
Hyperparameter Tuning

Harini Subramanyan, Jeel Shah

11785
Fall 23
Recitation-4

What did we cover in Recitation 2?

What did we cover in Recitation 2?

● Data pre-processing techniques
○ Data Quality
○ Data Normalization

● Experimentation methods
○ Model Architecture
○ Weight initialization
○ Optimizer
○ Batch Norm

● Hyperparameters
○ Learning Rate
○ Dropout

What are covering today?

● Other Normalization methods
● Schedulers
● How to work in groups
● Grid and Random Search
● How to use wandb?

Normalization methods

Normalizations

● Batch Norm (paper)
● Layer Norm (paper)
● Weight Norm (paper)
● Instance Norm (paper)
● Group Norm (paper)
● Batch-Instance Norm (paper)
● Switchable Norm (paper)

https://arxiv.org/pdf/1502.03167.pdf%27
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://arxiv.org/pdf/1803.08494.pdf
https://arxiv.org/pdf/1805.07925.pdf
https://arxiv.org/pdf/1811.07727v1.pdf

BatchNorm

● Normalizing batch of inputs to eliminate
internal covariate shift

● torch.nn.BatchNorm1d(num_features) -
Applies Batch Normalization over a 2D or
3D input

● For 4D inputs (N,C,H,W) -
torch.nn.BatchNorm2d(num_features)

Layer Norm

Problems with Batch Norm

● Poor performance if the batch size is small, possible for high dimensional inputs
● Running mean and variance might not be the best thing to calculate for sequential

algorithms like RNNs

Layer normalization calculates mean and variance for each item within the batch

Pytorch syntax - torch.nn.LayerNorm(normalized_shape)

Some Other Methods

● Weight Norm
○ Normalizes weights of each layer
○ torch.nn.utils.weight_norm(nn.Linear(20, 40), name='weight')

● Group Norm
○ Applies normalization over a mini-batch of inputs but splitted in

groups of size num_channels/num_groups
○ torch.nn.GroupNorm(num_groups, num_channels)

● Instance Norm
○ Calculates normalization parameters across individual

channels/features for each input
○ torch.nn.InstanceNorm1d(num_features)
○ torch.nn.InstanceNorm2d(num_features)

Schedulers

What are Schedulers used for?
● The learning rate controls how big of a step for an optimizer to reach the minima of the

loss function.
● A learning rate scheduler adjusts the learning rate according to a pre-defined schedule

during the training process.
● PyTorch supports:

● StepLR
● MultiStepLR
● ConstantLR
● LinearLR
● ExponentialLR
● PolynomialLR
● CosineAnnealingLR
● CosineAnnealingWarmRestartsLR
● CyclicLR
● OneCycleLR
● ReduceLROnPlateauLR
● Custom Learning Rate Schedulers with Lambda Functions

Step LR

● The StepLR reduces the learning rate by a multiplicative factor after every predefined
number of training steps.

scheduler = StepLR(optimizer, step_size = 4, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR

Multistep LR

● The MultiStepLR — similarly to the StepLR — also reduces the learning rate by a
multiplicative factor but after each pre-defined milestone.

scheduler = MultiStepLR(optimizer, milestones=[8, 24, 28], gamma =0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR.html#torch.optim.lr_scheduler.MultiStepLR
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html#torch.optim.lr_scheduler.StepLR

Exponential LR

● The ExponentialLR reduces learning rate by a multiplicative factor at every training
step.

scheduler = ExponentialLR(optimizer, gamma = 0.5)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html#torch.optim.lr_scheduler.ExponentialLR

CosineAnnealingLR

● The CosineAnnealingLR reduces learning rate by a cosine function.
● While you could technically schedule the learning rate adjustments to follow multiple

periods, the idea is to decay the learning rate over half a period for the maximum
number of iterations.

scheduler = CosineAnnealingLR(optimizer, T_max = 32,eta_min = 1e-4)

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html#torch.optim.lr_scheduler.CosineAnnealingLR

Hyperparameter Searching

Grid Search

MAX_HIDDEN_SIZE = 8000

MAX_CONTEXT = 64

hidden_size = (int)(x1 * MAX_HIDDEN_SIZE)

context = (int)(x2 * MAX_CONTEXT)

in_size = 2*context + 1

model = torch.nn.Sequential(

 torch.nn.Linear(in_size, hidden_size),

 torch.nn.ReLU(),

 torch.nn.Linear(hidden_size, out_size),

)

Random Grid Search

MAX_HIDDEN_SIZE = 8000

MAX_CONTEXT = 64

hidden_size = (int)(x1 * MAX_HIDDEN_SIZE)

context = (int)(x2 * MAX_CONTEXT)

in_size = 2*context + 1

model = torch.nn.Sequential(

 torch.nn.Linear(in_size, hidden_size),

 torch.nn.ReLU(),

 torch.nn.Linear(hidden_size, out_size),

)

Wandb for sweeps
Covered in Recitation 0P- part2

Colab notebook

Video

Insights from sweep:
https://wandb.ai/11785-sg/CIFAR-Sweep/s
weeps/5h4vbyqk

https://colab.research.google.com/drive/1CWC6KvrKCGn6axEJIOmBQQwU2ZcgJ2bK?usp=sharing
https://www.youtube.com/watch?v=La6WATJ8wgQ&ab_channel=CarnegieMellonUniversityDeepLearning
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah
https://wandb.ai/11785-sg/CIFAR-Sweep/sweeps/5h4vbyqk?workspace=user-jdshah

Random Grid Search & WandB Team Ablations

Interpreting wandb graphs

