
Deep Learning
Sequence to Sequence models: 

Connectionist Temporal 
Classification
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Sequence-to-sequence modelling
• Problem: 

– A sequence ଵ ே goes in
– A different sequence ଵ ெ comes out

• E.g.
– Speech recognition:  Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes 
out

– Dialog :  User statement goes in,  system response comes out
– Question answering :  Question comes in, answer goes out

• In general 
– No synchrony between and .
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Sequence to sequence

• Sequence goes in,  sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g.   “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”
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Case 1: Order-aligned but not time 
synchronous

• The input and output sequences happen in the same 
order
– Although they may not be time synchronous, they can be 

“aligned” against one another
– E.g.  Speech recognition

• The input speech can be aligned to the phoneme sequence output

Time

X(t)

Y(t)

t=0

h-1
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Problems

• How do we perform inference on such a 
model
– How to output time-asynchronous sequences

• How do we train such models
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– How to output time-asynchronous sequences
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The inference problem

• Objective: Given a sequence of inputs, asynchronously output a 
sequence of symbols
– “Decoding”

• Find most likely symbol sequence given inputs

 ିଵ
ௌబ

ᇲ…ௌ಼షభ
ᇲ


ᇱ

ିଵ
ᇱ

 ேିଵ

 ଵ ଶ

/B/

ସ ହ 

/F/

 ଼ ଽ

/IY/

ଷ
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Problems

• How do we perform inference on such a 
model
– How to output time-asynchronous sequences

• How do we train such models
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Recap: Training with alignment

• Training data: input sequence + output sequence
– Output sequence length <= input sequence length

• Given the alignment of the output to the input
– The phoneme /B/ ends at X2,  /AH/ at X6, /T/ at X9

 ଵ ଶ

/B/

ସ ହ 

/AH/

 ଼ ଽ

/T/

ଷ
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Recap: Characterizing an alignment
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 ଵ ଶ ସ ହ   ଼ ଽଷ

/B/ /AH/ /T/

• Given only the order-synchronous sequence and its time stamps
–   ଵ ଵ ିଵ ିଵ

– E.g.   ଵ ଶ

• Repeat symbols to convert it to a time-synchronous sequence
–  ଵ ேିଵ    ଵ ଵ ଵ ିଵ

– E.g.  ଵ ଽ
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Recap: Characterizing an alignment

• Given only the order-synchronous sequence and its time stamps
– 𝑆 𝑇 , 𝑆ଵ 𝑇ଵ , … , 𝑆ିଵ 𝑇ିଵ

– E.g.  𝑆 =/𝐵/ 3 ,  𝑆ଵ =/𝐵/ 7 ,  𝑆ଶ =/𝑇/ 9 ,

• Repeat symbols to convert it to a time-synchronous sequence
– 𝑠 = 𝑆, 𝑠ଵ = 𝑆, … , 𝑆

బ்
= 𝑆, 𝑠

బ்ାଵ = 𝑆ଵ, … , 𝑠
భ்

= 𝑆ଵ, 𝑠
భ்ାଵ = 𝑆ଶ, … , 𝑠ேିଵ = 𝑆ିଵ

– E.g. 𝑠, 𝑠ଵ, … , 𝑠ଽ =/𝐵//𝐵//𝐵//𝐵//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝐴𝐻//𝑇//𝑇/

• For our purpose an alignment of  ିଵ to an input of length N has the form
– 𝒔𝟎, 𝒔𝟏, … , 𝒔𝑵ି𝟏 = 𝑺𝟎, 𝑺𝟎, … , 𝑺𝟎, 𝑺𝟏, 𝑺𝟏, … , 𝑺𝟏, 𝑺𝟐, … , 𝑺𝑲ି𝟏 (of length 𝑵)

• Any sequence of this kind of length that contracts (by eliminating repetitions) to 
 ିଵ is a candidate alignment of  ିଵ
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 ଵ ଶ ସ ହ   ଼ ଽଷ

/B/ /AH/ /T//B//B//B/ /AH//AH//AH/ /T/



• Given the order-aligned output sequence with 
timing

 ଵ ଶ

/B/

ସ ହ   ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ  ଽ
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Recap: Training with alignment



• Given the order aligned output sequence with timing
– Convert it to a time-synchronous alignment by repeating symbols

• Compute the divergence from the time-aligned sequence

 ଵ ଶ

/B/

ସ ହ   ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ  ଽ

DivDivDivDivDivDivDiv
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௧ ௧

௧

௧

௧

• The gradient w.r.t the -th output vector ௧


௧

– Zeros except at the component corresponding to the target aligned to that 
time

 ଵ ଶ

/B/

ସ ହ   ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ  ଽ

DivDivDivDivDivDivDiv
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 ଵ ଶ ସ ହ   ଼ ଽଷ

Problem: Alignment not provided

• Only the sequence of output symbols is 
provided for the training data
– But no timing information

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
 ଵ ଶ ସ ହ   ଼ ଽଷ
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 ଵ ଶ ସ ହ   ଼ ଽଷ

Solution 1: Guess the alignment

? ? ? ? ? ? ? ? ? ?
 ଵ ଶ ସ ହ   ଼ ଽଷ
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Decode to obtain
alignments

Train model with
given alignments

Initialize
alignments



Poll 1 (@1054, @1055)
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Viterbi training explicitly estimates the alignment of each training instance 
and computes the divergence for the estimated alignment (T/F)

 True
 False

Viterbi training requires reestimation of alignments in every iteration (T/F)

 True
 False



Poll 1
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Viterbi training explicitly estimates the alignment of each training instance and computes the 
divergence for the estimated alignment (T/F) 

 True 
 False 

 

Viterbi training requires reestimation of alignments in every iteration (T/F) 

 True 
 False 



Iterative update: Problem

• Approach heavily dependent on initial 
alignment

• Prone to poor local optima

• Alternate solution: Do not commit to an 
alignment during any pass..
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Recap: Training without alignment

• We know how to train if the alignment is 
provided

• Problem:  Alignment is not provided

• Solution:
1. Guess the alignment
2. Consider all possible alignments
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Arrange the constructed table so that from top to bottom it has the exact 
sequence of symbols required

Recap: The “aligned” table
/B/ 
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• We commit to the single “best” estimated alignment
– The most likely alignment

௧
௦௧௧

௧

– This can be way off, particularly in early iterations, or if the model is poorly initialized

• Alternate view: there is a probability distribution over alignments
– Selecting a single alignment is the same as drawing a single sample from this 

distribution
– Selecting the most likely alignment is the same as deterministically always drawing 

the most probable value from the distribution 24

The reason for suboptimality
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• We commit to the single “best” estimated alignment
– The most likely alignment

௧
௦௧௧

௧

– This can be way off, particularly in early iterations, or if the model is poorly initialized

• Alternate view: there is a probability distribution over alignments of the target Symbol 
sequence (to the input)

– Selecting a single alignment is the same as drawing a single sample from it
– Selecting the most likely alignment is the same as deterministically always drawing the most probable 

value from the distribution
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• Instead of only selecting the most likely alignment, use the 
statistical expectation over all possible alignments

– Use the entire distribution of alignments
– This will mitigate the issue of suboptimal selection of alignment
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Averaging over all alignments

t 0 1 2 3 4 5 6 7 8
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Poll 2 (@1056, @1057)
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The “training-without-alignment” procedure computes the average 
divergence over all possible alignments of the label sequence to the input 
(T/F)

 True
 False

The “training-without-alignment” requires explicit estimation of the 
alignment of the label sequence to the input

 True
 False



Poll 2
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The “training-without-alignment” procedure computes the average divergence over all possible 
alignments of the label sequence to the input (T/F) 

 True 
 False 

 

The “training-without-alignment” requires explicit estimation of the alignment of the label sequence 
to the input 

 True 
 False 



௧

௧

• Using the linearity of expectation

௧

௧
– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧
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The expectation over all alignments
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௧

௧

• Using the linearity of expectation

௧

௧
– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧
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The expectation over all alignments

t 0 1 2 3 4 5 6 7 8

The probability of aligning the specific symbol s at time t,
given that unaligned sequence and given the 
input sequence 
We need to be able to compute this
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• is the total probability of all valid paths in 
the graph for target sequence that go through the symbol 

(the th symbol in the sequence ) at time 

• We will compute this using the “forward-backward” 
algorithm
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A posteriori probabilities of symbols
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• is the total probability of all valid paths in 
the graph for target sequence that go through the symbol 

(the th symbol in the sequence ) at time 

• We will compute this using the “forward-backward” 
algorithm
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A posteriori probabilities of symbols
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• ௧  can be decomposed as

௧    ିଵ ௧ 

  ௧  ௧ାଵ   ିଵ

• Using Bayes Rule

  ௧  ௧ାଵ   ିଵ   ௧ 

• The probability of the subgraph in the blue outline, times the conditional 
probability of the red-encircled subgraph, given the blue subgraph
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A posteriori probabilities of symbols
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Conditional independence

• Dependency graph: Input sequence  ଵ ேିଵ governs hidden 
variables  ଵ ேିଵ

• Hidden variables govern output predictions , ଵ, ேିଵ individually
• , ଵ, ேିଵ are conditionally independent given 

• Since is deterministically derived from , , ଵ, ேିଵ are also 
conditionally independent given 
– This wouldn’t be true if the relation between and were not deterministic or 

if is unknown, or if the s at any time went back into the net as inputs
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 ଵ ேିଵ  ଵ ேିଵ
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• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability
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• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability
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• The is the total probability of the subgraph 
shown
– The total probability of all paths leading to the 

alignment of to time 
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Computing : Forward algorithm
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Computing : Forward algorithm
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• Where  is any symbol that is permitted to come before an  and may include 

• is its row index, and can take values and in this example



𝛼 𝑡, 𝑟 = 𝑃 𝑆. . 𝑆, 𝑠௧ = 𝑆|𝐗

𝛼 3, 𝐼𝑌 = 𝛼 2, 𝐵 𝑦ଷ
ூ + 𝛼 2, 𝐼𝑌 𝑦ଷ

ூ

𝛼 𝑡, 𝑟 =  𝛼(𝑡 − 1, 𝑞) 𝑌௧
ௌ()

:ௌ∈ௗ(ௌೝ)
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Computing : Forward algorithm
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• Where  is any symbol that is permitted to come before an  and may include 

• is its row index, and can take values and in this example



• The is the total probability of the subgraph 
shown
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Forward algorithm
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Forward algorithm

t 0 1 2 3 4 5 6 7 8
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Forward algorithm

• Initialization:

• for 

for 

௧
ௌ 
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Forward algorithm

• Initialization:

• for 

௧
ௌ 

for 

• ௧
ௌ 

43

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/




ଵ


ଶ


ଷ


ସ


ହ








଼



ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ


ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி


ி


ி

଼
ி


ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ



Forward algorithm

• Initialization:

• for 

௧
ௌ 

for 

• ௧
ௌ 
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Forward algorithm

• Initialization:

• for 

௧
ௌ 

for 

• ௧
ௌ 
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Forward algorithm

• Initialization:

• for 

௧
ௌ 

for 

• ௧
ௌ 
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Forward algorithm

• Initialization:

• for 

௧
ௌ 

for 

• ௧
ௌ 
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In practice..

• The recursion  

will generally underflow

• Instead we can do it in the log domain

– This can be computed entirely without underflow 
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Forward algorithm: Alternate 
statement

• The algorithm can also be stated as follows which separates the graph probability 
from the observation probability. This is needed to compute derivatives

• Initialization:


ௌ 

• for 
𝛼ො(𝑡, 0)  = 𝛼(𝑡 − 1,0)

for 𝑙 = 1 … 𝐾 − 1

• 𝛼ො(𝑡, 𝑙)  = 𝛼 𝑡 − 1, 𝑙 + 𝛼 𝑡 − 1, 𝑙 − 1

௧
ௌ 
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• The probability of the entire symbol sequence is the 
alpha at the bottom right node
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The final forward probability 
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SIMPLE FORWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The forward recursion
# First, at t = 1
alpha(1,1) = s(1,1)
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*s(t,1)
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= s(t,i)

51

Can actually be done without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
# First, at t = 1
alpha(1,1) = y(1,S(1))
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,S(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= y(t,S(i))
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Without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



 

• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability
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We have seen how to compute this



 

• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability
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We have seen how to compute this



• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/




ଵ


ଶ


ଷ


ସ


ହ








଼



ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ


ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி


ி


ி

଼
ி


ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ

Lets look at this



• is the probability of the exposed subgraph, not including the orange 
shaded box

• For convenience, let us include the box in the graph, and factor it out later
= probability of graph including node at (t,r)

ଷ
ூ

• We will develop an algorithm to compute and compute from it by 
dividing out ଷ

ூ later
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Backward probability
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• is the probability of the exposed subgraph, not including the orange 
shaded box

• For convenience, let us include the box in the graph, and factor it out later
= probability of graph including node at (t,r)

௧
ௌೝ

• We will develop an algorithm to compute and compute from it by 
dividing out ௧

ௌೝ later 57

Backward probability
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• Using the same logic as in the forward algorithm:

ଷ
ூ

ଷ
ூ

• We recognize these terms:

ଷ
ூ

ଷ
ூ
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Backward probability

=

+

B IY D IY



• Using the same logic as in the forward algorithm:

ଷ
ூ

ଷ
ூ

• We recognize these terms:

ଷ
ூ
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Backward probability

=

+
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Backward algorithm
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• The is the total probability of the subgraph shown
– Including the node at (t,r)

• The terms at any time are defined recursively in terms 
of the terms at the next time

ଷ
ூ



Backward algorithm

• Entire backward algorithm:
– Note : some nodes (bottom row) have more successors than others

• Initialization:

்ିଵ
ௌ ିଵ

• for 
for 

𝛽መ 𝑡, 𝑟 = 𝑦௧
ௌ()

 𝛽መ 𝑡 + 1, 𝑞

∈௦௨()
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Backward algorithm

• Initialization:

• for 
for 

௧
ௌ()

∈௦௨()

62

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/




ଵ


ଶ


ଷ


ସ


ହ








଼



ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ


ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி


ி


ி

଼
ி


ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ



Backward algorithm
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• Initialization:

• for 
for 
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ௌ()

∈௦௨()



Backward algorithm
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• Initialization:

• for 
for 
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ௌ()

∈௦௨()



Backward algorithm
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• Initialization:

• for 
for 
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ௌ()

∈௦௨()



Backward algorithm
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• Initialization:

• for 
for 

௧
ௌ()

∈௦௨()
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Backward algorithm
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• This recursion gives us which includes the node at 

• The actual backward probability is obtained as

ଷ
ூ



Backward algorithm

• Initialization:

்ିଵ
ௌ ିଵ

• for 
for 

𝛽መ 𝑡, 𝑟 = 𝑦௧
ௌ()

 𝛽መ 𝑡 + 1, 𝑞

∈௦௨()

𝜷 𝒕, 𝒓 =
𝟏

𝒚𝒕
𝑺(𝒓)

𝜷 𝒕, 𝒓
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• We will call the first term the forward probability 
• We will call the second term the backward probability 
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A posteriori symbol probability
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• We will call the first term the forward probability 
• We will call the second term the backward probability 
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The joint probability

Backward algoForward algo

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/




ଵ


ଶ


ଷ


ସ


ହ








଼



ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ


ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி


ி


ி

଼
ி


ூ

ଵ
ூ

ଶ
ூ

ଷ
ூ

ସ
ூ

ହ
ூ


ூ


ூ

଼
ூ



SIMPLE BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The backward recursion to compute betahat
# First, at t = T
betahat(T,N) = s(T,N)
betahat(T,1:N-1) = 0
for t = T-1 downto 1

betahat(t,N) = s(t,N)*betahat(t+1,N)
for i = N-1 downto 1

betahat(t,i) = s(t,i)*(betahat(t+1,i) + betahat(t+1,i+1))

#Compute beta from betahat
for t = T downto 1

for i = N downto 1
beta(t,i) = betahat(t,i)/s(t,i)

71

Can actually be done without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion for betahat
# First, at t = T
betahat(T,N) = y(T,S(N))
betahat(T,1:N-1) = 0
for t = T-1 downto 1

betahat(t,N) = y(t,S(N))*betahat(t+1,N)
for i = N-1 downto 1

betahat(t,i) = y(t,S(i))*(betahat(t+1,i) + betahat(t+1,i+1))

#Compute beta from betahat
for t = T downto 1

for i = N downto 1
beta(t,i) = betahat(t,i)/y(t,S(i))

72

Without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



• The posterior is given by

The posterior probability
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• Let the posterior be represented 
by 

The posterior probability
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COMPUTING POSTERIORS
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S)   # forward probabilities computed
beta  = backward(y, S)  # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

75Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
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• The derivative of the divergence w.r.t the output Yt of the net at any time:
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ଵ

௧
ଶ
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– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence
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Poll 3 (@1058)
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Select all that are true

 The forward-backward algorithm is used to compute the a posteriori 
probability of aligning each symbol in the compressed sequence to each input

 These probabilities are required to compute the expected divergence across 
all alignments of the compressed symbol sequence to the input



Poll 3
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Select all that are true 

 The forward-backward algorithm is used to compute the a posteriori probability of aligning 
each symbol in the compressed sequence to each input 

 These probabilities are required to compute the expected divergence across all alignments of 
the compressed symbol sequence to the input 
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:


௧
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– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:
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– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence

Must compute these terms 
from here
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:
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௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence

Must compute these terms 
from here
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:
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– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:


௧
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௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:
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– Components will be non-zero only for symbols that occur in the training instance
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The expected divergence
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• The derivative of the divergence w.r.t the output ௧ of the net at any time:
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– Components will be non-zero only for symbols that occur in the training instancee
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The expected divergence
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The approximation is exact if we think of this as a maximum-likelihood estimate



௧
ௌ()

௧

• The derivative of the divergence w.r.t any particular output of the network must sum over 
all instances of that symbol in the target sequence

– E.g. the derivative w.r.t 𝑦௧
ூ will sum over both rows representing /IY/ in the above figure 86

Derivative of the expected divergence

The derivatives at both these locations must be summed to get ௗூ

ௗ௬ర
ೊ
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COMPUTING DERIVATIVES

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S)   # forward probabilities computed
beta  = backward(y, S)  # backward probabilities computed

# Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0  # Initialize all derivatives at time t to 0
for i = 1:N

dy(t,S(i)) -= gamma(t,i) / y(t,S(i))

87Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Overall training procedure for 
Seq2Seq case 1 

• Problem: Given input and output sequences 
without alignment, train models

88

 ଵ ଶ ସ ହ   ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
 ଵ ଶ ସ ହ   ଼ ଽଷ

/F/



Overall training procedure for 
Seq2Seq case 1 

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network 

89



Overall Training: Forward pass

90

• Foreach training instance
• Step 3:  Forward pass. Pass the training instance through 

the network and obtain all symbol probabilities at each 
time
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Overall training: Backward pass

• Foreach training instance
• Step 3:  Forward pass. Pass the training instance through 

the network and obtain all symbol probabilities at each 
time

• Step 4: Construct the graph representing the specific 
symbol sequence in the instance. This may require having
multiple rows of nodes with the same symbol scores



• Foreach training instance:
– Step 5: Perform the forward backward algorithm 

to compute and at each time, for 
each row of nodes in the graph. Compute .

– Step 6: Compute derivative of divergence 
for each 
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Overall training: Backward pass
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Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence 


for each 



• Step 7: Backpropagate and aggregate derivatives 

over minibatch and update parameters
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Story so far: CTC models
• Sequence-to-sequence networks which irregularly output symbols can be 

“decoded” by Viterbi decoding
– Which assumes that a symbol is output at each time and merges adjacent 

symbols

• They require alignment of the output to the symbol sequence for training
– This alignment is generally not given

• Training can be performed by iteratively estimating the alignment by 
Viterbi-decoding and time-synchronous training

• Alternately, it can be performed by optimizing the expected error over all 
possible alignments
– Posterior probabilities for the expectation can be computed using the forward 

backward algorithm
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A key decoding problem

• Consider a problem where the output symbols 
are characters

• We have a decode:  R R R E E E E D

• Is this the compressed symbol sequence RED 
or REED?

95



We’ve seen this before

 ଵ ଶ ସ ହ   ଼ଷ
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• /G/ /F/ /F/ /IY/ /D/  or  /G/ /F/ /IY/ /D/ ?



A key decoding problem
• We have a decode:  R R R E E E E E D
• Is this the symbol sequence RED or REED?

• Solution: Introduce an explicit extra symbol which serves to separate 
discrete versions of a symbol
– A “blank” (represented by “-”)
– RRR---EE---DDD =  RED
– RR-E--EED = REED
– RR-R---EE---D-DD = RREDD
– R-R-R---E-EDD-DDDD-D = RRREEDDD

• The next symbol at the end of a sequence of blanks is always a new character
• When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra 
blank symbol
– Which too must be trained
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A key decoding problem
• We have a decode:  R R R E E E E E D
• Is this the symbol sequence RED or REED?

• Solution: Introduce an explicit extra symbol which serves to separate 
discrete versions of a symbol
– A “blank” (represented by “-”)
– RRR---EE---DDD =  RED
– RR-E--EED = REED
– RR-R---EE---D-DD = RREDD
– R-R-R---E-EDD-DDDD-D = RRREEDDD

• The next symbol at the end of a sequence of blanks is always a new character
• When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra 
blank symbol
– Which too must be trained
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Poll 4 (@1059)
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Which of the following are valid expansions of the character string “BILLY”?

 B B I I L L Y
 B – B I L – L Y
 B – I – L L Y
 B – I – L – L Y Y



Poll 4

100

Which of the following are valid expansions of the character string “BILLY”? 

 

 B B I I L L Y 
 B – B I L – L Y 
 B – I – L L Y 
 B – I – L – L Y Y 



The modified forward output

101

• Note the extra “blank” at the output
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The modified forward output
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• Note the extra “blank” at the output

/B/  /IY/ /F/ /IY/
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The modified forward output
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• Note the extra “blank” at the output

/B/  /IY/ /F/ /IY/
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The modified forward output
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• Note the extra “blank” at the output

/B/  /IY/ /F/ /F/ /IY/
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Composing the graph for training

• The original method without blanks

• Changing the example to /B/ /IY/ /IY/ /F/  from /B/ /IY/ /F/ /IY/ 
for illustration
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How blanks change the graph
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- /IY/ /F/ /IY/

/B/ /IY/ /F/ /IY/

/B/ - -- -

• Regular order: Each symbol must be followed by 
the next one

• New pattern: Each symbol may optionally be 
followed by a blank (explicitly shown)

• Unless the next symbol is the same
– E.g.  /IY/ /IY/
– In this case an intermediate black is mandatory
– Blanks may also occur in the first and last positions
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Composing the graph for training

• With blanks
• Follows the graph we just saw

• Note: a row of blanks between any two symbols
• Also blanks at the very beginning and the very end
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Composing the graph for training

• Add edges such that all paths from initial node(s) to final 
node(s) unambiguously represent the target symbol sequence
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• If  there is an edge on the left graph, there is a corresponding 
arrow between columns
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Composing the graph for training

• The first and last column are allowed to also end at initial and 
final blanks

/IY/

/B/

/F/

/IY/

–

–

–

–

–



/IY/

/B/

/F/

/IY/


ହ

110

Composing the graph for training

• The first and last column are allowed to also end at initial and 
final blanks

• Skips are permitted across a blank, but only if the symbols on 
either side are different

• Because a blank is mandatory between repetitions of a symbol but not 
required between distinct symbols
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Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place
#Also keep track of whether an extended symbol Sext(j) is allowed to 
connect
#directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext] = extendedsequencewithblanks(S)
j = 1
for i = 1:N

Sext(j) = ‘b’ # blank
j = j+1

Sext(j) = S(i)
j = j+1

end
Sext(j) = ‘b’

return Sext

111Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



MODIFIED VITERBI ALIGNMENT WITH BLANKS

[Sext] = extendedsequencewithblanks(S)
N = length(Sext)   # length of extended sequence

# Viterbi starts here
BP(1,1) = -1
Bscr(1,1) = y(1,Sext(1))  # Blank
Bscr(1,2) = y(1,Sext(2))
Bscr(1,2:N) = -infty
for t = 2:T

BP(t,1) = BP(t-1,1);
Bscr(t,1) = Bscr(t-1,1)*y(t,Sext(1))
for i = 2:N

if (i > 2 && Sext(i) != Sext(i-2))
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1), Bscr(t-1,i-2))

else
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1))

Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,Sext(i))

# Backtrace
AlignedSymbol(T) = Bscr(T,N) > Bscr(T,N-1) ? N, N-1;
for t = T downto 1

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

112Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Without explicit construction of output table

Example of using blanks for alignment:  Viterbi alignment with blanks



Modified Forward Algorithm

• Initialization:

–
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Modified Forward Algorithm

• Iteration t = 1:N:

• If 

௧
ௌ 
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Modified Forward Algorithm

• Iteration t = 1:N:

• If 

௧
ௌ 
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FORWARD ALGORITHM (with blanks)

[Sext] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The forward recursion
# First, at t = 1
alpha(1,1) = y(1,Sext(1))  #This is the blank
alpha(1,2) = y(1,Sext(2))
alpha(1,3:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,Sext(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i) + alpha(t-1,i-1)
if (i > 2 && Sext(i) != Sext(i-2))

alpha(t,i) += alpha(t-1,i-2)
alpha(t,i) *= y(t,Sext(i))
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Without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Modified Backward Algorithm

• Initialization:
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Modified Backward Algorithm

• Iteration:

• If 𝑆 𝑟 ≠ 𝑆 𝑟 + 2

௧
ௌ 

• ௧
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BACKWARD ALGORITHM WITH BLANKS

[Sext] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
# First, at t = T
betahat(T,N) = y(T,Sext(N))
betahat(T,N-1) = y(T,Sext(N-1))
betahat(T,1:N-2) = 0
for t = T-1 downto 1

betahat(t,N) = betahat(t+1,N)*y(t,Sext(N))
for i = N-1 downto 1

betahat(t,i) = betahat(t+1,i) + betahat(t+1,i+1))
if (i<=N-2 && Sext(i) != Sext(i+2))

betahat(t,i) += betahat(t+1,i+2)
betahat(t,i) *= y(t,Sext(i))

#Compute beta from betahat
for t = T downto 1

for i = N downto 1
beta(t,i) = betahat(t,i)/y(t,Sext(i))
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Without explicitly composing the output table

Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



The rest of the computation

• Posteriors and derivatives are computed 
exactly as before

• But using the extended graphs with blanks

120



COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext)   # forward probabilities computed
beta  = backward(y, Sext)  # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

121Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext)   # forward probabilities computed
beta  = backward(y, Sext)  # backward probabilities computed

# Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 #Initialize all derivatives at time t to 0
for i = 1:N

dy(t,Sext(i)) -= gamma(t,i) / y(t,Sext(i))

122Using  1..N  and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Overall training procedure for 
Seq2Seq with blanks 

• Problem: Given input and output sequences 
without alignment, train models

123

 ଵ ଶ ସ ହ   ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
 ଵ ଶ ସ ହ   ଼ ଽଷ

/F/



Overall training procedure

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network
– Include a “blank” symbol in vocabulary 
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Overall Training: Forward pass

125

• Foreach training instance
• Step 3:  Forward pass. Pass the training instance through 

the network and obtain all symbol probabilities at each 
time, including blanks
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Overall training: Backward pass

• Foreach training instance
• Step 3:  Forward pass. Pass the training instance through 

the network and obtain all symbol probabilities at each 
time

• Step 4: Construct the graph representing the specific 
symbol sequence in the instance. Use appropriate 
connections if blanks are included



• Foreach training instance:
– Step 5: Perform the forward backward algorithm to compute 

and at each time, for each row of nodes in the 
graph using the modified forward-backward equations. Compute a 
posteriori probabilities from them

– Step 6: Compute derivative of divergence 


for each 
127

Overall training: Backward pass



Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence 


for each 



• Step 7: Backpropagate and aggregate derivatives 

over minibatch and update parameters
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CTC: Connectionist Temporal 
Classification

• The overall framework we saw is referred to as 
CTC

• Applies to models that output order-aligned, 
but time-asynchronous outputs
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Returning to an old problem: 
Decoding

• The greedy decode computes its output by finding the most likely symbol at each time and merging 
repetitions in the sequence

• This is in fact a suboptimal decode that actually finds the most likely time-synchronous output 
sequence

– Which is not necessarily the most likely order-synchronous sequence 130
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Greedy decodes are suboptimal

• Consider the following candidate decodes
– R R – E E D (RED, 0.7)
– R R – – E D (RED, 0.68)
– R R E E E D (RED, 0.69)
– T T E E E D (TED, 0.71)
– T T – E E D (TED, 0.3)
– T T – – E D (TED, 0.29)

• A greedy decode picks the most likely output: TED
• A decode that considers the sum of all alignments of 

the same final output will select RED
• Which is more reasonable?
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Greedy decodes are suboptimal
• Consider the following candidate decodes

– R R – E E D (RED, 0.7)
– R R – – E D (RED, 0.68)
– R R E E E D (RED, 0.69)
– T T E E E D (TED, 0.71)
– T T – E E D (TED, 0.3)
– T T – – E D (TED, 0.29)

• A greedy decode picks the most likely output: TED
• A decode that considers the sum of all alignments of the 

same final output will select RED
• Which is more reasonable?
• And yet, remarkably, greedy decoding can be surprisingly 

effective, when using decoding with blanks
132



What a CTC system outputs

• Ref: Graves
• Symbol outputs peak at the ends of the sounds

– Typical output:   - - R - - - E - - -D
– Model output naturally eliminates alignment ambiguities

• But this is still suboptimal.. 133



Actual objective of decoding

• Want to find most likely order-aligned symbol sequence
– R E D

– What greedy decode finds:  most likely time synchronous 
symbol sequence

• – /R/ /R/ – – /EH//EH//D/

• Which must be compressed

• Find the order-aligned symbol sequence , 
given an input , that is most likely

134



• The probability of the entire symbol sequence is the 
alpha at the bottom right node

135

Recall: The forward probability 
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Actual decoding objective

• Find the most likely (asynchronous) symbol sequence

• Unfortunately, explicit computation of this will require 
evaluate of an exponential number of symbol 
sequences

• Solution:  Organize all possible symbol sequences as a 
(semi)tree

136



Poll 5 (@1060, @1061)

137

The actual objective of decoding is to identify the compressed/unaligned 
sequence that has the highest probability given the input

 True
 False

This is the same as finding the compressed sequence with the highest forward 
probability (alpha) for aligning the final symbol in the sequence to the final input

 True
 False



Poll 5

138

The actual objective of decoding is to identify the compressed/unaligned sequence that has the 
highest probability given the input 

 True 
 False 

 

 

This is the same as finding the compressed sequence with the highest forward probability (alpha) for 
aligning the final symbol in the sequence to the final input 

 True 
 False 



Actual decoding objective

• Find the most likely (asynchronous) symbol sequence

• Unfortunately, explicit computation of this will require 
evaluate of an exponential number of symbol 
sequences

• Solution:  Organize all possible symbol sequences as a 
(semi)tree

139



Hypothesis semi-tree

• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
• Every symbol connects to every symbol other than itself

– It also connects to a blank, which connects to every symbol including itself
• The simple structure repeats  recursively
• Each node represents a unique (partial) symbol sequence! 140
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• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
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Hypothesis semi-tree

• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
• Every symbol connects to every symbol other than itself

– It also connects to a blank, which connects to every symbol including itself
• The simple structure repeats  recursively
• Each node represents a unique (partial) symbol sequence! 145
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The decoding graph for the tree

• Graph with more than 2 symbols will be similar 
but much more cluttered and complicated

146
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The decoding graph for the tree

• The figure to the left is the tree, drawn in a vertical line
• The graph is just the tree unrolled over time

– For a vocabulary of V symbols, every node connects out to V other 
nodes at the next time

• Every node in the graph represents a unique symbol sequence
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The decoding graph for the tree

• The forward score at the final time represents the full forward 
score for a unique symbol sequence (including sequences terminating in 
blanks)

• Select the symbol sequence with the largest alpha at the final time
– Some sequences may have two alphas, one for the sequence itself, one for the 

sequence followed by a blank
– Add the alphas before selecting the most likely 148
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Recall: Forward Algorithm

•
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The decoding graph for the tree

• The forward score at the final time represents the full forward 
score for a unique symbol sequence (including sequences terminating in 
blanks)

• Select the symbol sequence with the largest alpha
– Sequences may two alphas, one for the sequence itself, one for the sequence 

followed by a blank
– Add the alphas before selecting the most likely 150
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CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and 

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage 

due to pruning 151



CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and 

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage 

due to pruning 152



CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and 

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage 

due to pruning 153



CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and 

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage 

due to pruning 154



CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and 

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage 

due to pruning 155



Beamsearch Pseudocode Notes

• Retaining separate lists of paths and pathscores for paths 
terminating in blanks, and those terminating in valid symbols
– Since blanks are special
– Do not explicitly represent blanks in the partial decode strings

• Pseudocode takes liberties (particularly w.r.t null strings)
– I.e. you must be careful if you convert this to code

• Key
– PathScore : array of scores for paths ending with symbols
– BlankPathScore :  array of scores for paths ending with blanks
– SymbolSet :  A list of symbols not including the blank
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BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = 

InitializePaths(SymbolSet, y[:,0])

# Subsequent time steps 
for t = 1:T

# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =      

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, 
NewBlankPathScore, NewPathScore, BeamWidth)

# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol 
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t]) 

end

# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
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BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = 

InitializePaths(SymbolSet, y[:,0])

# Subsequent time steps 
for t = 1:T

# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =      

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, 
NewBlankPathScore, NewPathScore, BeamWidth)

# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol 
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t]) 

end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
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BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = 

InitializePaths(SymbolSet, y[:,0])

# Subsequent time steps 
for t = 1:T

# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =      

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, 
NewBlankPathScore, NewPathScore, BeamWidth)

# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol 
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t]) 

end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
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BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = 

InitializePaths(SymbolSet, y[:,0])

# Subsequent time steps 
for t = 1:T

# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =      

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, 
NewBlankPathScore, NewPathScore, BeamWidth)

# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol 
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t]) 

end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
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BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = 

InitializePaths(SymbolSet, y[:,0])

# Subsequent time steps 
for t = 1:T

# Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =      

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, 
NewBlankPathScore, NewPathScore, BeamWidth)

# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol 
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t]) 

end
# Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
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BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [],  InitialPathScore = []
# First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank]  # Score of blank at t=1
InitialPathsWithFinalBlank = {path}

# Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank

path = c
InitialPathScore[path] = y[c]  # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol, 
InitialBlankPathScore, InitialPathScore
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BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
UpdatedPathsWithTerminalBlank = {}
UpdatedBlankPathScore = []
# First work on paths with terminal blanks 
#(This represents transitions along horizontal trellis edges for blanks)
for path in PathsWithTerminalBlank: 

# Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path  # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

# Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:

# If there is already an equivalent string in UpdatesPathsWithTerminalBlank
# simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
else

UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end
end 

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore
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BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

# First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:

for c in SymbolSet:  # SymbolSet does not include blanks
newpath = path + c  # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end
end

# Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:

# Extend the path with every symbol other than blank
for c in SymbolSet:  # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c] 
else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = PathScore[path] * y[c]

end
end

end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore
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BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []
PrunedPathScore = []
# First gather all the relevant scores
i = 1
for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]
i++

end
for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]
i++

end

# Sort and find cutoff score that retains exactly BeamWidth paths
sort(scorelist)  # In decreasing order
cutoff = BeamWidth < length(scorelist) ?  scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScore[p]

end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScore[p]

end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore
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BEAM SEARCH: Merging final paths

# Note : not using global variable here

function MergeIdenticalPaths(PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

# All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

# Paths with terminal blanks will contribute scores to existing identical paths from 
# PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank

if p in MergedPaths
FinalPathScore[p] += BlankPathScore[p]

else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore[p]

end
end

return MergedPaths, FinalPathScore
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Story so far: CTC models
• Sequence-to-sequence networks which irregularly produce output 

symbols can be trained by
– Iteratively aligning the target output to the input and time-synchronous 

training
– Optimizing the expected error over all possible alignments: CTC training

• Distinct repetition of symbols can be disambiguated from repetitions 
representing the extended output of a single symbol by the introduction 
of blanks

• Decoding the models can be performed by
– Best-path decoding, i.e. Viterbi decoding
– Optimal CTC decoding based on the application of the forward algorithm to a 

tree-structured representation of all possible output strings
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CTC caveats
• The “blank” structure (with concurrent modifications to the 

forward-backward equations) is only one way to deal with 
the problem of repeating symbols

• Possible variants:
– Symbols partitioned into two or more sequential subunits

• No blanks are required, since subunits must be visited in order

– Symbol-specific blanks
• Doubles the “vocabulary”

– CTC can use bidirectional recurrent nets
• And frequently does

– Other variants possible..
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Most common CTC applications

• Speech recognition
– Speech in,  phoneme sequence out
– Speech in, character sequence (spelling out)

• Handwriting recognition
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Speech recognition using Recurrent 
Nets

• Recurrent neural networks (with LSTMs) can be 
used to perform speech recognition
– Input: Sequences of audio feature vectors
– Output: Phonetic label of each vector

Time

ଵ

X(t)

t=0

ଶ ଷ ସ ହ  
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Speech recognition using Recurrent 
Nets

• Alternative: Directly output phoneme, 
character or word sequence

Time

ଵ

X(t)

t=0

ଶ
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Next up: Attention models
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CNN-LSTM-DNN for speech recognition

• Ensembles of RNN/LSTM, DNN, & Conv
Nets (CNN) :

• T. Sainath,  O. Vinyals, A. Senior, H. Sak. 
“Convolutional, Long Short-Term Memory, 
Fully Connected Deep Neural Networks,” 
ICASSP 2015.
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Translating Videos to Natural Language Using Deep 
Recurrent Neural Networks 

Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015. 
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Not explained

• Can be combined with CNNs
– Lower-layer CNNs to extract features for RNN

• Can be used in tracking
– Incremental prediction
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