
Deep Learning
Recurrent Networks : 1

Fall 2023

Instructor: Bhiksha Raj

1

Modelling Series

• In many situations one must consider a series
of inputs to produce an output
– Outputs too may be a series

• Examples: ..

2

What did I say?

• Speech Recognition
– Analyze a series of spectral vectors, determine what was said

• Note: Inputs are sequences of vectors. Output is a
classification result

“To be” or not “to be”??

3

What is he talking about?

• Text analysis
– E.g. analyze document, identify topic

• Input series of words, output classification output

– E.g. read English, output French
• Input series of words, output series of words

“Football” or “basketball”?

4

The Steelers, meanwhile, continue to struggle to make stops on
defense. They've allowed, on average, 30 points a game, and have
shown no signs of improving anytime soon.

Should I invest..

• Note: Inputs are sequences of vectors. Output may be
scalar or vector
– Should I invest, vs. should I not invest in X?
– Decision must be taken considering how things have fared over

time

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks

5

These are classification and
prediction problems

• Consider a sequence of inputs
– Input vectors

• Produce one or more outputs

• This can be done with neural networks
– Obviously

6

Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units

7

Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units

8

Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything as simple boxes
– Each box actually represents an entire layer with many units

9

The stock prediction problem…

• Stock market
– Must consider the series of stock values in the past

several days to decide if it is wise to invest today

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks

10

The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)

11

The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)

12

The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)

13

The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

14

The stock predictor network

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

15

Finite-response model

• This is a finite response system
– Something that happens today only affects the

output of the system for days into the future
• is the width of the system

16

The stock predictor

Stock
vector

Time

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Y(t-1)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

17

The stock predictor

Stock
vector

Time

Y(T)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

18

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

The stock predictor

Stock
vector

Time

Y(T+1)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

19

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

The stock predictor

Stock
vector

Time

Y(T+2)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

20

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

The stock predictor

Stock
vector

Time

Y(T+3)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

21

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

The stock predictor

Stock
vector

Time

Y(T+4)

• This is a finite response system
– Something that happens today only affects the output of the

system for days into the future
• is the width of the system

22

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Finite-response model

• Something that happens today only affects the output of the
system for days into the future
– Predictions consider N days of history

• To consider more of the past to make predictions, you must
increase the “history” considered by the system

Stock
vector

Time

Y(T+3)

23

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Finite-response

• Problem: Increasing the “history” makes the
network more complex
– No worries, we have the CPU and memory

• Or do we?

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

24

Systems often have long-term
dependencies

• Longer-term trends –
– Weekly trends in the market
– Monthly trends in the market
– Annual trends
– Though longer historic tends to affect us less than more

recent events.. 25

We want infinite memory

• Required: Infinite response systems
– What happens today can continue to affect the output

forever
• Possibly with weaker and weaker influence

Time

26

Poll 1 (@746, @747)

27

Convolutional neural networks are finite response systems, true or false

 True
 False

An input at time T affects the output of the convolutional layers of the
network for all time, true or false

 True
 False

Poll 1

28

Convolutional neural networks are finite response systems, true or false

 True
 False

An input at time T affects the output of the convolutional layers of the network for all time, true or
false

 True
 False

Examples of infinite response systems

– Required: Define initial state: for
– An input at at produces
– produces which produces and so on until even if

are 0
• i.e. even if there are no further inputs!

– A single input influences the output for the rest of time!

• This is an instance of a NARX network
– “nonlinear autoregressive network with exogenous inputs”

–

• Output contains information about the entire past
29

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

30

• A NARX net with recursion from the output

Time
X(t)

Y(t) Y

31

A one-tap NARX network

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

32

• A NARX net with recursion from the output

Time
X(t)

Y(t)

33

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

34

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

35

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

36

A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)

37

A one-tap NARX network

A more complete representation

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t-1)

Brown boxes show output layers
Yellow boxes are outputs

38

Same figure redrawn

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

Brown boxes show output layers
All outgoing arrows are the same output

39

A more generic NARX network

• The output at time is computed from the
past outputs and the current
and past inputs

Time
X(t)

Y(t)

40

NARX Networks

• Very popular for time-series prediction
– Weather
– Stock markets
– As alternate system models in tracking systems
– Language

• Any phenomena with distinct “innovations” that
“drive” an output

• Note: here the “memory” of the past is in the
output itself, and not in the network

41

Let’s make memory more explicit
• Task is to “remember” the past
• Introduce an explicit memory variable whose job it is to

remember

• is a “memory” variable
– Generally stored in a “memory” unit
– Used to “remember” the past

42

Jordan Network

• Memory unit simply retains a running average of past outputs
– “Serial order: A parallel distributed processing approach”, M.I.Jordan, 1986

• Input is constant (called a “plan”)
• Objective is to train net to produce a specific output, given an input plan

– Memory has fixed structure; does not “learn” to remember
• The running average of outputs considers entire past, rather than immediate past

Time

Y(t) Y(t+1)1 1

Fixed
weights

Fixed
weights

X(t) X(t+1)

43

Elman Networks

• Separate memory state from output
– “Context” units that carry historical state
– “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

• For the purpose of training, this was approximated as a set of T independent 1-step
history nets

• Only the weight from the memory unit to the hidden unit is learned
– But during training no gradient is backpropagated over the “1” link

Time
X(t)

Y(t) Y(t+1)

1

Cloned state

1

Cloned state

X(t+1)

44

Training Elman Networks

• Separate memory state from output
– “Context” units that carry historical state
– “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

• For the purpose of training, this was approximated as a set of T independent 1-step
history nets

• Only the weight from the memory unit to the hidden unit is learned
– But during training no gradient is backpropagated over the “1” link

Time
X(t)

Y(t) Y(t+1)

1

Cloned state

1

Cloned state

X(t+1)

45

Story so far
• In time series analysis, models must look at past inputs along with current

input
– Looking at a finite horizon of past inputs gives us a convolutional network

• Looking into the infinite past requires recursion

• NARX networks recurse by feeding back the output to the input
– May feed back a finite horizon of outputs

• “Simple” recurrent networks:
– Jordon networks maintain a running average of outputs in a “memory” unit
– Elman networks store hidden unit values for one time instant in a “context” unit
– “Simple” (or partially recurrent) because during learning current error does not

actually propagate to the past
• “Blocked” at the memory units in Jordan networks
• “Blocked” at the “context” unit in Elman networks

46

Poll 2 (@748, @749)

47

Memory neuron models have true recurrence, true or false

 True
 False

Memory neuron networks dedicate neurons specifically to store past history,
true or false

 True
 False

Poll 2

48

Memory neuron models have true recurrence, true or false

 True
 False

Memory neuron networks dedicate neurons specifically to store past history, true or false

 True
 False

An alternate model for infinite response
systems: the state-space model

• is the state of the network
– State summarizes information about the entire past

• Model directly embeds the memory in the state

• Need to define initial state

• This is a fully recurrent neural network
– Or simply a recurrent neural network

49

Y(t)

The simple state-space model

• The state (green) at any time is determined by the input at
that time, and the state at the previous time

• An input at t=0 affects outputs forever
• Also known as a recurrent neural net

Time

X(t)

t=0

50

௧

௧

௧

௧ିଵ

h (-1)

Initial value

An alternate model for infinite response
systems: the state-space model

• is the state of the network
• Need to define initial state

• The state an be arbitrarily complex

51

Single hidden layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

X(t)

Y(t)

t=0

52

h (-1)

Multiple recurrent layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0

53

h(2) (-1)

h(1)(-1)

Multiple recurrent layer RNN

• We can also have skips..

Time

Y(t)

X(t)

t=0

54

h(2) (-1)

h(1)(-1)

A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

55

Or the network may be even more
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

56

Generalization with other recurrences

• All columns (including incoming edges) are
identical

Time

Y(t)

X(t)

t=0

57

h(2) (-1)

h(1)(-1)

h(2) (-2)

Initial values

The simplest structures are most
popular

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0

58

A Recurrent Neural Network

• Simplified models often drawn
• The loops imply recurrence

59

The detailed version of the simplified
representation

Time

X(t)

Y(t)

t=0

60

h (-1)

Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
61

h(2) (-1)

h(1)(-1)

Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
62

Equations

• Note superscript in indexing, which indicates layer of
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax
• The state node activation, is typically
• Every neuron also has a bias input

ଶ
ଶ

ଵ

ଶ

ଵ

ଵ
ଵ

ଵଵ

ଵ

ଵ

ଵ

(ଵ)

63

Recurrent weightsCurrent weights

Equations

• Computation:

• The recurrent state activation is typically

ଵ

(ଵ)

64

Equations

• Computation:

• The recurrent state activation is typically

ଵ

(ଵ)

65

Recurrent weightsCurrent weights

Equations

ଷ
ଷ

ଶ

ଷ

ଶ

ଶ
ଶ

ଵ

ଶଶ

ଶ

ଶ

ଵ

• Assuming vector function at output, e.g. softmax

• The state node activations, are typically

• Every neuron also has a bias input

ଶ

ଵ

ଵ
ଵ

ଵଵ

ଵ

ଵ

(ଵ)

(ଶ)

66

Equations

• Computation:
ଵ

ଵ
(ଵ) ଵଵ ଵ (ଵ)

ଶ
ଶ

(ଶ) ଵ ଶଶ ଶ (ଶ)

ଷ
ଷ ଶ (ଷ)

• The recurrent state activation is typically

ଵ ଶ

67

(ଵ)

(ଶ)

Equations

(ଶ)
ଶ

ଵଶ ଵ ଶ ଶଶ ଶ (ଶ)

(ଵ)

(ଶ)

(ଵ)
ଵ

(ଵ) ଵଵ ଵ (ଵ)

68

ଷ
ଶଷ ଶ ଵଷ ଵ (ଷ)

Variants on recurrent nets

• 1: Conventional MLP
• 2: Sequence generation, e.g. image to caption
• 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

69

Variants

• 1: Delayed sequence to sequence, e.g. machine translation
• 2: Sequence to sequence, e.g. stock problem, label prediction
• Etc…

Images from
Karpathy

70

Story so far
• Time series analysis must consider past inputs along with current input
• Looking into the infinite past requires recursion

• NARX networks achieve this by feeding back the output to the input

• “Simple” recurrent networks maintain separate “memory” or “context”
units to retain some information about the past
– But during learning the current error does not influence the past

• State-space models retain information about the past through recurrent
hidden states
– These are “fully recurrent” networks
– The initial values of the hidden states are generally learnable parameters as well

• State-space models enable current error to update parameters in the past
71

How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence inputs
– (𝐗, 𝐃), where

– 𝐗 = 𝑋,, … , 𝑋,்

– 𝐃 = 𝐷,, … , 𝐷,்

• Train network parameters to minimize the error between the output of the
network , ,் and the desired outputs

– This is the most generic setting. In other settings we just “remove” some of the input or
output entries

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

72

Training the RNN

• The “unrolled” computation is just a giant shared-parameter neural network
– All columns are identical and share parameters

• Network parameters can be trained via gradient-descent (or its variants)
using shared-parameter gradient descent rules
– Gradient computation requires a forward pass, back propagation, and pooling of

gradients (for parameter sharing)

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

73

Training: Forward pass

• For each training input:
• Forward pass: pass the entire data sequence through the network,

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

74

Recurrent Neural Net
Assuming time-synchronous output

Assuming h(-1,*) is known

Assuming L hidden-state layers and an output layer

Wc(*) and Wr(*) are matrics, b(*) are vectors

Wc are weights for inputs from current time

Wr is recurrent weight applied to the previous time

Wo are output layre weights

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

75

Subscript “c” – current
Subscript “r” – recurrent

Training: Computing gradients

• For each training input:
• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

76

Back Propagation Through Time

h-1

Will only focus on one training instance

All subscripts represent components and not training instance index

77

Back Propagation Through Time

h-1

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• DIV is a scalar function of a series of vectors!

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way 78

Notation

• () is the output at time
– is the ith output

• ଶ is the pre-activation value of the neurons at the output layer at time t
• is the output of the hidden layer at time

– Assuming only one hidden layer in this example

• ଵ is the pre-activation value of the hidden layer at time 79

h-1

ଶ

ଵ

Notation

• (ଵ)

(ଵ) is the matrix of current weights from the input to the hidden layer.

• (ଶ)

(ଶ) is the matrix of current weights from the hidden layer to the output

layer

• (ଵଵ)

(ଵଵ) is the matrix of recurrent weights from the hidden layer to itself

80

h-1

ଵ

ଶ

ଵଵ

Back Propagation Through Time

h-1

First step of backprop: Compute (்) (Compute ௗூ

ௗ(்)
)

Note: DIV is a function of all outputs Y(0) … Y(T)

In general we will be required to compute ௗூ

ௗ(௧)
as we will see. This can

be a source of significant difficulty in many scenarios. 81

Rules we will use

•

•

•

•

82

h-1

Must compute

Will get

Special case, when the overall divergence is a simple sum of local
divergences at each time: ௧

83

(௧) ௧

(்)

Back Propagation Through Time

h-1

First step of backprop: Compute ௗூ

ௗ(்)

(ଶ)

(ଶ)

(ଶ)

(ଶ)

OR

Vector output activation

84

(మ)(்) (்) (మ)(்)

Back Propagation Through Time

h-1

(ଶ)

(ଶ)

(ଶ)

(ଶ)

(ଶ)

(ଶ)

85

(்) (మ)(்)
(ଶ)

Back Propagation Through Time

h-1

(ଶ)

(ଶ)

(ଶ)

ଶ

(ଶ)

(ଶ)

86

ௐ(మ) (మ)(்)

Back Propagation Through Time

h-1

(ଶ)

(ଶ)

(ଶ)

(ଶ)

(ଶ)

ଶ

(ଵ)

(ଵ)

87

(భ) (்) (்) (భ)(்)

jacobian

Back Propagation Through Time

h-1

(ଵ)

ଵ

88

ௐ(భ) (భ)(்)

Back Propagation Through Time

h-1

(ଵଵ)

ଵ

(ଵ)

ଵ

89

ௐ(భభ) (భ)(்)

Back Propagation Through Time

h-1

ଶ

ଶ

Vector output activation

ଶ

ଶ

OR

90

(మ)(்ିଵ) (்ିଵ) (మ) ்ିଵ

Back Propagation Through Time

h-1

(ଶ)

ଶ

(ଵଵ)

ଵ

91

(்ିଵ) మ (்ିଵ)
(ଶ)

(భ)(்)
(ଵଵ)

Back Propagation Through Time

h-1

(ଶ)

ଶ Note the addition

92
ௐ(మ) మ (்ିଵ)

(ଶ)

ଶ

(ଵଵ)

ଵ

Note the addition

Back Propagation Through Time

h-1

ଵ

ଵ

93
(భ) (்ିଵ) (்ିଵ) భ ்ିଵ

Back Propagation Through Time

h-1

ଵ

ଵ

(ଵ)

ଵ

Note the addition

94
ௐ(భ) భ (்ିଵ)

Back Propagation Through Time

h-1

(ଵ)

ଵ

(ଵଵ)

ଵ Note the addition

95
ௐ(భభ) భ (்ିଵ)Note the addition

Back Propagation Through Time

h-1

𝑖

(ଵଵ)

ଵ

96
షభ భ ()

(ଵଵ)

Continue computing derivatives
going backward through time until..

Back Propagation Through Time

h-1

97

ௐ(భభ) భ (௧)

For t = T downto 0

ௐ(భ) భ (௧)

ௐ(మ) మ (௧)

(భ) (௧) (௧) భ ௧

(మ)(௧) (௧) మ ௧

(௧) మ (௧)
(ଶ)

 భ (௧ାଵ)
(ଵଵ)

Initialize all derivatives to 0

షభ భ ()
(ଵଵ)

Back Propagation Through Time

h-1

ᇱ

 ,

(ାଵ)

ାଵ ,

(,)

Not showing derivatives
at output neurons

98

Back Propagation Through Time

h-1

(ଵ)

ଵ

௧
(ଵଵ)

ଵ

௧

𝑖

(ଵଵ)

ଵ

99

BPTT
Assuming forward pass has been completed
Jacobian(x,y) is the jacobian of x w.r.t. y
Assuming dY(t) = gradient(div,Y(t)) available for all t
Assuming all dz, dh, dW and db are initialized to 0

for t = T-1:downto:0 # Backward through time
dzo(t) = dY(t)Jacobian(Y(t),zo(t))
dWo += h(t,L)dzo(t)
dbo += dzo(t)
dh(t,L) += dzo(t)Wo

for l = L:1 # Reverse through layers
dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) = dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)

100

Subscript “c” – current
Subscript “r” – recurrent

BPTT

• Can be generalized to any architecture

101

Poll 3 (@750, @751)

102

SGD trains neural networks one input at a time, rather than over batches of inputs. The
corresponding equivalent for RNNs would be to update the network after each input
vector: True or False

 True
 False

Select all that are true:

 In RNNs the divergence we minimize is the sum of the divergences for the individual
inputs in the time series

 The divergence is the divergence between the actual sequence of outputs and the
desired sequence of outputs and cannot always be decomposed into the sum of
divergences at individual time steps.

Poll 3

103

SGD trains neural networks one input at a time, rather than over batches of inputs. The
corresponding equivalent for RNNs would be to update the network after each input vector: True or
False

 True
 False

Select all that are true:

 In RNNs the divergence we minimize is the sum of the divergences for the individual inputs in
the time series

 The divergence is the divergence between the actual sequence of outputs and the desired
sequence of outputs and cannot always be decomposed into the sum of divergences at
individual time steps.

Extensions to the RNN: Bidirectional
RNN

104

Proposed by Schuster and Paliwal
1997

• In problems where the entire input sequence is available before we compute the output, RNNs can
be bidirectional

• RNN with both forward and backward recursion
– Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced

from the future

Bidirectional RNN

• “Block” performs bidirectional inference on input
– “Input” could be input series X(0)…X(T) or the output of a previous layer (or block)

• The Block has two components
– A forward net process the data from t=0 to t=T
– A backward net processes it backward from t=T down to t=0 105

t

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Bidirectional RNN block

• The forward net process the data from t=0 to t=T
– Only computing the hidden state values.

• The backward net processes it backward from t=T down to t=0
106

t

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

Bidirectional RNN block

• The backward nets processes the input data in reverse time, end to beginning
– Initially only the hidden state values are computed

• Clearly, this is not an online process and requires the entire input data

– Note: This is not the backward pass of backprop.net processes it backward from t=T down to t=0

107

t

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Bidirectional RNN block

• The computed states of both networks are combined to give
you the output of the bidirectional block
– Typically just concatenate them

t

108

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Bidirectional RNN

• Actual network may be formed by stacking many independent bidirectional blocks followed by an
output layer

– Forward and backward nets in each block are a single layer

• Or by a single bidirectional block followed by an output layer
– The forward and backward nets may have several layers

• In either case, it’s sufficient to understand forward inference and backprop rules for a single block
– Full forward or backprop computation simply requires repeated application of these rules 109

Poll 4 (@752)

110

A day trader in the stock exchange uses RNNs to make predictions from historical
market data to decide which stocks to buy. He can use a bidirectional RNN for his
task.

 True
 False

Poll 4

111

A day trader in the stock exchange uses RNNs to make predictions from historical market data to
decide which stocks to buy. He can use a bidirectional RNN for his task.

 True
 False

Bidirectional RNN block: inference
Subscript f represents forward net, b is backward net

Assuming hf(-1,*) and hb(inf,*) are known

x(t) is the input to the block (which could be from a lower layer)

#forward recurrence

for t = 0:T-1 # Going forward in time

hf(t,0) = x(t) # Vectors. Initialize hf(0) to input

for l = 1:Lf # Lf is depth of forward network hidden layers

zf(t,l) = Wfc(l)hf(t,l-1) + Wfr(l)hf(t-1,l) + bf(l)

hf(t,l) = tanh(zf(t,l)) # Assuming tanh activ.

#backward recurrence

hb(T,:,:) = hb(inf,:,:) # Just the initial value

for t = T-1:downto:0 # Going backward in time

hb(t,0) = x(t) # Vectors. Initialize hb(0) to input

for l = 1:Lb # Lb is depth of backward network hidden layers

zb(t,l) = Wbc(l)hb(t,l-1) + Wbr(l)hb(t+1,l) + bb(l)

hb(t,l) = tanh(zb(t,l)) # Assuming tanh activ.

for t = 0:T-1 # The output combines forward and backward

h(t) = [hf(t,Lf); hb(t,Lb)] 112

Bidirectional RNN: Simplified code

• Code can be made modular and simplified for
better interpretability…

113

First: Define forward recurrence
Inputs:

L : Number of hidden layers

Wc,Wr,b: current weights, recurrent weights, biases

hinit: initial value of h(representing h(-1,*))

x: input vector sequence

T: Length of input vector sequence

Output:

h, z: sequence of pre-and post activation hidden
representations from all layers of the RNN

function RNN_forward(L, Wc, Wr, b, hinit, x, T)

h(-1,:) = hinit # hinit is the initial value for all layers

for t = 0:T-1 # Going forward in time

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

return h 114

Bidirectional RNN block
Subscript f represents forward net, b is backward net
Assuming hf(-1,*) and hb(inf,*) are known

#forward pass

hf = RNN_forward(Lf, Wfc, Wfr, bf, hf(-1,:), x, T)

#backward pass

xrev = fliplr(x) # Flip it in time

hbrev = RNN_forward(Lb, Wbc, Wbr, bb, hb(inf,:), xrev, T)

hb = fliplr(hbrev) # Flip back to straighten time

#combine the two for the output

for t = 0:T-1 # The output combines forward and backward

h(t) = [hf(t,Lf); hb(t,Lb)]

115

Backpropagation in BRNNs

• Forward pass: Compute both forward and
backward networks and final output

116

t

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Backpropagation in BRNNs

• Backward pass: Assume gradients of the divergence are available
for the block outputs
– Obtained via backpropagation from network output
– Will have the same dimension (length) as

• Which is the sum of the dimensions of and 117

()

t

ℎ𝑓(−1)

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

(ଵ) (்ିଵ) (்)

Backpropagation in BRNNs

• Separate gradient into forward and backward components

(௧) (௧) ್(௧)

– Extract (௧) and ್(௧) from (௧) .

• Separately perform backprop on the forward and backward nets 118

()

t

ℎ𝑓(−1)

𝛻()𝐷𝑖𝑣

(ଵ) (்ିଵ) (்)

𝛻(ଵ)𝐷𝑖𝑣 𝛻(்ିଵ)𝐷𝑖𝑣 𝛻(்)𝐷𝑖𝑣

𝛻್()𝐷𝑖𝑣 𝛻ಳ(ଵ)𝐷𝑖𝑣 𝛻್(்ିଵ)𝐷𝑖𝑣 𝛻್(்)𝐷𝑖𝑣

Backpropagation in BRNNs

• Backprop for forward net:
– Backpropagate 𝛻(௧)𝐷𝑖𝑣 from 𝑡 = 𝑇 down to 𝑡 = 0 in the usual way

– Will obtain derivatives for all the parameters of the forward net
– Will also get 𝛻 ௧ 𝐷𝑖𝑣௪ௗ

• Partial derivative of the gradient for 𝑋(𝑡) computed through the forward net

119

t

ℎ𝑓(−1)

𝛻()𝐷𝑖𝑣 𝛻(ଵ)𝐷𝑖𝑣 𝛻(்ିଵ)𝐷𝑖𝑣 𝛻(்)𝐷𝑖𝑣

Backpropagation in BRNNs

• Backprop for backward net:
– Backpropagate ್(௧) forward from up to

– Will obtain derivatives for all the parameters of the forward net
– Will also get (௧) ௪ௗ

• Partial derivative of the gradient for 𝑋(𝑡) computed through the backward net 120

t

𝛻್()𝐷𝑖𝑣 𝛻ಳ(ଵ)𝐷𝑖𝑣 𝛻್(்ିଵ)𝐷𝑖𝑣 𝛻್(்)𝐷𝑖𝑣

Backpropagation in BRNNs

• Finally add up the forward and backward partial
derivatives to get the full gradient for

121

()

t

ℎ𝑓(−1)

𝛻()𝐷𝑖𝑣

(ଵ) (்ିଵ) (்)

𝛻(ଵ)𝐷𝑖𝑣 𝛻(்ିଵ)𝐷𝑖𝑣 𝛻(்)𝐷𝑖𝑣

𝛻್()𝐷𝑖𝑣 𝛻ಳ(ଵ)𝐷𝑖𝑣 𝛻್(்ିଵ)𝐷𝑖𝑣 𝛻್(்)𝐷𝑖𝑣

Backpropagation: Pseudocode

• As before we will use a 2-step code:
– A basic backprop routine that we will call
– Two calls to the routine within a higher-level

wrapper

122

First: backprop through a recurrent net
Inputs:
(In addition to inputs used by L : Number of hidden layers
dhtop: derivatives ddiv/dh*(t,L) at each time (* may be f or b)
h, z: h and z values returned by the forward pass
T: Length of input vector sequence
Output:
dWc, dWb, db dhinit: derivatives w.r.t current and recurrent weights,
biases, and initial h.
Assuming all dz, dh, dWc, dWr and db are initialized to 0

function RNN_bptt(L, Wc, Wr, b, hinit, x, T, dhtop, h, z)

dh = zeros

for t = T-1:downto:0 # Backward through time
dh(t,L) += dhtop(t)
h(t,0) = x(t)
for l = L:1 # Reverse through layers

dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) += dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)

dx(t)= dh(t,0)

return dx, dWc, dWr, db, dh(-1) # dh(-1) is actually dh(-1,1:L,:)
123

BRNN block: gradient computation
Subscript f represents forward net, b is backward net

Given dh(t), t=0…T-1 : The sequence of gradients from the upper layer

Also assumed available:

x(t), t=0…T-1 : the input to the BRNN block

zf(t), hf(t) : Complete forward-computation outputs for all layers of the forward net

zb(t), hb(t) : Complete backward-computation outputs for all layers of the backward net

Lf and Lb are the number of components in hf(t) and hb(t)

for t = 0:T-1 # Separate out forward and backward net gradients

dhf(t) = dh(t,1:Lf)

dhb(t) = dh(t,Lf+1:Lf+Lb)

#forward net

[dxf dWfc,dWfr,dbf,dhf(-1)] = RNN_bptt(L, Wfc, Wfr, bf, hf(-1), x, T, dhf, hf, zf)

#backward net

xrev = fliplr(x) # Flip it in time

dhbrev = fliplr(dhb)

hbrev = fliplr(hb)

zbrev = fliplr(zb)

[dxbrev, dWbc,dWbr,dbb,dhb(inf)] = RNN_bptt(L, Wbc, Wbr, bb, hb(inf), xrev, T, dhbrev, hbrev, zbrev)

dxb = fliplr(dxbrev)

for t = 0:T-1 # Add the partials

dx(t) = dxf(t) + dxb(t)

124

Story so far
• Time series analysis must consider past inputs along with current input

• Recurrent networks look into the infinite past through a state-space framework
– Hidden states that recurse on themselves

• Training recurrent networks requires
– Defining a divergence between the actual and desired output sequences
– Backpropagating gradients over the entire chain of recursion

• Backpropagation through time

– Pooling gradients with respect to individual parameters over time

• Bidirectional networks analyze data both ways, beginend and
endbeginning to make predictions
– In these networks, backprop must follow the chain of recursion (and gradient

pooling) separately in the forward and reverse nets

125

RNNs..

• Excellent models for series data analysis tasks
– Time-series prediction
– Time-series classification
– Sequence generation..

126

