.edu/S23/document/recitation/

Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf

Fairscale: https://github.com/facebookresearch/fairscale

Baydin, Atilim Gunes, et al. ”Automatic differentiation in machine learning: a
survey.” Journal of Marchine Learning Research 18 (2018): 1-43.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

https://dlsyscourse.org/
https://en.wikipedia.org/wiki/Automatic_differentiation
https://deeplearning.cs.cmu.edu/S23/document/recitation/Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf
https://deeplearning.cs.cmu.edu/S23/document/recitation/Recitation3/s23_Recitation_3_AutoDiff__Backprop.pdf

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Table of Contents

1 Differentiation methods

2 Automatic differentiation

3 Automatic differentiation Libraries

4 HW1P1 Autograd

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

HW1P1 Autograd Overview

Create an Automatic Differentiation library using Numpy.

Implement an engine Autograd that stores every operation in sequence
(equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.

50 Marks (Largest HW part 1 Bonus)

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Some Tips for Autograd HW

You don’t need to implement the graph for HW; a Python list will do the job.

Explicitly add operations and nodes to the list.

Define minimal primitive backward functions - mul backward, matmul backward,
etc.

Extremely simple if you read the writeup and all the comments in the handout.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Some Tips for Autograd HW

You don’t need to implement the graph for HW; a Python list will do the job.

Explicitly add operations and nodes to the list.

Define minimal primitive backward functions - mul backward, matmul backward,
etc.

Extremely simple if you read the writeup and all the comments in the handout.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Some Tips for Autograd HW

You don’t need to implement the graph for HW; a Python list will do the job.

Explicitly add operations and nodes to the list.

Define minimal primitive backward functions - mul backward, matmul backward,
etc.

Extremely simple if you read the writeup and all the comments in the handout.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

Differentiation methods
Automatic differentiation

Automatic differentiation Libraries
HW1P1 Autograd

Some Tips for Autograd HW

You don’t need to implement the graph for HW; a Python list will do the job.

Explicitly add operations and nodes to the list.

Define minimal primitive backward functions - mul backward, matmul backward,
etc.

Extremely simple if you read the writeup and all the comments in the handout.

Dheeraj Pai and Miya Sylvester Computing Derivatives & Autograd

File Structure

- Build these files on their own first,
and then put it into your Part 1
homeworks, if you want

Autograd Implementation

- Take advantage of ordering
- Backpropagation is to iterate

backwards on an operation list

Autograd Implementation
h = x * W
y = h + b

x h y

bW

x +

dL
dy

…

=

=

Autograd Implementation

dL
dh

dL
dy

dy
dx

dL
db

dL
dy

dy
db

dL
dh

dL
db

dL
dy

h = x * W
y = h + b

x h y

bW

x +

=

= =

=

Autograd Implementation

dL
dx

dL
dW

dL
dh

dL
db

dL
dy

…

dL
dx

dL
dh

dh
dx

dL
dW

dL
dh

dh
dW

dL
dh

dL
dy

dy
dx

dL
db

dL
dy

dy
db

h = x * W
y = h + b

x h y

bW

x +

Operation Class

Autograd Class

GradientBuffer Class

Example
Walkthrough

Example
Walkthrough

Operation Class &
Functional.py (& Sandbox.py)

No backward in
Linear.py & Activation.py

Loss.py & Pytorch

