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Modelling Series

• In many situations one must consider a series 
of inputs to produce an output
– Outputs too may be a series

• Examples: .. 
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What did I say?

• Speech Recognition
– Analyze a series of spectral vectors, determine what was said

• Note: Inputs are sequences of vectors.  Output is a 
classification result

“To be” or not “to be”??
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What is he talking about?

• Text analysis
– E.g. analyze document, identify topic

• Input series of words, output classification output

– E.g. read English, output French
• Input series of words, output series of words

“Football” or “basketball”?
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The Steelers, meanwhile, continue to struggle to make stops on 
defense. They've allowed, on average, 30 points a game, and have 
shown no signs of improving anytime soon.



Should I invest..

• Note: Inputs are sequences of vectors.  Output may be 
scalar or vector
– Should I invest, vs. should I not invest in X?
– Decision must be taken considering how things have fared over 

time

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks
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These are classification and 
prediction problems

• Consider a sequence of inputs
– Input vectors

• Produce one or more outputs

• This can be done with neural networks
– Obviously
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything as simple boxes
– Each box actually represents an entire layer with many units
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The stock prediction problem…

• Stock market
– Must consider the series of stock values in the past 

several days to decide if it is wise to invest today

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks

10



The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)
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The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)
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The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)
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The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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Finite-response model

• This is a finite response system
– Something that happens today only affects the 

output of the system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Y(t-1)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

Y(T)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



The stock predictor

Stock
vector

Time

Y(T+1)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system

19

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



The stock predictor

Stock
vector

Time

Y(T+2)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system

20

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



The stock predictor

Stock
vector

Time

Y(T+3)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



The stock predictor

Stock
vector

Time

Y(T+4)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



Finite-response model

• Something that happens today only affects the output of the 
system for days into the future
– Predictions consider N days of history

• To consider more of the past to make predictions, you must 
increase the “history” considered by the system

Stock
vector

Time

Y(T+3)
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X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)



Finite-response

• Problem:  Increasing the “history” makes the 
network more complex
– No worries, we have the CPU and memory

• Or do we?

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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Systems often have long-term 
dependencies

• Longer-term trends –
– Weekly trends in the market
– Monthly trends in the market
– Annual trends
– Though longer historic tends to affect us less than more 

recent events.. 25



We want infinite memory

• Required:  Infinite response systems
– What happens today can continue to affect the output 

forever
• Possibly  with weaker and weaker influence

Time

26



Poll 1 (@746, @747)

27

Convolutional neural networks are finite response systems, true or false

 True
 False

An input at time T affects the output of the convolutional layers of the 
network for all time, true or false

 True
 False



Poll 1
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Convolutional neural networks are finite response systems, true or false 

 True 
 False 

 

An input at time T affects the output of the convolutional layers of the network for all time, true or 
false 

 True 
 False 



Examples of infinite response systems

– Required: Define initial state:  for 
– An input at at produces 
– produces which produces and so on until even if 

are 0
• i.e. even if there are no further inputs!

– A single input influences the output for the rest of time!

• This is an instance of a NARX network
– “nonlinear autoregressive network with exogenous inputs”

–

• Output contains information about the entire past
29



A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)
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• A NARX net with recursion from the output

Time
X(t)

Y(t) Y

31

A one-tap NARX network



A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)
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• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



A more complete representation

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t-1)

Brown boxes show output layers
Yellow boxes are outputs
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Same figure redrawn

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

Brown boxes show output layers
All outgoing arrows are the same output
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A more generic NARX network

• The output at time is computed from the 
past outputs and the current 
and past inputs  

Time
X(t)

Y(t)

40



NARX Networks

• Very popular for time-series prediction
– Weather
– Stock markets
– As alternate system models in tracking systems
– Language

• Any phenomena with distinct “innovations” that 
“drive” an output

• Note: here the “memory” of the past is in the 
output itself, and not in the network

41



Let’s make memory more explicit
• Task is to “remember” the past
• Introduce an explicit memory variable whose job it is to 

remember

• is a “memory” variable
– Generally stored in a “memory” unit
– Used to “remember” the past
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Jordan Network

• Memory unit simply retains a running average of past outputs
– “Serial order: A parallel distributed processing approach”, M.I.Jordan, 1986

• Input is constant (called a “plan”)
• Objective is to train net to produce a specific output, given an input plan

– Memory has fixed structure; does not “learn” to remember
• The running average of outputs considers entire past, rather than immediate past

Time

Y(t) Y(t+1)1 1

Fixed
weights

Fixed
weights

X(t) X(t+1)
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Elman Networks

• Separate memory state from output
– “Context” units that carry historical state
– “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

• For the purpose of training, this was approximated as a set of T independent 1-step 
history nets

• Only the weight from the memory unit to the hidden unit is learned
– But during training no gradient is backpropagated over the “1” link

Time
X(t)

Y(t) Y(t+1)

1

Cloned state

1

Cloned state

X(t+1)
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Training Elman Networks

• Separate memory state from output
– “Context” units that carry historical state
– “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

• For the purpose of training, this was approximated as a set of T independent 1-step 
history nets

• Only the weight from the memory unit to the hidden unit is learned
– But during training no gradient is backpropagated over the “1” link

Time
X(t)

Y(t) Y(t+1)

1

Cloned state

1

Cloned state

X(t+1)
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Story so far
• In time series analysis, models must look at past inputs along with current 

input
– Looking at a finite horizon of past inputs gives us a convolutional network

• Looking into the infinite past requires recursion

• NARX networks recurse by feeding back the output to the input
– May feed back a finite horizon of outputs

• “Simple” recurrent networks:
– Jordon networks maintain a running average of outputs in a “memory” unit
– Elman networks store hidden unit values for one time instant in a “context” unit
– “Simple” (or partially recurrent) because during learning current error does not 

actually propagate to the past
• “Blocked” at the memory units in Jordan networks
• “Blocked” at the “context” unit in Elman networks

46



Poll 2 (@748, @749)

47

Memory neuron models have true recurrence, true or false

 True
 False

Memory neuron networks dedicate neurons specifically to store past history, 
true or false

 True
 False



Poll 2

48

Memory neuron models have true recurrence, true or false 

 True 
 False 

 

Memory neuron networks dedicate neurons specifically to store past history, true or false 

 True 
 False 



An alternate model for infinite response 
systems: the state-space model

• is the state of the network
– State summarizes information about the entire past

• Model directly embeds the memory in the state

• Need to define initial state 

• This is a fully recurrent neural network
– Or simply a recurrent neural network

49



Y(t)

The simple state-space model

• The state (green) at any time is determined by the input at 
that time, and the state at the previous time

• An input at t=0 affects outputs forever
• Also known as a recurrent neural net

Time

X(t)

t=0

50

௧

௧

௧

௧ିଵ

h (-1)

Initial value



An alternate model for infinite response 
systems: the state-space model

• is the state of the network
• Need to define initial state 

• The state an be arbitrarily complex

51



Single hidden layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

X(t)

Y(t)

t=0

52

h (-1)



Multiple recurrent layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0

53

h(2) (-1)

h(1)(-1)



Multiple recurrent layer RNN

• We can also have skips..

Time

Y(t)

X(t)

t=0

54

h(2) (-1)

h(1)(-1)



A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)
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Or the network may be even more 
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)
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Generalization with other recurrences

• All columns (including incoming edges) are 
identical

Time

Y(t)

X(t)

t=0

57

h(2) (-1)

h(1)(-1)

h(2) (-2)

Initial values



The simplest structures are most 
popular

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0
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A Recurrent Neural Network

• Simplified models often drawn
• The loops imply recurrence

59



The detailed version of the simplified 
representation

Time

X(t)

Y(t)

t=0

60

h (-1)



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
61

h(2) (-1)

h(1)(-1)



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
62



Equations

• Note superscript in indexing, which indicates layer of 
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax
• The state node activation, is typically 
• Every neuron also has a bias input

ଶ 
ଶ


ଵ


ଶ




ଵ

ଵ 
ଵ






ଵଵ


ଵ




ଵ


ଵ

(ଵ)
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Recurrent weightsCurrent weights



Equations

• Computation:

• The recurrent state activation is typically 

ଵ

(ଵ)
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Equations

• Computation:

• The recurrent state activation is typically 

ଵ

(ଵ)

65

Recurrent weightsCurrent weights



Equations

ଷ 
ଷ


ଶ


ଷ




ଶ

ଶ 
ଶ


ଵ




ଶଶ


ଶ




ଶ


ଵ

• Assuming vector function at output, e.g. softmax

• The state node activations, are typically 

• Every neuron also has a bias input


ଶ


ଵ

ଵ 
ଵ






ଵଵ


ଵ




ଵ

(ଵ)

(ଶ)
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Equations

• Computation:
ଵ

ଵ
(ଵ) ଵଵ ଵ (ଵ)

ଶ
ଶ

(ଶ) ଵ ଶଶ ଶ (ଶ)

ଷ
ଷ ଶ (ଷ)

• The recurrent state activation is typically 

ଵ ଶ

67

(ଵ)

(ଶ)



Equations

(ଶ)
ଶ

ଵଶ ଵ ଶ ଶଶ ଶ (ଶ)

(ଵ)

(ଶ)

(ଵ)
ଵ

(ଵ) ଵଵ ଵ (ଵ)
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ଷ
ଶଷ ଶ ଵଷ ଵ (ଷ)



Variants on recurrent nets

• 1:  Conventional MLP
• 2: Sequence generation,  e.g. image to caption
• 3: Sequence based prediction or classification, e.g.  Speech recognition,   

text classification

Images from
Karpathy
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Variants

• 1:  Delayed sequence to sequence, e.g. machine translation
• 2:  Sequence to sequence, e.g. stock problem, label prediction
• Etc…

Images from
Karpathy
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Story so far
• Time series analysis must consider past inputs along with current input
• Looking into the infinite past requires recursion

• NARX networks achieve this by feeding back the output to the input

• “Simple” recurrent networks maintain separate “memory” or “context” 
units to retain some information about the past
– But during learning the current error does not influence the past

• State-space models retain information about the past through recurrent 
hidden states
– These are “fully recurrent” networks
– The initial values of the hidden states are generally learnable parameters as well

• State-space models enable current error to update parameters in the past
71



How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence inputs
– (𝐗, 𝐃),  where

– 𝐗 = 𝑋,, … , 𝑋,்

– 𝐃 = 𝐷,, … , 𝐷,்

• Train network parameters to minimize the error between the output of the 
network  , ,் and the desired outputs

– This is the most generic setting. In other settings we just “remove” some of the input or 
output entries

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training the RNN

• The “unrolled” computation is just a giant shared-parameter neural network
– All columns are identical and share parameters

• Network parameters can be trained via gradient-descent (or its variants) 
using shared-parameter gradient descent rules
– Gradient computation requires a forward pass, back propagation, and pooling of 

gradients (for parameter sharing)

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training: Forward pass

• For each training input:
• Forward pass:  pass the entire data sequence through the network, 

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Recurrent Neural Net 
Assuming time-synchronous output

# Assuming h(-1,*) is known

# Assuming L hidden-state layers and an output layer

# Wc(*) and Wr(*) are matrics, b(*) are vectors

# Wc are weights for inputs from current time

# Wr is recurrent weight applied to the previous time

# Wo are output layre weights

for t = 0:T-1  # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L  # hidden layers operate at time t

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

zo(t) = Woh(t,L) + bo
Y(t) = softmax( zo(t) )

75

Subscript “c” – current
Subscript “r” – recurrent



Training: Computing gradients

• For each training input:
• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Back Propagation Through Time

h-1

Will only focus on one training instance

All subscripts represent components and not training instance index
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Back Propagation Through Time

h-1

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• DIV is a scalar function of a series of vectors!

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way 78



Notation

• ( ) is the output at time 
–  is the ith output

• ଶ is the pre-activation value of the neurons at the output layer at time t
• is the output of the hidden layer at time 

– Assuming only one hidden layer in this example

• ଵ is the pre-activation value of the hidden layer at time 79

h-1

ଶ

ଵ



Notation

• (ଵ)

(ଵ) is the matrix of current weights from the input to the hidden layer.

• (ଶ)

(ଶ) is the matrix of current weights from the hidden layer to the output 

layer

• (ଵଵ)

(ଵଵ) is the matrix of recurrent weights from the hidden layer to itself

80

h-1

ଵ

ଶ

ଵଵ



Back Propagation Through Time

h-1

First step of backprop:   Compute (்) (Compute ௗூ

ௗ(்)
)

Note:  DIV is a function of all outputs Y(0) … Y(T)

In general we will be required to compute ௗூ

ௗ(௧)
as we will see. This can

be a source of significant difficulty in many scenarios. 81



Rules we will use

•

•

•

•

82



h-1



Must compute

 

Will get

Special case, when the overall divergence is a simple sum of local
divergences at each time: ௧

83

(௧)  ௧

(்)



Back Propagation Through Time

h-1

First step of backprop:   Compute ௗூ

ௗ(்)


(ଶ)






(ଶ)


(ଶ)






(ଶ)

 


OR

Vector output activation

84

(మ)(்) (்) (మ)(்)



Back Propagation Through Time

h-1




(ଶ)






(ଶ)



(ଶ)


(ଶ)



(ଶ)


(ଶ)
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(்) (మ)(்)
(ଶ)



Back Propagation Through Time

h-1


(ଶ)






(ଶ)


(ଶ)


ଶ 



(ଶ)


(ଶ)
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ௐ(మ) (మ)(்)



Back Propagation Through Time

h-1


(ଶ)






(ଶ)



(ଶ)


(ଶ)

 
(ଶ)


ଶ 


(ଵ)






(ଵ)
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(భ) (்) (்) (భ)(்)

jacobian



Back Propagation Through Time

h-1


(ଵ)


ଵ 
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ௐ(భ) (భ)(்)



Back Propagation Through Time

h-1


(ଵଵ)


ଵ 


(ଵ)


ଵ 
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ௐ(భభ) (భ)(்)



Back Propagation Through Time

h-1


ଶ






ଶ

Vector output activation


ଶ






ଶ

 


OR

90

(మ)(்ିଵ) (்ିଵ) (మ) ்ିଵ



Back Propagation Through Time

h-1



(ଶ)


ଶ




(ଵଵ)


ଵ
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(்ିଵ)  మ (்ିଵ)
(ଶ)

(భ)(்)
(ଵଵ)



Back Propagation Through Time

h-1


(ଶ)


ଶ Note the addition

92
ௐ(మ)  మ (்ିଵ)



(ଶ)


ଶ




(ଵଵ)


ଵ



Note the addition



Back Propagation Through Time

h-1


ଵ






ଵ

93
(భ) (்ିଵ) (்ିଵ)  భ ்ିଵ



Back Propagation Through Time

h-1


ଵ






ଵ 

(ଵ)


ଵ 

Note the addition
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ௐ(భ)  భ (்ିଵ)



Back Propagation Through Time

h-1


(ଵ)


ଵ 


(ଵଵ)


ଵ Note the addition
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ௐ(భభ)  భ (்ିଵ)Note the addition



Back Propagation Through Time

h-1

𝑖

(ଵଵ)


ଵ
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షభ  భ ()

(ଵଵ)

Continue computing derivatives
going backward through time until..



Back Propagation Through Time

h-1

97

ௐ(భభ)  భ (௧)

For t = T downto 0

ௐ(భ)  భ (௧)

ௐ(మ)  మ (௧)

(భ) (௧) (௧)  భ ௧

(మ)(௧) (௧)  మ ௧

(௧)  మ (௧)
(ଶ)

 భ (௧ାଵ)
(ଵଵ)

Initialize all derivatives to 0

షభ  భ ()
(ଵଵ)



Back Propagation Through Time

h-1





 

ᇱ





 ,

(ାଵ)


ାଵ ,

(,)






Not showing derivatives
at output neurons 

98



Back Propagation Through Time

h-1


(ଵ)


ଵ 

௧ 
(ଵଵ)


ଵ   

௧

𝑖

(ଵଵ)


ଵ
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BPTT
# Assuming forward pass has been completed
# Jacobian(x,y) is the jacobian of x w.r.t. y
# Assuming dY(t) = gradient(div,Y(t)) available for all t
# Assuming all dz, dh, dW and db are initialized to 0

for t = T-1:downto:0  # Backward through time
dzo(t) = dY(t)Jacobian(Y(t),zo(t))
dWo += h(t,L)dzo(t)
dbo += dzo(t)
dh(t,L) += dzo(t)Wo

for l = L:1  # Reverse through layers
dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) = dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)

100

Subscript “c” – current
Subscript “r” – recurrent



BPTT

• Can be generalized to any architecture
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Poll 3 (@750, @751)

102

SGD trains neural networks one input at a time, rather than over batches of inputs.  The 
corresponding equivalent for RNNs would be to update the network after each input 
vector: True or False

 True
 False

Select all that are true:

 In RNNs the divergence we minimize is the sum of the divergences for the individual 
inputs in the time series

 The divergence is the divergence between the actual sequence of outputs and the 
desired sequence of outputs and cannot always be decomposed into the sum of 
divergences at individual time steps.



Poll 3
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SGD trains neural networks one input at a time, rather than over batches of inputs.  The 
corresponding equivalent for RNNs would be to update the network after each input vector: True or 
False 

 True 
 False 

 

Select all that are true: 

 In RNNs the divergence we minimize is the sum of the divergences for the individual inputs in 
the time series 

 The divergence is the divergence between the actual sequence of outputs and the desired 
sequence of outputs and cannot always be decomposed into the sum of divergences at 
individual time steps. 



Extensions to the RNN: Bidirectional 
RNN

104

Proposed by Schuster and Paliwal
1997

• In problems where the entire input sequence is available before we compute the output, RNNs can 
be bidirectional

• RNN with both forward and backward recursion
– Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced 

from the future



Bidirectional RNN

• “Block” performs bidirectional inference on input
– “Input” could be input series X(0)…X(T) or the output of a previous layer (or block)

• The Block has two components
– A forward net process the data from t=0 to t=T
– A backward net processes it backward from t=T down to t=0 105
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Bidirectional RNN block

• The forward net process the data from t=0 to t=T
– Only computing the hidden state values.

• The backward net processes it backward from t=T down to t=0
106
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Bidirectional RNN block

• The backward nets processes the input data in reverse time,  end to beginning
– Initially only the hidden state values are computed

• Clearly, this is not an online process and requires the entire input data

– Note: This is not the backward pass of backprop.net processes it backward from t=T down to t=0

107
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Bidirectional RNN block

• The computed states of both networks are combined to give 
you the output of the bidirectional block
– Typically just concatenate them

t
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Bidirectional RNN

• Actual network may be formed by stacking many independent bidirectional blocks followed by an 
output layer

– Forward and backward nets in each block are a single layer

• Or by a single bidirectional block followed by an output layer
– The forward and backward nets may have several layers

• In either case, it’s sufficient to understand forward inference and backprop rules for a single block
– Full forward or backprop computation simply requires repeated application of these rules 109



Poll 4 (@752)
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A day trader in the stock exchange uses RNNs to make predictions from historical 
market data to decide which stocks to buy.  He can use a bidirectional RNN for his 
task.

 True
 False



Poll 4
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A day trader in the stock exchange uses RNNs to make predictions from historical market data to 
decide which stocks to buy.  He can use a bidirectional RNN for his task. 

 True 
 False 



Bidirectional RNN block: inference
# Subscript f represents forward net, b is backward net

# Assuming hf(-1,*) and hb(inf,*) are known

# x(t) is the input to the block (which could be from a lower layer)

#forward recurrence

for t = 0:T-1 # Going forward in time

hf(t,0) = x(t) # Vectors. Initialize hf(0) to input

for l = 1:Lf # Lf is depth of forward network hidden layers

zf(t,l) = Wfc(l)hf(t,l-1) + Wfr(l)hf(t-1,l) + bf(l)

hf(t,l) = tanh(zf(t,l)) # Assuming tanh activ.

#backward recurrence

hb(T,:,:) = hb(inf,:,:) # Just the initial value

for t = T-1:downto:0 # Going backward in time

hb(t,0) = x(t) # Vectors. Initialize hb(0) to input

for l = 1:Lb # Lb is depth of backward network hidden layers

zb(t,l) = Wbc(l)hb(t,l-1) + Wbr(l)hb(t+1,l) + bb(l)

hb(t,l) = tanh(zb(t,l)) # Assuming tanh activ.

for t = 0:T-1  # The output combines forward and backward

h(t) = [hf(t,Lf); hb(t,Lb)] 112



Bidirectional RNN: Simplified code

• Code can be made modular and simplified for 
better interpretability…

113



First: Define forward recurrence
# Inputs:

#    L : Number of hidden layers

#    Wc,Wr,b: current weights,  recurrent weights, biases

#    hinit:  initial value of h(representing h(-1,*))

#    x: input vector sequence

#    T: Length of input vector sequence

# Output: 

#    h, z: sequence of pre-and post activation hidden
#          representations from all layers of the RNN

function RNN_forward(L, Wc, Wr, b, hinit, x, T)

h(-1,:) = hinit # hinit is the initial value for all layers

for t = 0:T-1 # Going forward in time

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

return h 114



Bidirectional RNN block
# Subscript f represents forward net, b is backward net
# Assuming hf(-1,*) and hb(inf,*) are known

#forward pass

hf = RNN_forward(Lf, Wfc, Wfr, bf, hf(-1,:), x, T)

#backward pass

xrev = fliplr(x)  # Flip it in time

hbrev = RNN_forward(Lb, Wbc, Wbr, bb, hb(inf,:), xrev, T)

hb = fliplr(hbrev)  # Flip back to straighten time

#combine the two for the output

for t = 0:T-1  # The output combines forward and backward

h(t) = [hf(t,Lf); hb(t,Lb)]
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Backpropagation in BRNNs

• Forward pass:  Compute both forward and 
backward networks and final output

116
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Backpropagation in BRNNs

• Backward pass:  Assume gradients of the divergence are available 
for the block outputs 
– Obtained via backpropagation from network output
– Will have the same dimension (length) as 

• Which is the sum of the dimensions of  and  117
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Backpropagation in BRNNs

• Separate gradient into forward and backward components

(௧) (௧) ್(௧)

– Extract (௧) and ್(௧) from (௧) .

• Separately perform backprop on the forward and backward nets 118
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Backpropagation in BRNNs

• Backprop for forward net:
– Backpropagate 𝛻(௧)𝐷𝑖𝑣 from 𝑡 = 𝑇 down to 𝑡 = 0 in the usual way

– Will obtain derivatives for all the parameters of the forward net
– Will also get 𝛻 ௧ 𝐷𝑖𝑣௪ௗ

• Partial derivative of the gradient for 𝑋(𝑡) computed through the forward net
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Backpropagation in BRNNs

• Backprop for backward net:
– Backpropagate ್(௧) forward from up to 

– Will obtain derivatives for all the parameters of the forward net
– Will also get (௧) ௪ௗ

• Partial derivative of the gradient for 𝑋(𝑡) computed through the backward net 120
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Backpropagation in BRNNs

• Finally add up the forward and backward partial 
derivatives to get the full gradient for 
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Backpropagation: Pseudocode

• As before we will use a 2-step code:
– A basic backprop routine that we will call
– Two calls to the routine within a higher-level 

wrapper
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First: backprop through a recurrent net
# Inputs:
#    (In addition to inputs used by L : Number of hidden layers
#    dhtop:  derivatives ddiv/dh*(t,L) at each time (* may be f or b)
#    h, z:  h and z values returned by the forward pass
#    T: Length of input vector sequence
# Output: 
#    dWc, dWb, db dhinit: derivatives w.r.t current and recurrent weights,
#                       biases, and initial h.
# Assuming all dz, dh, dWc, dWr and db are initialized to 0

function RNN_bptt(L, Wc, Wr, b, hinit, x, T, dhtop, h, z)

dh = zeros

for t = T-1:downto:0  # Backward through time
dh(t,L) += dhtop(t)
h(t,0) = x(t)
for l = L:1  # Reverse through layers

dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) += dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)

dx(t)= dh(t,0)   

return dx, dWc, dWr, db, dh(-1)  # dh(-1) is actually dh(-1,1:L,:)
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BRNN block: gradient computation
# Subscript f represents forward net, b is backward net

# Given dh(t), t=0…T-1 : The sequence of gradients from the upper layer

# Also assumed available:

#      x(t), t=0…T-1 : the input to the BRNN block

#      zf(t), hf(t) : Complete forward-computation outputs for all layers of the forward net

#      zb(t), hb(t) : Complete backward-computation outputs for all layers of the backward net

# Lf and Lb are the number of components in hf(t) and hb(t)

for t = 0:T-1  # Separate out forward and backward net gradients

dhf(t) = dh(t,1:Lf)

dhb(t) = dh(t,Lf+1:Lf+Lb)

#forward net

[dxf dWfc,dWfr,dbf,dhf(-1)] = RNN_bptt(L, Wfc, Wfr, bf, hf(-1), x, T, dhf, hf, zf)

#backward net

xrev = fliplr(x)  # Flip it in time

dhbrev = fliplr(dhb)

hbrev = fliplr(hb)

zbrev = fliplr(zb)

[dxbrev, dWbc,dWbr,dbb,dhb(inf)] = RNN_bptt(L, Wbc, Wbr, bb, hb(inf), xrev, T, dhbrev, hbrev, zbrev)

dxb = fliplr(dxbrev)

for t = 0:T-1  # Add the partials

dx(t) = dxf(t) + dxb(t)
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Story so far
• Time series analysis must consider past inputs along with current input

• Recurrent networks look into the infinite past through a state-space framework
– Hidden states that recurse on themselves

• Training recurrent networks requires
– Defining a divergence between the actual and desired output sequences
– Backpropagating gradients over the entire chain of recursion

• Backpropagation through time

– Pooling gradients with respect to individual parameters over time

• Bidirectional networks analyze data both ways, beginend and 
endbeginning to make predictions
– In these networks, backprop must follow the chain of recursion (and gradient 

pooling) separately in the forward and reverse nets
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RNNs..

• Excellent models for series data analysis tasks
– Time-series prediction
– Time-series classification
– Sequence generation..
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